MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  erclwwlktr Structured version   Visualization version   GIF version

Theorem erclwwlktr 29904
Description: is a transitive relation over the set of closed walks (defined as words). (Contributed by Alexander van der Vekens, 10-Apr-2018.) (Revised by AV, 30-Apr-2021.)
Hypothesis
Ref Expression
erclwwlk.r = {⟨𝑢, 𝑤⟩ ∣ (𝑢 ∈ (ClWWalks‘𝐺) ∧ 𝑤 ∈ (ClWWalks‘𝐺) ∧ ∃𝑛 ∈ (0...(♯‘𝑤))𝑢 = (𝑤 cyclShift 𝑛))}
Assertion
Ref Expression
erclwwlktr ((𝑥 𝑦𝑦 𝑧) → 𝑥 𝑧)
Distinct variable groups:   𝑛,𝐺,𝑢,𝑤   𝑥,𝑛,𝑢,𝑤,𝑦   𝑧,𝑛,𝑢,𝑤,𝑥
Allowed substitution hints:   (𝑥,𝑦,𝑧,𝑤,𝑢,𝑛)   𝐺(𝑥,𝑦,𝑧)

Proof of Theorem erclwwlktr
Dummy variables 𝑚 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 vex 3465 . 2 𝑥 ∈ V
2 vex 3465 . 2 𝑦 ∈ V
3 vex 3465 . 2 𝑧 ∈ V
4 erclwwlk.r . . . . . 6 = {⟨𝑢, 𝑤⟩ ∣ (𝑢 ∈ (ClWWalks‘𝐺) ∧ 𝑤 ∈ (ClWWalks‘𝐺) ∧ ∃𝑛 ∈ (0...(♯‘𝑤))𝑢 = (𝑤 cyclShift 𝑛))}
54erclwwlkeqlen 29901 . . . . 5 ((𝑥 ∈ V ∧ 𝑦 ∈ V) → (𝑥 𝑦 → (♯‘𝑥) = (♯‘𝑦)))
653adant3 1129 . . . 4 ((𝑥 ∈ V ∧ 𝑦 ∈ V ∧ 𝑧 ∈ V) → (𝑥 𝑦 → (♯‘𝑥) = (♯‘𝑦)))
74erclwwlkeqlen 29901 . . . . . . 7 ((𝑦 ∈ V ∧ 𝑧 ∈ V) → (𝑦 𝑧 → (♯‘𝑦) = (♯‘𝑧)))
873adant1 1127 . . . . . 6 ((𝑥 ∈ V ∧ 𝑦 ∈ V ∧ 𝑧 ∈ V) → (𝑦 𝑧 → (♯‘𝑦) = (♯‘𝑧)))
94erclwwlkeq 29900 . . . . . . . 8 ((𝑦 ∈ V ∧ 𝑧 ∈ V) → (𝑦 𝑧 ↔ (𝑦 ∈ (ClWWalks‘𝐺) ∧ 𝑧 ∈ (ClWWalks‘𝐺) ∧ ∃𝑛 ∈ (0...(♯‘𝑧))𝑦 = (𝑧 cyclShift 𝑛))))
1093adant1 1127 . . . . . . 7 ((𝑥 ∈ V ∧ 𝑦 ∈ V ∧ 𝑧 ∈ V) → (𝑦 𝑧 ↔ (𝑦 ∈ (ClWWalks‘𝐺) ∧ 𝑧 ∈ (ClWWalks‘𝐺) ∧ ∃𝑛 ∈ (0...(♯‘𝑧))𝑦 = (𝑧 cyclShift 𝑛))))
114erclwwlkeq 29900 . . . . . . . . . 10 ((𝑥 ∈ V ∧ 𝑦 ∈ V) → (𝑥 𝑦 ↔ (𝑥 ∈ (ClWWalks‘𝐺) ∧ 𝑦 ∈ (ClWWalks‘𝐺) ∧ ∃𝑛 ∈ (0...(♯‘𝑦))𝑥 = (𝑦 cyclShift 𝑛))))
