Step | Hyp | Ref
| Expression |
1 | | vex 3426 |
. 2
⊢ 𝑥 ∈ V |
2 | | vex 3426 |
. 2
⊢ 𝑦 ∈ V |
3 | | vex 3426 |
. 2
⊢ 𝑧 ∈ V |
4 | | erclwwlk.r |
. . . . . 6
⊢ ∼ =
{〈𝑢, 𝑤〉 ∣ (𝑢 ∈ (ClWWalks‘𝐺) ∧ 𝑤 ∈ (ClWWalks‘𝐺) ∧ ∃𝑛 ∈ (0...(♯‘𝑤))𝑢 = (𝑤 cyclShift 𝑛))} |
5 | 4 | erclwwlkeqlen 28284 |
. . . . 5
⊢ ((𝑥 ∈ V ∧ 𝑦 ∈ V) → (𝑥 ∼ 𝑦 → (♯‘𝑥) = (♯‘𝑦))) |
6 | 5 | 3adant3 1130 |
. . . 4
⊢ ((𝑥 ∈ V ∧ 𝑦 ∈ V ∧ 𝑧 ∈ V) → (𝑥 ∼ 𝑦 → (♯‘𝑥) = (♯‘𝑦))) |
7 | 4 | erclwwlkeqlen 28284 |
. . . . . . 7
⊢ ((𝑦 ∈ V ∧ 𝑧 ∈ V) → (𝑦 ∼ 𝑧 → (♯‘𝑦) = (♯‘𝑧))) |
8 | 7 | 3adant1 1128 |
. . . . . 6
⊢ ((𝑥 ∈ V ∧ 𝑦 ∈ V ∧ 𝑧 ∈ V) → (𝑦 ∼ 𝑧 → (♯‘𝑦) = (♯‘𝑧))) |
9 | 4 | erclwwlkeq 28283 |
. . . . . . . 8
⊢ ((𝑦 ∈ V ∧ 𝑧 ∈ V) → (𝑦 ∼ 𝑧 ↔ (𝑦 ∈ (ClWWalks‘𝐺) ∧ 𝑧 ∈ (ClWWalks‘𝐺) ∧ ∃𝑛 ∈ (0...(♯‘𝑧))𝑦 = (𝑧 cyclShift 𝑛)))) |
10 | 9 | 3adant1 1128 |
. . . . . . 7
⊢ ((𝑥 ∈ V ∧ 𝑦 ∈ V ∧ 𝑧 ∈ V) → (𝑦 ∼ 𝑧 ↔ (𝑦 ∈ (ClWWalks‘𝐺) ∧ 𝑧 ∈ (ClWWalks‘𝐺) ∧ ∃𝑛 ∈ (0...(♯‘𝑧))𝑦 = (𝑧 cyclShift 𝑛)))) |
11 | 4 | erclwwlkeq 28283 |
. . . . . . . . . 10
⊢ ((𝑥 ∈ V ∧ 𝑦 ∈ V) → (𝑥 ∼ 𝑦 ↔ (𝑥 ∈ (ClWWalks‘𝐺) ∧ 𝑦 ∈ (ClWWalks‘𝐺) ∧ ∃𝑛 ∈ (0...(♯‘𝑦))𝑥 = (𝑦 cyclShift 𝑛)))) |
12 | 11 | 3adant3 1130 |
. . . . . . . . 9
⊢ ((𝑥 ∈ V ∧ 𝑦 ∈ V ∧ 𝑧 ∈ V) → (𝑥 ∼ 𝑦 ↔ (𝑥 ∈ (ClWWalks‘𝐺) ∧ 𝑦 ∈ (ClWWalks‘𝐺) ∧ ∃𝑛 ∈ (0...(♯‘𝑦))𝑥 = (𝑦 cyclShift 𝑛)))) |
13 | | simpr1 1192 |
. . . . . . . . . . . . . . 15
⊢
(((((♯‘𝑦) = (♯‘𝑧) ∧ (♯‘𝑥) = (♯‘𝑦)) ∧ (𝑦 ∈ (ClWWalks‘𝐺) ∧ 𝑧 ∈ (ClWWalks‘𝐺) ∧ ∃𝑛 ∈ (0...(♯‘𝑧))𝑦 = (𝑧 cyclShift 𝑛))) ∧ (𝑥 ∈ (ClWWalks‘𝐺) ∧ 𝑦 ∈ (ClWWalks‘𝐺) ∧ ∃𝑛 ∈ (0...(♯‘𝑦))𝑥 = (𝑦 cyclShift 𝑛))) → 𝑥 ∈ (ClWWalks‘𝐺)) |
14 | | simplr2 1214 |
. . . . . . . . . . . . . . 15
