MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  erclwwlktr Structured version   Visualization version   GIF version

Theorem erclwwlktr 28077
Description: is a transitive relation over the set of closed walks (defined as words). (Contributed by Alexander van der Vekens, 10-Apr-2018.) (Revised by AV, 30-Apr-2021.)
Hypothesis
Ref Expression
erclwwlk.r = {⟨𝑢, 𝑤⟩ ∣ (𝑢 ∈ (ClWWalks‘𝐺) ∧ 𝑤 ∈ (ClWWalks‘𝐺) ∧ ∃𝑛 ∈ (0...(♯‘𝑤))𝑢 = (𝑤 cyclShift 𝑛))}
Assertion
Ref Expression
erclwwlktr ((𝑥 𝑦𝑦 𝑧) → 𝑥 𝑧)
Distinct variable groups:   𝑛,𝐺,𝑢,𝑤   𝑥,𝑛,𝑢,𝑤,𝑦   𝑧,𝑛,𝑢,𝑤,𝑥
Allowed substitution hints:   (𝑥,𝑦,𝑧,𝑤,𝑢,𝑛)   𝐺(𝑥,𝑦,𝑧)

Proof of Theorem erclwwlktr
Dummy variables 𝑚 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 vex 3405 . 2 𝑥 ∈ V
2 vex 3405 . 2 𝑦 ∈ V
3 vex 3405 . 2 𝑧 ∈ V
4 erclwwlk.r . . . . . 6 = {⟨𝑢, 𝑤⟩ ∣ (𝑢 ∈ (ClWWalks‘𝐺) ∧ 𝑤 ∈ (ClWWalks‘𝐺) ∧ ∃𝑛 ∈ (0...(♯‘𝑤))𝑢 = (𝑤 cyclShift 𝑛))}
54erclwwlkeqlen 28074 . . . . 5 ((𝑥 ∈ V ∧ 𝑦 ∈ V) → (𝑥 𝑦 → (♯‘𝑥) = (♯‘𝑦)))
653adant3 1134 . . . 4 ((𝑥 ∈ V ∧ 𝑦 ∈ V ∧ 𝑧 ∈ V) → (𝑥 𝑦 → (♯‘𝑥) = (♯‘𝑦)))
74erclwwlkeqlen 28074 . . . . . . 7 ((𝑦 ∈ V ∧ 𝑧 ∈ V) → (𝑦 𝑧 → (♯‘𝑦) = (♯‘𝑧)))
873adant1 1132 . . . . . 6 ((𝑥 ∈ V ∧ 𝑦 ∈ V ∧ 𝑧 ∈ V) → (𝑦 𝑧 → (♯‘𝑦) = (♯‘𝑧)))
94erclwwlkeq 28073 . . . . . . . 8 ((𝑦 ∈ V ∧ 𝑧 ∈ V) → (𝑦 𝑧 ↔ (𝑦 ∈ (ClWWalks‘𝐺) ∧ 𝑧 ∈ (ClWWalks‘𝐺) ∧ ∃𝑛 ∈ (0...(♯‘𝑧))𝑦 = (𝑧 cyclShift 𝑛))))
1093adant1 1132 . . . . . . 7 ((𝑥 ∈ V ∧ 𝑦 ∈ V ∧ 𝑧 ∈ V) → (𝑦 𝑧 ↔ (𝑦 ∈ (ClWWalks‘𝐺) ∧ 𝑧 ∈ (ClWWalks‘𝐺) ∧ ∃𝑛 ∈ (0...(♯‘𝑧))𝑦 = (𝑧 cyclShift 𝑛))))
114erclwwlkeq 28073 . . . . . . . . . 10 ((𝑥 ∈ V ∧ 𝑦 ∈ V) → (𝑥 𝑦 ↔ (𝑥 ∈ (ClWWalks‘𝐺) ∧ 𝑦 ∈ (ClWWalks‘𝐺) ∧ ∃𝑛 ∈ (0...(♯‘𝑦))𝑥 = (𝑦 cyclShift 𝑛))))
12113adant3 1134 . . . . . . . . 9 ((𝑥 ∈ V ∧ 𝑦 ∈ V ∧ 𝑧 ∈ V) → (𝑥 𝑦 ↔ (𝑥 ∈ (ClWWalks‘𝐺) ∧ 𝑦 ∈ (ClWWalks‘𝐺) ∧ ∃𝑛 ∈ (0...(♯‘𝑦))𝑥 = (𝑦 cyclShift 𝑛))))
13 simpr1 1196 . . . . . . . . . . . . . . 15 (((((♯‘𝑦) = (♯‘𝑧) ∧ (♯‘𝑥) = (♯‘𝑦)) ∧ (𝑦 ∈ (ClWWalks‘𝐺) ∧ 𝑧 ∈ (ClWWalks‘𝐺) ∧ ∃𝑛 ∈ (0...(♯‘𝑧))𝑦 = (𝑧 cyclShift 𝑛))) ∧ (𝑥 ∈ (ClWWalks‘𝐺) ∧ 𝑦 ∈ (ClWWalks‘𝐺) ∧ ∃𝑛 ∈ (0...(♯‘𝑦))𝑥 = (𝑦 cyclShift 𝑛))) → 𝑥 ∈ (ClWWalks‘𝐺))
14 simplr2 1218 . . . . . . . . . . . . . . 15 (((((♯‘𝑦) = (♯‘𝑧) ∧ (♯‘𝑥) = (♯‘𝑦)) ∧ (𝑦 ∈ (ClWWalks‘𝐺) ∧ 𝑧 ∈ (ClWWalks‘𝐺) ∧ ∃𝑛 ∈ (0...(♯‘𝑧))𝑦 = (𝑧 cyclShift 𝑛))) ∧ (𝑥 ∈ (ClWWalks‘𝐺) ∧ 𝑦 ∈ (ClWWalks‘𝐺) ∧ ∃𝑛 ∈ (0...(♯‘𝑦))𝑥 = (𝑦 cyclShift 𝑛))) → 𝑧 ∈ (ClWWalks‘𝐺))
