Step | Hyp | Ref
| Expression |
1 | | vex 3479 |
. 2
β’ π₯ β V |
2 | | vex 3479 |
. 2
β’ π¦ β V |
3 | | vex 3479 |
. 2
β’ π§ β V |
4 | | erclwwlk.r |
. . . . . 6
β’ βΌ =
{β¨π’, π€β© β£ (π’ β (ClWWalksβπΊ) β§ π€ β (ClWWalksβπΊ) β§ βπ β (0...(β―βπ€))π’ = (π€ cyclShift π))} |
5 | 4 | erclwwlkeqlen 29272 |
. . . . 5
β’ ((π₯ β V β§ π¦ β V) β (π₯ βΌ π¦ β (β―βπ₯) = (β―βπ¦))) |
6 | 5 | 3adant3 1133 |
. . . 4
β’ ((π₯ β V β§ π¦ β V β§ π§ β V) β (π₯ βΌ π¦ β (β―βπ₯) = (β―βπ¦))) |
7 | 4 | erclwwlkeqlen 29272 |
. . . . . . 7
β’ ((π¦ β V β§ π§ β V) β (π¦ βΌ π§ β (β―βπ¦) = (β―βπ§))) |
8 | 7 | 3adant1 1131 |
. . . . . 6
β’ ((π₯ β V β§ π¦ β V β§ π§ β V) β (π¦ βΌ π§ β (β―βπ¦) = (β―βπ§))) |
9 | 4 | erclwwlkeq 29271 |
. . . . . . . 8
β’ ((π¦ β V β§ π§ β V) β (π¦ βΌ π§ β (π¦ β (ClWWalksβπΊ) β§ π§ β (ClWWalksβπΊ) β§ βπ β (0...(β―βπ§))π¦ = (π§ cyclShift π)))) |
10 | 9 | 3adant1 1131 |
. . . . . . 7
β’ ((π₯ β V β§ π¦ β V β§ π§ β V) β (π¦ βΌ π§ β (π¦ β (ClWWalksβπΊ) β§ π§ β (ClWWalksβπΊ) β§ βπ β (0...(β―βπ§))π¦ = (π§ cyclShift π)))) |
11 | 4 | erclwwlkeq 29271 |
. . . . . . . . . 10
β’ ((π₯ β V β§ π¦ β V) β (π₯ βΌ π¦ β (π₯ β (ClWWalksβπΊ) β§ π¦ β (ClWWalksβπΊ) β§ βπ β (0...(β―βπ¦))π₯ = (π¦ cyclShift π)))) |
12 | 11 | 3adant3 1133 |
. . . . . . . . 9
β’ ((π₯ β V β§ π¦ β V β§ π§ β V) β (π₯ βΌ π¦ β (π₯ β (ClWWalksβπΊ) β§ π¦ β (ClWWalksβπΊ) β§ βπ β (0...(β―βπ¦))π₯ = (π¦ cyclShift π)))) |
13 | | simpr1 1195 |
. . . . . . . . . . . . . . 15
β’
(((((β―βπ¦) = (β―βπ§) β§ (β―βπ₯) = (β―βπ¦)) β§ (π¦ β (ClWWalksβπΊ) β§ π§ β (ClWWalksβπΊ) β§ βπ β (0...(β―βπ§))π¦ = (π§ cyclShift π))) β§ (π₯ β (ClWWalksβπΊ) β§ π¦ β (ClWWalksβπΊ) β§ βπ β (0...(β―βπ¦))π₯ = (π¦ cyclShift π))) β π₯ β (ClWWalksβπΊ)) |
14 | | simplr2 1217 |
. . . . . . . . . . . . . . 15
β’
(((((β―βπ¦) = (β―βπ§) β§ (β―βπ₯) = (β―βπ¦)) β§ (π¦ β (ClWWalksβπΊ) β§ π§ β (ClWWalksβπΊ) β§ βπ β (0...(β―βπ§))π¦ = (π§ cyclShift π))) β§ (π₯ β (ClWWalksβπΊ) β§ π¦ β (ClWWalksβπΊ) β§ βπ β (0...(β―βπ¦))π₯ = (π¦ cyclShift π))) β π§ β (ClWWalksβπΊ)) |
