| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > exp5c | Structured version Visualization version GIF version | ||
| Description: An exportation inference. (Contributed by Jeff Hankins, 7-Jul-2009.) |
| Ref | Expression |
|---|---|
| exp5c.1 | ⊢ (𝜑 → ((𝜓 ∧ 𝜒) → ((𝜃 ∧ 𝜏) → 𝜂))) |
| Ref | Expression |
|---|---|
| exp5c | ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → (𝜏 → 𝜂))))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | exp5c.1 | . . 3 ⊢ (𝜑 → ((𝜓 ∧ 𝜒) → ((𝜃 ∧ 𝜏) → 𝜂))) | |
| 2 | 1 | exp4a 431 | . 2 ⊢ (𝜑 → ((𝜓 ∧ 𝜒) → (𝜃 → (𝜏 → 𝜂)))) |
| 3 | 2 | expd 415 | 1 ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → (𝜏 → 𝜂))))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: exp5l 446 fiint 9366 fiintOLD 9367 inf3lem2 9669 fgcl 23886 pclfinN 39902 hbtlem2 43136 |
| Copyright terms: Public domain | W3C validator |