⊢
(((((♯‘𝑦) = (♯‘𝑧) ∧ (♯‘𝑥) = (♯‘𝑦)) ∧ (𝑦 ∈ (ClWWalks‘𝐺) ∧ 𝑧 ∈ (ClWWalks‘𝐺) ∧ ∃𝑛 ∈ (0...(♯‘𝑧))𝑦 = (𝑧 cyclShift 𝑛))) ∧ (𝑥 ∈ (ClWWalks‘𝐺) ∧ 𝑦 ∈ (ClWWalks‘𝐺) ∧ ∃𝑛 ∈ (0...(♯‘𝑦))𝑥 = (𝑦 cyclShift 𝑛))) → 𝑧 ∈ (ClWWalks‘𝐺)) |
15 | | oveq2 7263 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝑛 = 𝑚 → (𝑦 cyclShift 𝑛) = (𝑦 cyclShift 𝑚)) |
16 | 15 | eqeq2d 2749 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑛 = 𝑚 → (𝑥 = (𝑦 cyclShift 𝑛) ↔ 𝑥 = (𝑦 cyclShift 𝑚))) |
17 | 16 | cbvrexvw 3373 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢
(∃𝑛 ∈
(0...(♯‘𝑦))𝑥 = (𝑦 cyclShift 𝑛) ↔ ∃𝑚 ∈ (0...(♯‘𝑦))𝑥 = (𝑦 cyclShift 𝑚)) |
18 | | oveq2 7263 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (𝑛 = 𝑘 → (𝑧 cyclShift 𝑛) = (𝑧 cyclShift 𝑘)) |
19 | 18 | eqeq2d 2749 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝑛 = 𝑘 → (𝑦 = (𝑧 cyclShift 𝑛) ↔ 𝑦 = (𝑧 cyclShift 𝑘))) |
20 | 19 | cbvrexvw 3373 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢
(∃𝑛 ∈
(0...(♯‘𝑧))𝑦 = (𝑧 cyclShift 𝑛) ↔ ∃𝑘 ∈ (0...(♯‘𝑧))𝑦 = (𝑧 cyclShift 𝑘)) |
21 | | eqid 2738 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢
(Vtx‘𝐺) =
(Vtx‘𝐺) |
22 | 21 | clwwlkbp 28250 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ (𝑧 ∈ (ClWWalks‘𝐺) → (𝐺 ∈ V ∧ 𝑧 ∈ Word (Vtx‘𝐺) ∧ 𝑧 ≠ ∅)) |
23 | 22 | simp2d 1141 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ (𝑧 ∈ (ClWWalks‘𝐺) → 𝑧 ∈ Word (Vtx‘𝐺)) |
24 | 23 | ad2antlr 723 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ ((((𝑥 ∈ (ClWWalks‘𝐺) ∧ 𝑦 ∈ (ClWWalks‘𝐺)) ∧ 𝑧 ∈ (ClWWalks‘𝐺)) ∧ ((♯‘𝑦) = (♯‘𝑧) ∧ (♯‘𝑥) = (♯‘𝑦))) → 𝑧 ∈ Word (Vtx‘𝐺)) |