15 | | oveq2 7417 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
β’ (π = π β (π¦ cyclShift π) = (π¦ cyclShift π)) |
16 | 15 | eqeq2d 2744 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
β’ (π = π β (π₯ = (π¦ cyclShift π) β π₯ = (π¦ cyclShift π))) |
17 | 16 | cbvrexvw 3236 |
. . . . . . . . . . . . . . . . . . . . . . . 24
β’
(βπ β
(0...(β―βπ¦))π₯ = (π¦ cyclShift π) β βπ β (0...(β―βπ¦))π₯ = (π¦ cyclShift π)) |
18 | | oveq2 7417 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
β’ (π = π β (π§ cyclShift π) = (π§ cyclShift π)) |
19 | 18 | eqeq2d 2744 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
β’ (π = π β (π¦ = (π§ cyclShift π) β π¦ = (π§ cyclShift π))) |
20 | 19 | cbvrexvw 3236 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
β’
(βπ β
(0...(β―βπ§))π¦ = (π§ cyclShift π) β βπ β (0...(β―βπ§))π¦ = (π§ cyclShift π)) |
21 | | eqid 2733 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
β’
(VtxβπΊ) =
(VtxβπΊ) |
22 | 21 | clwwlkbp 29238 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
β’ (π§ β (ClWWalksβπΊ) β (πΊ β V β§ π§ β Word (VtxβπΊ) β§ π§ β β
)) |
23 | 22 | simp2d 1144 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
β’ (π§ β (ClWWalksβπΊ) β π§ β Word (VtxβπΊ)) |
24 | 23 | ad2antlr 726 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
β’ ((((π₯ β (ClWWalksβπΊ) β§ π¦ β (ClWWalksβπΊ)) β§ π§ β (ClWWalksβπΊ)) β§ ((β―βπ¦) = (β―βπ§) β§ (β―βπ₯) = (β―βπ¦))) β π§ β Word (VtxβπΊ)) |
25 | | simpr 486 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
β’ ((((π₯ β (ClWWalksβπΊ) β§ π¦ β (ClWWalksβπΊ)) β§ π§ β (ClWWalksβπΊ)) β§ ((β―βπ¦) = (β―βπ§) β§ (β―βπ₯) = (β―βπ¦))) β ((β―βπ¦) = (β―βπ§) β§ (β―βπ₯) = (β―βπ¦))) |
26 | 24, 25 | cshwcsh2id 14779 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
β’ ((((π₯ β (ClWWalksβπΊ) β§ π¦ β (ClWWalksβπΊ)) β§ π§ β (ClWWalksβπΊ)) β§ ((β―βπ¦) = (β―βπ§) β§ (β―βπ₯) = (β―βπ¦))) β (((π β (0...(β―βπ¦)) β§ π₯ = (π¦ cyclShift π)) β§ (π β (0...(β―βπ§)) β§ π¦ = (π§ cyclShift π))) β βπ β (0...(β―βπ§))π₯ = (π§ cyclShift π))) |