12113adant3 1129 . . . . . . . . 9 ((𝑥 ∈ V ∧ 𝑦 ∈ V ∧ 𝑧 ∈ V) → (𝑥 𝑦 ↔ (𝑥 ∈ (ClWWalks‘𝐺) ∧ 𝑦 ∈ (ClWWalks‘𝐺) ∧ ∃𝑛 ∈ (0...(♯‘𝑦))𝑥 = (𝑦 cyclShift 𝑛))))
13 simpr1 1191 . . . . . . . . . . . . . . 15 (((((♯‘𝑦) = (♯‘𝑧) ∧ (♯‘𝑥) = (♯‘𝑦)) ∧ (𝑦 ∈ (ClWWalks‘𝐺) ∧ 𝑧 ∈ (ClWWalks‘𝐺) ∧ ∃𝑛 ∈ (0...(♯‘𝑧))𝑦 = (𝑧 cyclShift 𝑛))) ∧ (𝑥 ∈ (ClWWalks‘𝐺) ∧ 𝑦 ∈ (ClWWalks‘𝐺) ∧ ∃𝑛 ∈ (0...(♯‘𝑦))𝑥 = (𝑦 cyclShift 𝑛))) → 𝑥 ∈ (ClWWalks‘𝐺))
14 simplr2 1213 . . . . . . . . . . . . . . 15 (((((♯‘𝑦) = (♯‘𝑧) ∧ (♯‘𝑥) = (♯‘𝑦)) ∧ (𝑦 ∈ (ClWWalks‘𝐺) ∧ 𝑧 ∈ (ClWWalks‘𝐺) ∧ ∃𝑛 ∈ (0...(♯‘𝑧))𝑦 = (𝑧 cyclShift 𝑛))) ∧ (𝑥 ∈ (ClWWalks‘𝐺) ∧ 𝑦 ∈ (ClWWalks‘𝐺) ∧ ∃𝑛 ∈ (0...(♯‘𝑦))𝑥 = (𝑦 cyclShift 𝑛))) → 𝑧 ∈ (ClWWalks‘𝐺))
15 oveq2 7427 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑛 = 𝑚 → (𝑦 cyclShift 𝑛) = (𝑦 cyclShift 𝑚))
1615eqeq2d 2736 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑛 = 𝑚 → (𝑥 = (𝑦 cyclShift 𝑛) ↔ 𝑥 = (𝑦 cyclShift 𝑚)))
1716cbvrexvw 3225 . . . . . . . . . . . . . . . . . . . . . . . 24 (∃𝑛 ∈ (0...(♯‘𝑦))𝑥 = (𝑦 cyclShift 𝑛) ↔ ∃𝑚 ∈ (0...(♯‘𝑦))𝑥 = (𝑦 cyclShift 𝑚))
18 oveq2 7427 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑛 = 𝑘 → (𝑧 cyclShift 𝑛) = (𝑧 cyclShift 𝑘))
1918eqeq2d 2736 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑛 = 𝑘 → (𝑦 = (𝑧 cyclShift 𝑛) ↔ 𝑦 = (𝑧 cyclShift 𝑘)))
2019cbvrexvw 3225 . . . . . . . . . . . . . . . . . . . . . . . . 25 (∃𝑛 ∈ (0...(♯‘𝑧))𝑦 = (𝑧 cyclShift 𝑛) ↔ ∃𝑘 ∈ (0...(♯‘𝑧))𝑦 = (𝑧 cyclShift 𝑘))
21 eqid 2725 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (Vtx‘𝐺) = (Vtx‘𝐺)
2221clwwlkbp 29867 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝑧 ∈ (ClWWalks‘𝐺) → (𝐺 ∈ V ∧ 𝑧 ∈ Word (Vtx‘𝐺) ∧ 𝑧 ≠ ∅))