25 | | simpr 484 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ ((((𝑥 ∈ (ClWWalks‘𝐺) ∧ 𝑦 ∈ (ClWWalks‘𝐺)) ∧ 𝑧 ∈ (ClWWalks‘𝐺)) ∧ ((♯‘𝑦) = (♯‘𝑧) ∧ (♯‘𝑥) = (♯‘𝑦))) → ((♯‘𝑦) = (♯‘𝑧) ∧ (♯‘𝑥) = (♯‘𝑦))) |
26 | 24, 25 | cshwcsh2id 14469 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ ((((𝑥 ∈ (ClWWalks‘𝐺) ∧ 𝑦 ∈ (ClWWalks‘𝐺)) ∧ 𝑧 ∈ (ClWWalks‘𝐺)) ∧ ((♯‘𝑦) = (♯‘𝑧) ∧ (♯‘𝑥) = (♯‘𝑦))) → (((𝑚 ∈ (0...(♯‘𝑦)) ∧ 𝑥 = (𝑦 cyclShift 𝑚)) ∧ (𝑘 ∈ (0...(♯‘𝑧)) ∧ 𝑦 = (𝑧 cyclShift 𝑘))) → ∃𝑛 ∈ (0...(♯‘𝑧))𝑥 = (𝑧 cyclShift 𝑛))) |
27 | 26 | exp5l 446 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((((𝑥 ∈ (ClWWalks‘𝐺) ∧ 𝑦 ∈ (ClWWalks‘𝐺)) ∧ 𝑧 ∈ (ClWWalks‘𝐺)) ∧ ((♯‘𝑦) = (♯‘𝑧) ∧ (♯‘𝑥) = (♯‘𝑦))) → (𝑚 ∈ (0...(♯‘𝑦)) → (𝑥 = (𝑦 cyclShift 𝑚) → (𝑘 ∈ (0...(♯‘𝑧)) → (𝑦 = (𝑧 cyclShift 𝑘) → ∃𝑛 ∈ (0...(♯‘𝑧))𝑥 = (𝑧 cyclShift 𝑛)))))) |
28 | 27 | imp41 425 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢
(((((((𝑥 ∈
(ClWWalks‘𝐺) ∧
𝑦 ∈
(ClWWalks‘𝐺)) ∧
𝑧 ∈
(ClWWalks‘𝐺)) ∧
((♯‘𝑦) =
(♯‘𝑧) ∧
(♯‘𝑥) =
(♯‘𝑦))) ∧
𝑚 ∈
(0...(♯‘𝑦)))
∧ 𝑥 = (𝑦 cyclShift 𝑚)) ∧ 𝑘 ∈ (0...(♯‘𝑧))) → (𝑦 = (𝑧 cyclShift 𝑘) → ∃𝑛 ∈ (0...(♯‘𝑧))𝑥 = (𝑧 cyclShift 𝑛))) |
29 | 28 | rexlimdva 3212 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢
((((((𝑥 ∈
(ClWWalks‘𝐺) ∧
𝑦 ∈
(ClWWalks‘𝐺)) ∧
𝑧 ∈
(ClWWalks‘𝐺)) ∧
((♯‘𝑦) =
(♯‘𝑧) ∧
(♯‘𝑥) =
(♯‘𝑦))) ∧
𝑚 ∈
(0...(♯‘𝑦)))
∧ 𝑥 = (𝑦 cyclShift 𝑚)) → (∃𝑘 ∈ (0...(♯‘𝑧))𝑦 = (𝑧 cyclShift 𝑘) → ∃𝑛 ∈ (0...(♯‘𝑧))𝑥 = (𝑧 cyclShift 𝑛))) |