27 | 26 | exp5l 448 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
β’ ((((π₯ β (ClWWalksβπΊ) β§ π¦ β (ClWWalksβπΊ)) β§ π§ β (ClWWalksβπΊ)) β§ ((β―βπ¦) = (β―βπ§) β§ (β―βπ₯) = (β―βπ¦))) β (π β (0...(β―βπ¦)) β (π₯ = (π¦ cyclShift π) β (π β (0...(β―βπ§)) β (π¦ = (π§ cyclShift π) β βπ β (0...(β―βπ§))π₯ = (π§ cyclShift π)))))) |
28 | 27 | imp41 427 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
β’
(((((((π₯ β
(ClWWalksβπΊ) β§
π¦ β
(ClWWalksβπΊ)) β§
π§ β
(ClWWalksβπΊ)) β§
((β―βπ¦) =
(β―βπ§) β§
(β―βπ₯) =
(β―βπ¦))) β§
π β
(0...(β―βπ¦)))
β§ π₯ = (π¦ cyclShift π)) β§ π β (0...(β―βπ§))) β (π¦ = (π§ cyclShift π) β βπ β (0...(β―βπ§))π₯ = (π§ cyclShift π))) |
29 | 28 | rexlimdva 3156 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
β’
((((((π₯ β
(ClWWalksβπΊ) β§
π¦ β
(ClWWalksβπΊ)) β§
π§ β
(ClWWalksβπΊ)) β§
((β―βπ¦) =
(β―βπ§) β§
(β―βπ₯) =
(β―βπ¦))) β§
π β
(0...(β―βπ¦)))
β§ π₯ = (π¦ cyclShift π)) β (βπ β (0...(β―βπ§))π¦ = (π§ cyclShift π) β βπ β (0...(β―βπ§))π₯ = (π§ cyclShift π))) |
30 | 29 | rexlimdva2 3158 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
β’ ((((π₯ β (ClWWalksβπΊ) β§ π¦ β (ClWWalksβπΊ)) β§ π§ β (ClWWalksβπΊ)) β§ ((β―βπ¦) = (β―βπ§) β§ (β―βπ₯) = (β―βπ¦))) β (βπ β (0...(β―βπ¦))π₯ = (π¦ cyclShift π) β (βπ β (0...(β―βπ§))π¦ = (π§ cyclShift π) β βπ β (0...(β―βπ§))π₯ = (π§ cyclShift π)))) |
31 | 20, 30 | syl7bi 255 |
. . . . . . . . . . . . . . . . . . . . . . . 24
β’ ((((π₯ β (ClWWalksβπΊ) β§ π¦ β (ClWWalksβπΊ)) β§ π§ β (ClWWalksβπΊ)) β§ ((β―βπ¦) = (β―βπ§) β§ (β―βπ₯) = (β―βπ¦))) β (βπ β (0...(β―βπ¦))π₯ = (π¦ cyclShift π) β (βπ β (0...(β―βπ§))π¦ = (π§ cyclShift π) β βπ β (0...(β―βπ§))π₯ = (π§ cyclShift π)))) |
32 | 17, 31 | biimtrid 241 |
. . . . . . . . . . . . . . . . . . . . . . 23
β’ ((((π₯ β (ClWWalksβπΊ) β§ π¦ β (ClWWalksβπΊ)) β§ π§ β (ClWWalksβπΊ)) β§ ((β―βπ¦) = (β―βπ§) β§ (β―βπ₯) = (β―βπ¦))) β (βπ β (0...(β―βπ¦))π₯ = (π¦ cyclShift π) β (βπ β (0...(β―βπ§))π¦ = (π§ cyclShift π) β βπ β (0...(β―βπ§))π₯ = (π§ cyclShift π)))) |
33 | 32 | exp31 421 |