2322simp2d 1140 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑧 ∈ (ClWWalks‘𝐺) → 𝑧 ∈ Word (Vtx‘𝐺))
2423ad2antlr 725 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((((𝑥 ∈ (ClWWalks‘𝐺) ∧ 𝑦 ∈ (ClWWalks‘𝐺)) ∧ 𝑧 ∈ (ClWWalks‘𝐺)) ∧ ((♯‘𝑦) = (♯‘𝑧) ∧ (♯‘𝑥) = (♯‘𝑦))) → 𝑧 ∈ Word (Vtx‘𝐺))
25 simpr 483 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((((𝑥 ∈ (ClWWalks‘𝐺) ∧ 𝑦 ∈ (ClWWalks‘𝐺)) ∧ 𝑧 ∈ (ClWWalks‘𝐺)) ∧ ((♯‘𝑦) = (♯‘𝑧) ∧ (♯‘𝑥) = (♯‘𝑦))) → ((♯‘𝑦) = (♯‘𝑧) ∧ (♯‘𝑥) = (♯‘𝑦)))
2624, 25cshwcsh2id 14815 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((((𝑥 ∈ (ClWWalks‘𝐺) ∧ 𝑦 ∈ (ClWWalks‘𝐺)) ∧ 𝑧 ∈ (ClWWalks‘𝐺)) ∧ ((♯‘𝑦) = (♯‘𝑧) ∧ (♯‘𝑥) = (♯‘𝑦))) → (((𝑚 ∈ (0...(♯‘𝑦)) ∧ 𝑥 = (𝑦 cyclShift 𝑚)) ∧ (𝑘 ∈ (0...(♯‘𝑧)) ∧ 𝑦 = (𝑧 cyclShift 𝑘))) → ∃𝑛 ∈ (0...(♯‘𝑧))𝑥 = (𝑧 cyclShift 𝑛)))
2726exp5l 445 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((((𝑥 ∈ (ClWWalks‘𝐺) ∧ 𝑦 ∈ (ClWWalks‘𝐺)) ∧ 𝑧 ∈ (ClWWalks‘𝐺)) ∧ ((♯‘𝑦) = (♯‘𝑧) ∧ (♯‘𝑥) = (♯‘𝑦))) → (𝑚 ∈ (0...(♯‘𝑦)) → (𝑥 = (𝑦 cyclShift 𝑚) → (𝑘 ∈ (0...(♯‘𝑧)) → (𝑦 = (𝑧 cyclShift 𝑘) → ∃𝑛 ∈ (0...(♯‘𝑧))𝑥 = (𝑧 cyclShift 𝑛))))))
2827imp41 424 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((((((𝑥 ∈ (ClWWalks‘𝐺) ∧ 𝑦 ∈ (ClWWalks‘𝐺)) ∧ 𝑧 ∈ (ClWWalks‘𝐺)) ∧ ((♯‘𝑦) = (♯‘𝑧) ∧ (♯‘𝑥) = (♯‘𝑦))) ∧ 𝑚 ∈ (0...(♯‘𝑦))) ∧ 𝑥 = (𝑦 cyclShift 𝑚)) ∧ 𝑘 ∈ (0...(♯‘𝑧))) → (𝑦 = (𝑧 cyclShift 𝑘) → ∃𝑛 ∈ (0...(♯‘𝑧))𝑥 = (𝑧 cyclShift 𝑛)))
2928rexlimdva 3144 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((((𝑥 ∈ (ClWWalks‘𝐺) ∧ 𝑦 ∈ (ClWWalks‘𝐺)) ∧ 𝑧 ∈ (ClWWalks‘𝐺)) ∧ ((♯‘𝑦) = (♯‘𝑧) ∧ (♯‘𝑥) = (♯‘𝑦))) ∧ 𝑚 ∈ (0...(♯‘𝑦))) ∧ 𝑥 = (𝑦 cyclShift 𝑚)) → (∃𝑘 ∈ (0...(♯‘𝑧))𝑦 = (𝑧 cyclShift 𝑘) → ∃𝑛 ∈ (0...(♯‘𝑧))𝑥 = (𝑧 cyclShift 𝑛)))