30 | 29 | rexlimdva2 3215 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((((𝑥 ∈ (ClWWalks‘𝐺) ∧ 𝑦 ∈ (ClWWalks‘𝐺)) ∧ 𝑧 ∈ (ClWWalks‘𝐺)) ∧ ((♯‘𝑦) = (♯‘𝑧) ∧ (♯‘𝑥) = (♯‘𝑦))) → (∃𝑚 ∈ (0...(♯‘𝑦))𝑥 = (𝑦 cyclShift 𝑚) → (∃𝑘 ∈ (0...(♯‘𝑧))𝑦 = (𝑧 cyclShift 𝑘) → ∃𝑛 ∈ (0...(♯‘𝑧))𝑥 = (𝑧 cyclShift 𝑛)))) |
31 | 20, 30 | syl7bi 254 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((((𝑥 ∈ (ClWWalks‘𝐺) ∧ 𝑦 ∈ (ClWWalks‘𝐺)) ∧ 𝑧 ∈ (ClWWalks‘𝐺)) ∧ ((♯‘𝑦) = (♯‘𝑧) ∧ (♯‘𝑥) = (♯‘𝑦))) → (∃𝑚 ∈ (0...(♯‘𝑦))𝑥 = (𝑦 cyclShift 𝑚) → (∃𝑛 ∈ (0...(♯‘𝑧))𝑦 = (𝑧 cyclShift 𝑛) → ∃𝑛 ∈ (0...(♯‘𝑧))𝑥 = (𝑧 cyclShift 𝑛)))) |
32 | 17, 31 | syl5bi 241 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((((𝑥 ∈ (ClWWalks‘𝐺) ∧ 𝑦 ∈ (ClWWalks‘𝐺)) ∧ 𝑧 ∈ (ClWWalks‘𝐺)) ∧ ((♯‘𝑦) = (♯‘𝑧) ∧ (♯‘𝑥) = (♯‘𝑦))) → (∃𝑛 ∈ (0...(♯‘𝑦))𝑥 = (𝑦 cyclShift 𝑛) → (∃𝑛 ∈ (0...(♯‘𝑧))𝑦 = (𝑧 cyclShift 𝑛) → ∃𝑛 ∈ (0...(♯‘𝑧))𝑥 = (𝑧 cyclShift 𝑛)))) |
33 | 32 | exp31 419 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝑥 ∈ (ClWWalks‘𝐺) ∧ 𝑦 ∈ (ClWWalks‘𝐺)) → (𝑧 ∈ (ClWWalks‘𝐺) → (((♯‘𝑦) = (♯‘𝑧) ∧ (♯‘𝑥) = (♯‘𝑦)) → (∃𝑛 ∈ (0...(♯‘𝑦))𝑥 = (𝑦 cyclShift 𝑛) → (∃𝑛 ∈ (0...(♯‘𝑧))𝑦 = (𝑧 cyclShift 𝑛) → ∃𝑛 ∈ (0...(♯‘𝑧))𝑥 = (𝑧 cyclShift 𝑛)))))) |
34 | 33 | com15 101 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
(∃𝑛 ∈
(0...(♯‘𝑧))𝑦 = (𝑧 cyclShift 𝑛) → (𝑧 ∈ (ClWWalks‘𝐺) → (((♯‘𝑦) = (♯‘𝑧) ∧ (♯‘𝑥) = (♯‘𝑦)) → (∃𝑛 ∈ (0...(♯‘𝑦))𝑥 = (𝑦 cyclShift 𝑛) → ((𝑥 ∈ (ClWWalks‘𝐺) ∧ 𝑦 ∈ (ClWWalks‘𝐺)) → ∃𝑛 ∈ (0...(♯‘𝑧))𝑥 = (𝑧 cyclShift 𝑛)))))) |
35 | 34 | impcom 407 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑧 ∈ (ClWWalks‘𝐺) ∧ ∃𝑛 ∈
(0...(♯‘𝑧))𝑦 = (𝑧 cyclShift 𝑛)) → (((♯‘𝑦) = (♯‘𝑧) ∧ (♯‘𝑥) = (♯‘𝑦)) → (∃𝑛 ∈ (0...(♯‘𝑦))𝑥 = (𝑦 cyclShift 𝑛) → ((𝑥 ∈ (ClWWalks‘𝐺) ∧ 𝑦 ∈ (ClWWalks‘𝐺)) → ∃𝑛 ∈ (0...(♯‘𝑧))𝑥 = (𝑧 cyclShift 𝑛))))) |