. . . . . . . . . . . . . . . . . . . . . 22
β’ ((π₯ β (ClWWalksβπΊ) β§ π¦ β (ClWWalksβπΊ)) β (π§ β (ClWWalksβπΊ) β (((β―βπ¦) = (β―βπ§) β§ (β―βπ₯) = (β―βπ¦)) β (βπ β (0...(β―βπ¦))π₯ = (π¦ cyclShift π) β (βπ β (0...(β―βπ§))π¦ = (π§ cyclShift π) β βπ β (0...(β―βπ§))π₯ = (π§ cyclShift π)))))) |
34 | 33 | com15 101 |
. . . . . . . . . . . . . . . . . . . . 21
β’
(βπ β
(0...(β―βπ§))π¦ = (π§ cyclShift π) β (π§ β (ClWWalksβπΊ) β (((β―βπ¦) = (β―βπ§) β§ (β―βπ₯) = (β―βπ¦)) β (βπ β (0...(β―βπ¦))π₯ = (π¦ cyclShift π) β ((π₯ β (ClWWalksβπΊ) β§ π¦ β (ClWWalksβπΊ)) β βπ β (0...(β―βπ§))π₯ = (π§ cyclShift π)))))) |
35 | 34 | impcom 409 |
. . . . . . . . . . . . . . . . . . . 20
β’ ((π§ β (ClWWalksβπΊ) β§ βπ β
(0...(β―βπ§))π¦ = (π§ cyclShift π)) β (((β―βπ¦) = (β―βπ§) β§ (β―βπ₯) = (β―βπ¦)) β (βπ β (0...(β―βπ¦))π₯ = (π¦ cyclShift π) β ((π₯ β (ClWWalksβπΊ) β§ π¦ β (ClWWalksβπΊ)) β βπ β (0...(β―βπ§))π₯ = (π§ cyclShift π))))) |
36 | 35 | 3adant1 1131 |
. . . . . . . . . . . . . . . . . . 19
β’ ((π¦ β (ClWWalksβπΊ) β§ π§ β (ClWWalksβπΊ) β§ βπ β (0...(β―βπ§))π¦ = (π§ cyclShift π)) β (((β―βπ¦) = (β―βπ§) β§ (β―βπ₯) = (β―βπ¦)) β (βπ β (0...(β―βπ¦))π₯ = (π¦ cyclShift π) β ((π₯ β (ClWWalksβπΊ) β§ π¦ β (ClWWalksβπΊ)) β βπ β (0...(β―βπ§))π₯ = (π§ cyclShift π))))) |
37 | 36 | impcom 409 |
. . . . . . . . . . . . . . . . . 18
β’
((((β―βπ¦)
= (β―βπ§) β§
(β―βπ₯) =
(β―βπ¦)) β§
(π¦ β
(ClWWalksβπΊ) β§
π§ β
(ClWWalksβπΊ) β§
βπ β
(0...(β―βπ§))π¦ = (π§ cyclShift π))) β (βπ β (0...(β―βπ¦))π₯ = (π¦ cyclShift π) β ((π₯ β (ClWWalksβπΊ) β§ π¦ β (ClWWalksβπΊ)) β βπ β (0...(β―βπ§))π₯ = (π§ cyclShift π)))) |
38 | 37 | com13 88 |
. . . . . . . . . . . . . . . . 17
β’ ((π₯ β (ClWWalksβπΊ) β§ π¦ β (ClWWalksβπΊ)) β (βπ β (0...(β―βπ¦))π₯ = (π¦ cyclShift π) β ((((β―βπ¦) = (β―βπ§) β§ (β―βπ₯) = (β―βπ¦)) β§ (π¦ β (ClWWalksβπΊ) β§ π§ β (ClWWalksβπΊ) β§ βπ β (0...(β―βπ§))π¦ = (π§ cyclShift π))) β βπ β (0...(β―βπ§))π₯ = (π§ cyclShift π)))) |
39 | 38 | 3impia 1118 |
. . . . . . . . . . . . . . . 16