3029rexlimdva2 3146 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝑥 ∈ (ClWWalks‘𝐺) ∧ 𝑦 ∈ (ClWWalks‘𝐺)) ∧ 𝑧 ∈ (ClWWalks‘𝐺)) ∧ ((♯‘𝑦) = (♯‘𝑧) ∧ (♯‘𝑥) = (♯‘𝑦))) → (∃𝑚 ∈ (0...(♯‘𝑦))𝑥 = (𝑦 cyclShift 𝑚) → (∃𝑘 ∈ (0...(♯‘𝑧))𝑦 = (𝑧 cyclShift 𝑘) → ∃𝑛 ∈ (0...(♯‘𝑧))𝑥 = (𝑧 cyclShift 𝑛))))
3120, 30syl7bi 254 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝑥 ∈ (ClWWalks‘𝐺) ∧ 𝑦 ∈ (ClWWalks‘𝐺)) ∧ 𝑧 ∈ (ClWWalks‘𝐺)) ∧ ((♯‘𝑦) = (♯‘𝑧) ∧ (♯‘𝑥) = (♯‘𝑦))) → (∃𝑚 ∈ (0...(♯‘𝑦))𝑥 = (𝑦 cyclShift 𝑚) → (∃𝑛 ∈ (0...(♯‘𝑧))𝑦 = (𝑧 cyclShift 𝑛) → ∃𝑛 ∈ (0...(♯‘𝑧))𝑥 = (𝑧 cyclShift 𝑛))))
3217, 31biimtrid 241 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝑥 ∈ (ClWWalks‘𝐺) ∧ 𝑦 ∈ (ClWWalks‘𝐺)) ∧ 𝑧 ∈ (ClWWalks‘𝐺)) ∧ ((♯‘𝑦) = (♯‘𝑧) ∧ (♯‘𝑥) = (♯‘𝑦))) → (∃𝑛 ∈ (0...(♯‘𝑦))𝑥 = (𝑦 cyclShift 𝑛) → (∃𝑛 ∈ (0...(♯‘𝑧))𝑦 = (𝑧 cyclShift 𝑛) → ∃𝑛 ∈ (0...(♯‘𝑧))𝑥 = (𝑧 cyclShift 𝑛))))
3332exp31 418 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑥 ∈ (ClWWalks‘𝐺) ∧ 𝑦 ∈ (ClWWalks‘𝐺)) → (𝑧 ∈ (ClWWalks‘𝐺) → (((♯‘𝑦) = (♯‘𝑧) ∧ (♯‘𝑥) = (♯‘𝑦)) → (∃𝑛 ∈ (0...(♯‘𝑦))𝑥 = (𝑦 cyclShift 𝑛) → (∃𝑛 ∈ (0...(♯‘𝑧))𝑦 = (𝑧 cyclShift 𝑛) → ∃𝑛 ∈ (0...(♯‘𝑧))𝑥 = (𝑧 cyclShift 𝑛))))))
3433com15 101 . . . . . . . . . . . . . . . . . . . . 21 (∃𝑛 ∈ (0...(♯‘𝑧))𝑦 = (𝑧 cyclShift 𝑛) → (𝑧 ∈ (ClWWalks‘𝐺) → (((♯‘𝑦) = (♯‘𝑧) ∧ (♯‘𝑥) = (♯‘𝑦)) → (∃𝑛 ∈ (0...(♯‘𝑦))𝑥 = (𝑦 cyclShift 𝑛) → ((𝑥 ∈ (ClWWalks‘𝐺) ∧ 𝑦 ∈ (ClWWalks‘𝐺)) → ∃𝑛 ∈ (0...(♯‘𝑧))𝑥 = (𝑧 cyclShift 𝑛))))))
3534impcom 406 . . . . . . . . . . . . . . . . . . . 20 ((𝑧 ∈ (ClWWalks‘𝐺) ∧ ∃𝑛 ∈ (0...(♯‘𝑧))𝑦 = (𝑧 cyclShift 𝑛)) → (((♯‘𝑦) = (♯‘𝑧) ∧ (♯‘𝑥) = (♯‘𝑦)) → (∃𝑛 ∈ (0...(♯‘𝑦))𝑥 = (𝑦 cyclShift 𝑛) → ((𝑥 ∈ (ClWWalks‘𝐺) ∧ 𝑦 ∈ (ClWWalks‘𝐺)) → ∃𝑛 ∈ (0...(♯‘𝑧))𝑥 = (𝑧 cyclShift 𝑛)))))