36 | 35 | 3adant1 1128 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑦 ∈ (ClWWalks‘𝐺) ∧ 𝑧 ∈ (ClWWalks‘𝐺) ∧ ∃𝑛 ∈ (0...(♯‘𝑧))𝑦 = (𝑧 cyclShift 𝑛)) → (((♯‘𝑦) = (♯‘𝑧) ∧ (♯‘𝑥) = (♯‘𝑦)) → (∃𝑛 ∈ (0...(♯‘𝑦))𝑥 = (𝑦 cyclShift 𝑛) → ((𝑥 ∈ (ClWWalks‘𝐺) ∧ 𝑦 ∈ (ClWWalks‘𝐺)) → ∃𝑛 ∈ (0...(♯‘𝑧))𝑥 = (𝑧 cyclShift 𝑛))))) |
37 | 36 | impcom 407 |
. . . . . . . . . . . . . . . . . 18
⊢
((((♯‘𝑦)
= (♯‘𝑧) ∧
(♯‘𝑥) =
(♯‘𝑦)) ∧
(𝑦 ∈
(ClWWalks‘𝐺) ∧
𝑧 ∈
(ClWWalks‘𝐺) ∧
∃𝑛 ∈
(0...(♯‘𝑧))𝑦 = (𝑧 cyclShift 𝑛))) → (∃𝑛 ∈ (0...(♯‘𝑦))𝑥 = (𝑦 cyclShift 𝑛) → ((𝑥 ∈ (ClWWalks‘𝐺) ∧ 𝑦 ∈ (ClWWalks‘𝐺)) → ∃𝑛 ∈ (0...(♯‘𝑧))𝑥 = (𝑧 cyclShift 𝑛)))) |
38 | 37 | com13 88 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑥 ∈ (ClWWalks‘𝐺) ∧ 𝑦 ∈ (ClWWalks‘𝐺)) → (∃𝑛 ∈ (0...(♯‘𝑦))𝑥 = (𝑦 cyclShift 𝑛) → ((((♯‘𝑦) = (♯‘𝑧) ∧ (♯‘𝑥) = (♯‘𝑦)) ∧ (𝑦 ∈ (ClWWalks‘𝐺) ∧ 𝑧 ∈ (ClWWalks‘𝐺) ∧ ∃𝑛 ∈ (0...(♯‘𝑧))𝑦 = (𝑧 cyclShift 𝑛))) → ∃𝑛 ∈ (0...(♯‘𝑧))𝑥 = (𝑧 cyclShift 𝑛)))) |
39 | 38 | 3impia 1115 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑥 ∈ (ClWWalks‘𝐺) ∧ 𝑦 ∈ (ClWWalks‘𝐺) ∧ ∃𝑛 ∈ (0...(♯‘𝑦))𝑥 = (𝑦 cyclShift 𝑛)) → ((((♯‘𝑦) = (♯‘𝑧) ∧ (♯‘𝑥) = (♯‘𝑦)) ∧ (𝑦 ∈ (ClWWalks‘𝐺) ∧ 𝑧 ∈ (ClWWalks‘𝐺) ∧ ∃𝑛 ∈ (0...(♯‘𝑧))𝑦 = (𝑧 cyclShift 𝑛))) → ∃𝑛 ∈ (0...(♯‘𝑧))𝑥 = (𝑧 cyclShift 𝑛))) |
40 | 39 | impcom 407 |
. . . . . . . . . . . . . . 15
⊢
(((((♯‘𝑦) = (♯‘𝑧) ∧ (♯‘𝑥) = (♯‘𝑦)) ∧ (𝑦 ∈ (ClWWalks‘𝐺) ∧ 𝑧 ∈ (ClWWalks‘𝐺) ∧ ∃𝑛 ∈ (0...(♯‘𝑧))𝑦 = (𝑧 cyclShift 𝑛))) ∧ (𝑥 ∈ (ClWWalks‘𝐺) ∧ 𝑦 ∈ (ClWWalks‘𝐺) ∧ ∃𝑛 ∈ (0...(♯‘𝑦))𝑥 = (𝑦 cyclShift 𝑛))) → ∃𝑛 ∈ (0...(♯‘𝑧))𝑥 = (𝑧 cyclShift 𝑛)) |