β’ ((π₯ β (ClWWalksβπΊ) β§ π¦ β (ClWWalksβπΊ) β§ βπ β (0...(β―βπ¦))π₯ = (π¦ cyclShift π)) β ((((β―βπ¦) = (β―βπ§) β§ (β―βπ₯) = (β―βπ¦)) β§ (π¦ β (ClWWalksβπΊ) β§ π§ β (ClWWalksβπΊ) β§ βπ β (0...(β―βπ§))π¦ = (π§ cyclShift π))) β βπ β (0...(β―βπ§))π₯ = (π§ cyclShift π))) |
40 | 39 | impcom 409 |
. . . . . . . . . . . . . . 15
β’
(((((β―βπ¦) = (β―βπ§) β§ (β―βπ₯) = (β―βπ¦)) β§ (π¦ β (ClWWalksβπΊ) β§ π§ β (ClWWalksβπΊ) β§ βπ β (0...(β―βπ§))π¦ = (π§ cyclShift π))) β§ (π₯ β (ClWWalksβπΊ) β§ π¦ β (ClWWalksβπΊ) β§ βπ β (0...(β―βπ¦))π₯ = (π¦ cyclShift π))) β βπ β (0...(β―βπ§))π₯ = (π§ cyclShift π)) |
41 | 13, 14, 40 | 3jca 1129 |
. . . . . . . . . . . . . 14
β’
(((((β―βπ¦) = (β―βπ§) β§ (β―βπ₯) = (β―βπ¦)) β§ (π¦ β (ClWWalksβπΊ) β§ π§ β (ClWWalksβπΊ) β§ βπ β (0...(β―βπ§))π¦ = (π§ cyclShift π))) β§ (π₯ β (ClWWalksβπΊ) β§ π¦ β (ClWWalksβπΊ) β§ βπ β (0...(β―βπ¦))π₯ = (π¦ cyclShift π))) β (π₯ β (ClWWalksβπΊ) β§ π§ β (ClWWalksβπΊ) β§ βπ β (0...(β―βπ§))π₯ = (π§ cyclShift π))) |
42 | 4 | erclwwlkeq 29271 |
. . . . . . . . . . . . . . 15
β’ ((π₯ β V β§ π§ β V) β (π₯ βΌ π§ β (π₯ β (ClWWalksβπΊ) β§ π§ β (ClWWalksβπΊ) β§ βπ β (0...(β―βπ§))π₯ = (π§ cyclShift π)))) |
43 | 42 | 3adant2 1132 |
. . . . . . . . . . . . . 14
β’ ((π₯ β V β§ π¦ β V β§ π§ β V) β (π₯ βΌ π§ β (π₯ β (ClWWalksβπΊ) β§ π§ β (ClWWalksβπΊ) β§ βπ β (0...(β―βπ§))π₯ = (π§ cyclShift π)))) |
44 | 41, 43 | syl5ibrcom 246 |
. . . . . . . . . . . . 13
β’
(((((β―βπ¦) = (β―βπ§) β§ (β―βπ₯) = (β―βπ¦)) β§ (π¦ β (ClWWalksβπΊ) β§ π§ β (ClWWalksβπΊ) β§ βπ β (0...(β―βπ§))π¦ = (π§ cyclShift π))) β§ (π₯ β (ClWWalksβπΊ) β§ π¦ β (ClWWalksβπΊ) β§ βπ β (0...(β―βπ¦))π₯ = (π¦ cyclShift π))) β ((π₯ β V β§ π¦ β V β§ π§ β V) β π₯ βΌ π§)) |
45 | 44 | exp31 421 |
. . . . . . . . . . . 12
β’
(((β―βπ¦)
= (β―βπ§) β§
(β―βπ₯) =
(β―βπ¦)) β
((π¦ β
(ClWWalksβπΊ) β§
π§ β
(ClWWalksβπΊ) β§
βπ β
(0...(β―βπ§))π¦ = (π§ cyclShift π)) β ((π₯ β (ClWWalksβπΊ) β§ π¦ β (ClWWalksβπΊ) β§ βπ β (0...(β―βπ¦))π₯ = (π¦ cyclShift π)) β ((π₯ β V β§ π¦ β V β§ π§ β V) β π₯ βΌ π§)))) |
46 | 45 | com24 95 |
. . . . . . . . . . 11
β’
(((β―βπ¦)
= (β―βπ§) β§