36353adant1 1127 . . . . . . . . . . . . . . . . . . 19 ((𝑦 ∈ (ClWWalks‘𝐺) ∧ 𝑧 ∈ (ClWWalks‘𝐺) ∧ ∃𝑛 ∈ (0...(♯‘𝑧))𝑦 = (𝑧 cyclShift 𝑛)) → (((♯‘𝑦) = (♯‘𝑧) ∧ (♯‘𝑥) = (♯‘𝑦)) → (∃𝑛 ∈ (0...(♯‘𝑦))𝑥 = (𝑦 cyclShift 𝑛) → ((𝑥 ∈ (ClWWalks‘𝐺) ∧ 𝑦 ∈ (ClWWalks‘𝐺)) → ∃𝑛 ∈ (0...(♯‘𝑧))𝑥 = (𝑧 cyclShift 𝑛)))))
3736impcom 406 . . . . . . . . . . . . . . . . . 18 ((((♯‘𝑦) = (♯‘𝑧) ∧ (♯‘𝑥) = (♯‘𝑦)) ∧ (𝑦 ∈ (ClWWalks‘𝐺) ∧ 𝑧 ∈ (ClWWalks‘𝐺) ∧ ∃𝑛 ∈ (0...(♯‘𝑧))𝑦 = (𝑧 cyclShift 𝑛))) → (∃𝑛 ∈ (0...(♯‘𝑦))𝑥 = (𝑦 cyclShift 𝑛) → ((𝑥 ∈ (ClWWalks‘𝐺) ∧ 𝑦 ∈ (ClWWalks‘𝐺)) → ∃𝑛 ∈ (0...(♯‘𝑧))𝑥 = (𝑧 cyclShift 𝑛))))
3837com13 88 . . . . . . . . . . . . . . . . 17 ((𝑥 ∈ (ClWWalks‘𝐺) ∧ 𝑦 ∈ (ClWWalks‘𝐺)) → (∃𝑛 ∈ (0...(♯‘𝑦))𝑥 = (𝑦 cyclShift 𝑛) → ((((♯‘𝑦) = (♯‘𝑧) ∧ (♯‘𝑥) = (♯‘𝑦)) ∧ (𝑦 ∈ (ClWWalks‘𝐺) ∧ 𝑧 ∈ (ClWWalks‘𝐺) ∧ ∃𝑛 ∈ (0...(♯‘𝑧))𝑦 = (𝑧 cyclShift 𝑛))) → ∃𝑛 ∈ (0...(♯‘𝑧))𝑥 = (𝑧 cyclShift 𝑛))))
39383impia 1114 . . . . . . . . . . . . . . . 16 ((𝑥 ∈ (ClWWalks‘𝐺) ∧ 𝑦 ∈ (ClWWalks‘𝐺) ∧ ∃𝑛 ∈ (0...(♯‘𝑦))𝑥 = (𝑦 cyclShift 𝑛)) → ((((♯‘𝑦) = (♯‘𝑧) ∧ (♯‘𝑥) = (♯‘𝑦)) ∧ (𝑦 ∈ (ClWWalks‘𝐺) ∧ 𝑧 ∈ (ClWWalks‘𝐺) ∧ ∃𝑛 ∈ (0...(♯‘𝑧))𝑦 = (𝑧 cyclShift 𝑛))) → ∃𝑛 ∈ (0...(♯‘𝑧))𝑥 = (𝑧 cyclShift 𝑛)))
4039impcom 406 . . . . . . . . . . . . . . 15 (((((♯‘𝑦) = (♯‘𝑧) ∧ (♯‘𝑥) = (♯‘𝑦)) ∧ (𝑦 ∈ (ClWWalks‘𝐺) ∧ 𝑧 ∈ (ClWWalks‘𝐺) ∧ ∃𝑛 ∈ (0...(♯‘𝑧))𝑦 = (𝑧 cyclShift 𝑛))) ∧ (𝑥 ∈ (ClWWalks‘𝐺) ∧ 𝑦 ∈ (ClWWalks‘𝐺) ∧ ∃𝑛 ∈ (0...(♯‘𝑦))𝑥 = (𝑦 cyclShift 𝑛))) → ∃𝑛 ∈ (0...(♯‘𝑧))𝑥 = (𝑧 cyclShift 𝑛))