41 | 13, 14, 40 | 3jca 1126 |
. . . . . . . . . . . . . 14
⊢
(((((♯‘𝑦) = (♯‘𝑧) ∧ (♯‘𝑥) = (♯‘𝑦)) ∧ (𝑦 ∈ (ClWWalks‘𝐺) ∧ 𝑧 ∈ (ClWWalks‘𝐺) ∧ ∃𝑛 ∈ (0...(♯‘𝑧))𝑦 = (𝑧 cyclShift 𝑛))) ∧ (𝑥 ∈ (ClWWalks‘𝐺) ∧ 𝑦 ∈ (ClWWalks‘𝐺) ∧ ∃𝑛 ∈ (0...(♯‘𝑦))𝑥 = (𝑦 cyclShift 𝑛))) → (𝑥 ∈ (ClWWalks‘𝐺) ∧ 𝑧 ∈ (ClWWalks‘𝐺) ∧ ∃𝑛 ∈ (0...(♯‘𝑧))𝑥 = (𝑧 cyclShift 𝑛))) |
42 | 4 | erclwwlkeq 28283 |
. . . . . . . . . . . . . . 15
⊢ ((𝑥 ∈ V ∧ 𝑧 ∈ V) → (𝑥 ∼ 𝑧 ↔ (𝑥 ∈ (ClWWalks‘𝐺) ∧ 𝑧 ∈ (ClWWalks‘𝐺) ∧ ∃𝑛 ∈ (0...(♯‘𝑧))𝑥 = (𝑧 cyclShift 𝑛)))) |
43 | 42 | 3adant2 1129 |
. . . . . . . . . . . . . 14
⊢ ((𝑥 ∈ V ∧ 𝑦 ∈ V ∧ 𝑧 ∈ V) → (𝑥 ∼ 𝑧 ↔ (𝑥 ∈ (ClWWalks‘𝐺) ∧ 𝑧 ∈ (ClWWalks‘𝐺) ∧ ∃𝑛 ∈ (0...(♯‘𝑧))𝑥 = (𝑧 cyclShift 𝑛)))) |
44 | 41, 43 | syl5ibrcom 246 |
. . . . . . . . . . . . 13
⊢
(((((♯‘𝑦) = (♯‘𝑧) ∧ (♯‘𝑥) = (♯‘𝑦)) ∧ (𝑦 ∈ (ClWWalks‘𝐺) ∧ 𝑧 ∈ (ClWWalks‘𝐺) ∧ ∃𝑛 ∈ (0...(♯‘𝑧))𝑦 = (𝑧 cyclShift 𝑛))) ∧ (𝑥 ∈ (ClWWalks‘𝐺) ∧ 𝑦 ∈ (ClWWalks‘𝐺) ∧ ∃𝑛 ∈ (0...(♯‘𝑦))𝑥 = (𝑦 cyclShift 𝑛))) → ((𝑥 ∈ V ∧ 𝑦 ∈ V ∧ 𝑧 ∈ V) → 𝑥 ∼ 𝑧)) |
45 | 44 | exp31 419 |
. . . . . . . . . . . 12
⊢
(((♯‘𝑦)
= (♯‘𝑧) ∧
(♯‘𝑥) =
(♯‘𝑦)) →
((𝑦 ∈
(ClWWalks‘𝐺) ∧
𝑧 ∈
(ClWWalks‘𝐺) ∧
∃𝑛 ∈
(0...(♯‘𝑧))𝑦 = (𝑧 cyclShift 𝑛)) → ((𝑥 ∈ (ClWWalks‘𝐺) ∧ 𝑦 ∈ (ClWWalks‘𝐺) ∧ ∃𝑛 ∈ (0...(♯‘𝑦))𝑥 = (𝑦 cyclShift 𝑛)) → ((𝑥 ∈ V ∧ 𝑦 ∈ V ∧ 𝑧 ∈ V) → 𝑥 ∼ 𝑧)))) |
46 | 45 | com24 95 |
. . . . . . . . . . 11
⊢
(((♯‘𝑦)
= (♯‘𝑧) ∧
(♯‘𝑥) =
(♯‘𝑦)) →
((𝑥 ∈ V ∧ 𝑦 ∈ V ∧ 𝑧 ∈ V) → ((𝑥 ∈ (ClWWalks‘𝐺) ∧ 𝑦 ∈ (ClWWalks‘𝐺) ∧ ∃𝑛 ∈ (0...(♯‘𝑦))𝑥 = (𝑦 cyclShift 𝑛)) → ((𝑦 ∈ (ClWWalks‘𝐺) ∧ 𝑧 ∈ (ClWWalks‘𝐺) ∧ ∃𝑛 ∈ (0...(♯‘𝑧))𝑦 = (𝑧 cyclShift 𝑛)) → 𝑥 ∼ 𝑧)))) |
