| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > expd | Structured version Visualization version GIF version | ||
| Description: Exportation deduction. (Contributed by NM, 20-Aug-1993.) (Proof shortened by Wolf Lammen, 28-Jul-2022.) |
| Ref | Expression |
|---|---|
| expd.1 | ⊢ (𝜑 → ((𝜓 ∧ 𝜒) → 𝜃)) |
| Ref | Expression |
|---|---|
| expd | ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | expd.1 | . . 3 ⊢ (𝜑 → ((𝜓 ∧ 𝜒) → 𝜃)) | |
| 2 | 1 | expdcom 414 | . 2 ⊢ (𝜓 → (𝜒 → (𝜑 → 𝜃))) |
| 3 | 2 | com3r 87 | 1 ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) |
| Copyright terms: Public domain | W3C validator |