4113, 14, 403jca 1125 . . . . . . . . . . . . . 14 (((((♯‘𝑦) = (♯‘𝑧) ∧ (♯‘𝑥) = (♯‘𝑦)) ∧ (𝑦 ∈ (ClWWalks‘𝐺) ∧ 𝑧 ∈ (ClWWalks‘𝐺) ∧ ∃𝑛 ∈ (0...(♯‘𝑧))𝑦 = (𝑧 cyclShift 𝑛))) ∧ (𝑥 ∈ (ClWWalks‘𝐺) ∧ 𝑦 ∈ (ClWWalks‘𝐺) ∧ ∃𝑛 ∈ (0...(♯‘𝑦))𝑥 = (𝑦 cyclShift 𝑛))) → (𝑥 ∈ (ClWWalks‘𝐺) ∧ 𝑧 ∈ (ClWWalks‘𝐺) ∧ ∃𝑛 ∈ (0...(♯‘𝑧))𝑥 = (𝑧 cyclShift 𝑛)))
424erclwwlkeq 29900 . . . . . . . . . . . . . . 15 ((𝑥 ∈ V ∧ 𝑧 ∈ V) → (𝑥 𝑧 ↔ (𝑥 ∈ (ClWWalks‘𝐺) ∧ 𝑧 ∈ (ClWWalks‘𝐺) ∧ ∃𝑛 ∈ (0...(♯‘𝑧))𝑥 = (𝑧 cyclShift 𝑛))))
43423adant2 1128 . . . . . . . . . . . . . 14 ((𝑥 ∈ V ∧ 𝑦 ∈ V ∧ 𝑧 ∈ V) → (𝑥 𝑧 ↔ (𝑥 ∈ (ClWWalks‘𝐺) ∧ 𝑧 ∈ (ClWWalks‘𝐺) ∧ ∃𝑛 ∈ (0...(♯‘𝑧))𝑥 = (𝑧 cyclShift 𝑛))))
4441, 43syl5ibrcom 246 . . . . . . . . . . . . 13 (((((♯‘𝑦) = (♯‘𝑧) ∧ (♯‘𝑥) = (♯‘𝑦)) ∧ (𝑦 ∈ (ClWWalks‘𝐺) ∧ 𝑧 ∈ (ClWWalks‘𝐺) ∧ ∃𝑛 ∈ (0...(♯‘𝑧))𝑦 = (𝑧 cyclShift 𝑛))) ∧ (𝑥 ∈ (ClWWalks‘𝐺) ∧ 𝑦 ∈ (ClWWalks‘𝐺) ∧ ∃𝑛 ∈ (0...(♯‘𝑦))𝑥 = (𝑦 cyclShift 𝑛))) → ((𝑥 ∈ V ∧ 𝑦 ∈ V ∧ 𝑧 ∈ V) → 𝑥 𝑧))
4544exp31 418 . . . . . . . . . . . 12 (((♯‘𝑦) = (♯‘𝑧) ∧ (♯‘𝑥) = (♯‘𝑦)) → ((𝑦 ∈ (ClWWalks‘𝐺) ∧ 𝑧 ∈ (ClWWalks‘𝐺) ∧ ∃𝑛 ∈ (0...(♯‘𝑧))𝑦 = (𝑧 cyclShift 𝑛)) → ((𝑥 ∈ (ClWWalks‘𝐺) ∧ 𝑦 ∈ (ClWWalks‘𝐺) ∧ ∃𝑛 ∈ (0...(♯‘𝑦))𝑥 = (𝑦 cyclShift 𝑛)) → ((𝑥 ∈ V ∧ 𝑦 ∈ V ∧ 𝑧 ∈ V) → 𝑥 𝑧))))
4645com24 95 . . . . . . . . . . 11 (((♯‘𝑦) = (♯‘𝑧) ∧ (♯‘𝑥) = (♯‘𝑦)) → ((𝑥 ∈ V ∧ 𝑦 ∈ V ∧ 𝑧 ∈ V) → ((𝑥 ∈ (ClWWalks‘𝐺) ∧ 𝑦 ∈ (ClWWalks‘𝐺) ∧ ∃𝑛 ∈ (0...(♯‘𝑦))𝑥 = (𝑦 cyclShift 𝑛)) → ((𝑦 ∈ (ClWWalks‘𝐺) ∧ 𝑧 ∈ (ClWWalks‘𝐺) ∧ ∃𝑛 ∈ (0...(♯‘𝑧))𝑦 = (𝑧 cyclShift 𝑛)) → 𝑥 𝑧))))
4746ex 411 . . . . . . . . . 10 ((♯‘𝑦) = (♯‘𝑧) → ((♯‘𝑥) = (♯‘𝑦) → ((𝑥 ∈ V ∧ 𝑦 ∈ V ∧ 𝑧 ∈ V) → ((𝑥 ∈ (ClWWalks‘𝐺) ∧ 𝑦 ∈ (ClWWalks‘𝐺) ∧ ∃𝑛 ∈ (0...(♯‘𝑦))𝑥 = (𝑦 cyclShift 𝑛)) → ((𝑦 ∈ (ClWWalks‘𝐺) ∧ 𝑧 ∈ (ClWWalks‘𝐺) ∧ ∃𝑛 ∈ (0...(♯‘𝑧))𝑦 = (𝑧 cyclShift 𝑛)) → 𝑥 𝑧)))))