47 | 46 | ex 412 |
. . . . . . . . . 10
⊢
((♯‘𝑦) =
(♯‘𝑧) →
((♯‘𝑥) =
(♯‘𝑦) →
((𝑥 ∈ V ∧ 𝑦 ∈ V ∧ 𝑧 ∈ V) → ((𝑥 ∈ (ClWWalks‘𝐺) ∧ 𝑦 ∈ (ClWWalks‘𝐺) ∧ ∃𝑛 ∈ (0...(♯‘𝑦))𝑥 = (𝑦 cyclShift 𝑛)) → ((𝑦 ∈ (ClWWalks‘𝐺) ∧ 𝑧 ∈ (ClWWalks‘𝐺) ∧ ∃𝑛 ∈ (0...(♯‘𝑧))𝑦 = (𝑧 cyclShift 𝑛)) → 𝑥 ∼ 𝑧))))) |
48 | 47 | com4t 93 |
. . . . . . . . 9
⊢ ((𝑥 ∈ V ∧ 𝑦 ∈ V ∧ 𝑧 ∈ V) → ((𝑥 ∈ (ClWWalks‘𝐺) ∧ 𝑦 ∈ (ClWWalks‘𝐺) ∧ ∃𝑛 ∈ (0...(♯‘𝑦))𝑥 = (𝑦 cyclShift 𝑛)) → ((♯‘𝑦) = (♯‘𝑧) → ((♯‘𝑥) = (♯‘𝑦) → ((𝑦 ∈ (ClWWalks‘𝐺) ∧ 𝑧 ∈ (ClWWalks‘𝐺) ∧ ∃𝑛 ∈ (0...(♯‘𝑧))𝑦 = (𝑧 cyclShift 𝑛)) → 𝑥 ∼ 𝑧))))) |
49 | 12, 48 | sylbid 239 |
. . . . . . . 8
⊢ ((𝑥 ∈ V ∧ 𝑦 ∈ V ∧ 𝑧 ∈ V) → (𝑥 ∼ 𝑦 → ((♯‘𝑦) = (♯‘𝑧) → ((♯‘𝑥) = (♯‘𝑦) → ((𝑦 ∈ (ClWWalks‘𝐺) ∧ 𝑧 ∈ (ClWWalks‘𝐺) ∧ ∃𝑛 ∈ (0...(♯‘𝑧))𝑦 = (𝑧 cyclShift 𝑛)) → 𝑥 ∼ 𝑧))))) |
50 | 49 | com25 99 |
. . . . . . 7
⊢ ((𝑥 ∈ V ∧ 𝑦 ∈ V ∧ 𝑧 ∈ V) → ((𝑦 ∈ (ClWWalks‘𝐺) ∧ 𝑧 ∈ (ClWWalks‘𝐺) ∧ ∃𝑛 ∈ (0...(♯‘𝑧))𝑦 = (𝑧 cyclShift 𝑛)) → ((♯‘𝑦) = (♯‘𝑧) → ((♯‘𝑥) = (♯‘𝑦) → (𝑥 ∼ 𝑦 → 𝑥 ∼ 𝑧))))) |
51 | 10, 50 | sylbid 239 |
. . . . . 6
⊢ ((𝑥 ∈ V ∧ 𝑦 ∈ V ∧ 𝑧 ∈ V) → (𝑦 ∼ 𝑧 → ((♯‘𝑦) = (♯‘𝑧) → ((♯‘𝑥) = (♯‘𝑦) → (𝑥 ∼ 𝑦 → 𝑥 ∼ 𝑧))))) |
52 | 8, 51 | mpdd 43 |
. . . . 5
⊢ ((𝑥 ∈ V ∧ 𝑦 ∈ V ∧ 𝑧 ∈ V) → (𝑦 ∼ 𝑧 → ((♯‘𝑥) = (♯‘𝑦) → (𝑥 ∼ 𝑦 → 𝑥 ∼ 𝑧)))) |
53 | 52 | com24 95 |
. . . 4
⊢ ((𝑥 ∈ V ∧ 𝑦 ∈ V ∧ 𝑧 ∈ V) → (𝑥 ∼ 𝑦 → ((♯‘𝑥) = (♯‘𝑦) → (𝑦 ∼ 𝑧 → 𝑥 ∼ 𝑧)))) |
54 | 6, 53 | mpdd 43 |
. . 3
⊢ ((𝑥 ∈ V ∧ 𝑦 ∈ V ∧ 𝑧 ∈ V) → (𝑥 ∼ 𝑦 → (𝑦 ∼ 𝑧 → 𝑥 ∼ 𝑧))) |
55 | 54 | impd 410 |
. 2
⊢ ((𝑥 ∈ V ∧ 𝑦 ∈ V ∧ 𝑧 ∈ V) → ((𝑥 ∼ 𝑦 ∧ 𝑦 ∼ 𝑧) → 𝑥 ∼ 𝑧)) |
56 | 1, 2, 3, 55 | mp3an 1459 |
1
⊢ ((𝑥 ∼ 𝑦 ∧ 𝑦 ∼ 𝑧) → 𝑥 ∼ 𝑧) |