(β―βπ₯) =
(β―βπ¦)) β
((π₯ β V β§ π¦ β V β§ π§ β V) β ((π₯ β (ClWWalksβπΊ) β§ π¦ β (ClWWalksβπΊ) β§ βπ β (0...(β―βπ¦))π₯ = (π¦ cyclShift π)) β ((π¦ β (ClWWalksβπΊ) β§ π§ β (ClWWalksβπΊ) β§ βπ β (0...(β―βπ§))π¦ = (π§ cyclShift π)) β π₯ βΌ π§)))) |
47 | 46 | ex 414 |
. . . . . . . . . 10
β’
((β―βπ¦) =
(β―βπ§) β
((β―βπ₯) =
(β―βπ¦) β
((π₯ β V β§ π¦ β V β§ π§ β V) β ((π₯ β (ClWWalksβπΊ) β§ π¦ β (ClWWalksβπΊ) β§ βπ β (0...(β―βπ¦))π₯ = (π¦ cyclShift π)) β ((π¦ β (ClWWalksβπΊ) β§ π§ β (ClWWalksβπΊ) β§ βπ β (0...(β―βπ§))π¦ = (π§ cyclShift π)) β π₯ βΌ π§))))) |
48 | 47 | com4t 93 |
. . . . . . . . 9
β’ ((π₯ β V β§ π¦ β V β§ π§ β V) β ((π₯ β (ClWWalksβπΊ) β§ π¦ β (ClWWalksβπΊ) β§ βπ β (0...(β―βπ¦))π₯ = (π¦ cyclShift π)) β ((β―βπ¦) = (β―βπ§) β ((β―βπ₯) = (β―βπ¦) β ((π¦ β (ClWWalksβπΊ) β§ π§ β (ClWWalksβπΊ) β§ βπ β (0...(β―βπ§))π¦ = (π§ cyclShift π)) β π₯ βΌ π§))))) |
49 | 12, 48 | sylbid 239 |
. . . . . . . 8
β’ ((π₯ β V β§ π¦ β V β§ π§ β V) β (π₯ βΌ π¦ β ((β―βπ¦) = (β―βπ§) β ((β―βπ₯) = (β―βπ¦) β ((π¦ β (ClWWalksβπΊ) β§ π§ β (ClWWalksβπΊ) β§ βπ β (0...(β―βπ§))π¦ = (π§ cyclShift π)) β π₯ βΌ π§))))) |
50 | 49 | com25 99 |
. . . . . . 7
β’ ((π₯ β V β§ π¦ β V β§ π§ β V) β ((π¦ β (ClWWalksβπΊ) β§ π§ β (ClWWalksβπΊ) β§ βπ β (0...(β―βπ§))π¦ = (π§ cyclShift π)) β ((β―βπ¦) = (β―βπ§) β ((β―βπ₯) = (β―βπ¦) β (π₯ βΌ π¦ β π₯ βΌ π§))))) |
51 | 10, 50 | sylbid 239 |
. . . . . 6
β’ ((π₯ β V β§ π¦ β V β§ π§ β V) β (π¦ βΌ π§ β ((β―βπ¦) = (β―βπ§) β ((β―βπ₯) = (β―βπ¦) β (π₯ βΌ π¦ β π₯ βΌ π§))))) |
52 | 8, 51 | mpdd 43 |
. . . . 5
β’ ((π₯ β V β§ π¦ β V β§ π§ β V) β (π¦ βΌ π§ β ((β―βπ₯) = (β―βπ¦) β (π₯ βΌ π¦ β π₯ βΌ π§)))) |
53 | 52 | com24 95 |
. . . 4
β’ ((π₯ β V β§ π¦ β V β§ π§ β V) β (π₯ βΌ π¦ β ((β―βπ₯) = (β―βπ¦) β (π¦ βΌ π§ β π₯ βΌ π§)))) |
54 | 6, 53 | mpdd 43 |
. . 3
β’ ((π₯ β V β§ π¦ β V β§ π§ β V) β (π₯ βΌ π¦ β (π¦ βΌ π§ β π₯ βΌ π§))) |
55 | 54 | impd 412 |
. 2
β’ ((π₯ β V β§ π¦ β V β§ π§ β V) β ((π₯ βΌ π¦ β§ π¦ βΌ π§) β π₯ βΌ π§)) |
56 | 1, 2, 3, 55 | mp3an 1462 |
1
β’ ((π₯ βΌ π¦ β§ π¦ βΌ π§) β π₯ βΌ π§) |