4847com4t 93 . . . . . . . . 9 ((𝑥 ∈ V ∧ 𝑦 ∈ V ∧ 𝑧 ∈ V) → ((𝑥 ∈ (ClWWalks‘𝐺) ∧ 𝑦 ∈ (ClWWalks‘𝐺) ∧ ∃𝑛 ∈ (0...(♯‘𝑦))𝑥 = (𝑦 cyclShift 𝑛)) → ((♯‘𝑦) = (♯‘𝑧) → ((♯‘𝑥) = (♯‘𝑦) → ((𝑦 ∈ (ClWWalks‘𝐺) ∧ 𝑧 ∈ (ClWWalks‘𝐺) ∧ ∃𝑛 ∈ (0...(♯‘𝑧))𝑦 = (𝑧 cyclShift 𝑛)) → 𝑥 𝑧)))))
4912, 48sylbid 239 . . . . . . . 8 ((𝑥 ∈ V ∧ 𝑦 ∈ V ∧ 𝑧 ∈ V) → (𝑥 𝑦 → ((♯‘𝑦) = (♯‘𝑧) → ((♯‘𝑥) = (♯‘𝑦) → ((𝑦 ∈ (ClWWalks‘𝐺) ∧ 𝑧 ∈ (ClWWalks‘𝐺) ∧ ∃𝑛 ∈ (0...(♯‘𝑧))𝑦 = (𝑧 cyclShift 𝑛)) → 𝑥 𝑧)))))
5049com25 99 . . . . . . 7 ((𝑥 ∈ V ∧ 𝑦 ∈ V ∧ 𝑧 ∈ V) → ((𝑦 ∈ (ClWWalks‘𝐺) ∧ 𝑧 ∈ (ClWWalks‘𝐺) ∧ ∃𝑛 ∈ (0...(♯‘𝑧))𝑦 = (𝑧 cyclShift 𝑛)) → ((♯‘𝑦) = (♯‘𝑧) → ((♯‘𝑥) = (♯‘𝑦) → (𝑥 𝑦𝑥 𝑧)))))
5110, 50sylbid 239 . . . . . 6 ((𝑥 ∈ V ∧ 𝑦 ∈ V ∧ 𝑧 ∈ V) → (𝑦 𝑧 → ((♯‘𝑦) = (♯‘𝑧) → ((♯‘𝑥) = (♯‘𝑦) → (𝑥 𝑦𝑥 𝑧)))))
528, 51mpdd 43 . . . . 5 ((𝑥 ∈ V ∧ 𝑦 ∈ V ∧ 𝑧 ∈ V) → (𝑦 𝑧 → ((♯‘𝑥) = (♯‘𝑦) → (𝑥 𝑦𝑥 𝑧))))
5352com24 95 . . . 4 ((𝑥 ∈ V ∧ 𝑦 ∈ V ∧ 𝑧 ∈ V) → (𝑥 𝑦 → ((♯‘𝑥) = (♯‘𝑦) → (𝑦 𝑧𝑥 𝑧))))
546, 53mpdd 43 . . 3 ((𝑥 ∈ V ∧ 𝑦 ∈ V ∧ 𝑧 ∈ V) → (𝑥 𝑦 → (𝑦 𝑧𝑥 𝑧)))
5554impd 409 . 2 ((𝑥 ∈ V ∧ 𝑦 ∈ V ∧ 𝑧 ∈ V) → ((𝑥 𝑦𝑦 𝑧) → 𝑥 𝑧))
561, 2, 3, 55mp3an 1457 1 ((𝑥 𝑦𝑦 𝑧) → 𝑥 𝑧)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 394  w3a 1084   = wceq 1533  wcel 2098  wne 2929  wrex 3059  Vcvv 3461  c0 4322   class class class wbr 5149  {copab 5211  cfv 6549  (class class class)co 7419  0cc0 11140  ...cfz 13519  chash 14325  Word cword 14500   cyclShift ccsh 14774  Vtxcvtx 28881  ClWWalkscclwwlk 29863
