MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  exp5c Structured version   Visualization version   GIF version

Theorem exp5c 445
Description: An exportation inference. (Contributed by Jeff Hankins, 7-Jul-2009.)
Hypothesis
Ref Expression
exp5c.1 (𝜑 → ((𝜓𝜒) → ((𝜃𝜏) → 𝜂)))
Assertion
Ref Expression
exp5c (𝜑 → (𝜓 → (𝜒 → (𝜃 → (𝜏𝜂)))))

Proof of Theorem exp5c
StepHypRef Expression
1 exp5c.1 . . 3 (𝜑 → ((𝜓𝜒) → ((𝜃𝜏) → 𝜂)))
21exp4a 432 . 2 (𝜑 → ((𝜓𝜒) → (𝜃 → (𝜏𝜂))))
32expd 416 1 (𝜑 → (𝜓 → (𝜒 → (𝜃 → (𝜏𝜂)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-an 397
This theorem is referenced by:  exp5l  447  fiint  9091  inf3lem2  9387  fgcl  23029  pclfinN  37914  hbtlem2  40949
  Copyright terms: Public domain W3C validator