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pow 5365  ax-pr 5429  ax-un 7741  ax-cnex 11196  ax-resscn 11197  ax-1cn 11198  ax-icn 11199  ax-addcl 11200  ax-addrcl 11201  ax-mulcl 11202  ax-mulrcl 11203  ax-mulcom 11204  ax-addass 11205  ax-mulass 11206  ax-distr 11207  ax-i2m1 11208  ax-1ne0 11209  ax-1rid 11210  ax-rnegex 11211  ax-rrecex 11212  ax-cnre 11213  ax-pre-lttri 11214  ax-pre-lttrn 11215  ax-pre-ltadd 11216  ax-pre-mulgt0 11217  ax-pre-sup 11218
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2930  df-nel 3036  df-ral 3051  df-rex 3060  df-rmo 3363  df-reu 3364  df-rab 3419  df-v 3463  df-sbc 3774  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-pss 3964  df-nul 4323  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4910  df-int 4951  df-iun 4999  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5576  df-eprel 5582  df-po 5590  df-so 5591  df-fr 5633  df-we 5635  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-pred 6307  df-ord 6374  df-on 6375  df-lim 6376  df-suc 6377  df-iota 6501  df-fun 6551  df-fn 6552  df-f 6553  df-f1 6554  df-fo 6555  df-f1o 6556  df-fv 6557  df-riota 7375  df-ov 7422  df-oprab 7423  df-mpo 7424  df-om 7872  df-1st 7994  df-2nd 7995  df-frecs 8287  df-wrecs 8318  df-recs 8392  df-rdg 8431  df-1o 8487  df-er 8725  df-map 8847  df-en 8965  df-dom 8966  df-sdom 8967  df-fin 8968  df-sup 9467  df-inf 9468  df-card 9964  df-pnf 11282  df-mnf 11283  df-xr 11284  df-ltxr 11285  df-le 11286  df-sub 11478  df-neg 11479  df-div 11904  df-nn 12246  df-2 12308  df-n0 12506  df-z 12592  df-uz 12856  df-rp 13010  df-fz 13520  df-fzo 13663  df-fl 13793  df-mod 13871  df-hash 14326  df-word 14501  df-concat 14557  df-substr 14627  df-pfx 14657  df-csh 14775  df-clwwlk 29864
This theorem is referenced by:  erclwwlk  29905
  Copyright terms: Public domain W3C validator