15 oveq2 7210 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑛 = 𝑚 → (𝑦 cyclShift 𝑛) = (𝑦 cyclShift 𝑚))
1615eqeq2d 2745 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑛 = 𝑚 → (𝑥 = (𝑦 cyclShift 𝑛) ↔ 𝑥 = (𝑦 cyclShift 𝑚)))
1716cbvrexvw 3352 . . . . . . . . . . . . . . . . . . . . . . . 24 (∃𝑛 ∈ (0...(♯‘𝑦))𝑥 = (𝑦 cyclShift 𝑛) ↔ ∃𝑚 ∈ (0...(♯‘𝑦))𝑥 = (𝑦 cyclShift 𝑚))
18 oveq2 7210 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑛 = 𝑘 → (𝑧 cyclShift 𝑛) = (𝑧 cyclShift 𝑘))
1918eqeq2d 2745 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑛 = 𝑘 → (𝑦 = (𝑧 cyclShift 𝑛) ↔ 𝑦 = (𝑧 cyclShift 𝑘)))
2019cbvrexvw 3352 . . . . . . . . . . . . . . . . . . . . . . . . 25 (∃𝑛 ∈ (0...(♯‘𝑧))𝑦 = (𝑧 cyclShift 𝑛) ↔ ∃𝑘 ∈ (0...(♯‘𝑧))𝑦 = (𝑧 cyclShift 𝑘))
21 eqid 2734 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (Vtx‘𝐺) = (Vtx‘𝐺)
2221clwwlkbp 28040 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝑧 ∈ (ClWWalks‘𝐺) → (𝐺 ∈ V ∧ 𝑧 ∈ Word (Vtx‘𝐺) ∧ 𝑧 ≠ ∅))
2322simp2d 1145 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑧 ∈ (ClWWalks‘𝐺) → 𝑧 ∈ Word (Vtx‘𝐺))
2423ad2antlr 727 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((((𝑥 ∈ (ClWWalks‘𝐺) ∧ 𝑦 ∈ (ClWWalks‘𝐺)) ∧ 𝑧 ∈ (ClWWalks‘𝐺)) ∧ ((♯‘𝑦) = (♯‘𝑧) ∧ (♯‘𝑥) = (♯‘𝑦))) → 𝑧 ∈ Word (Vtx‘𝐺))
25 simpr 488 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((((𝑥 ∈ (ClWWalks‘𝐺) ∧ 𝑦 ∈ (ClWWalks‘𝐺)) ∧ 𝑧 ∈ (ClWWalks‘𝐺)) ∧ ((♯‘𝑦) = (♯‘𝑧) ∧ (♯‘𝑥) = (♯‘𝑦))) → ((♯‘𝑦) = (♯‘𝑧) ∧ (♯‘𝑥) = (♯‘𝑦)))
2624, 25cshwcsh2id 14376 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((((𝑥 ∈ (ClWWalks‘𝐺) ∧ 𝑦 ∈ (ClWWalks‘𝐺)) ∧ 𝑧 ∈ (ClWWalks‘𝐺)) ∧ ((♯‘𝑦) = (♯‘𝑧) ∧ (♯‘𝑥) = (♯‘𝑦))) → (((𝑚 ∈ (0...(♯‘𝑦)) ∧ 𝑥 = (𝑦 cyclShift 𝑚)) ∧ (𝑘 ∈ (0...(♯‘𝑧)) ∧ 𝑦 = (𝑧 cyclShift 𝑘))) → ∃𝑛 ∈ (0...(♯‘𝑧))𝑥 = (𝑧 cyclShift 𝑛)))
2726exp5l 450 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((((𝑥 ∈ (ClWWalks‘𝐺) ∧ 𝑦 ∈ (ClWWalks‘𝐺)) ∧ 𝑧 ∈ (ClWWalks‘𝐺)) ∧ ((♯‘𝑦) = (♯‘𝑧) ∧ (♯‘𝑥) = (♯‘𝑦))) → (𝑚 ∈ (0...(♯‘𝑦)) → (𝑥 = (𝑦 cyclShift 𝑚) → (𝑘 ∈ (0...(♯‘𝑧)) → (𝑦 = (𝑧 cyclShift 𝑘) → ∃𝑛 ∈ (0...(♯‘𝑧))𝑥 = (𝑧 cyclShift 𝑛))))))
2827imp41 429 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((((((𝑥 ∈ (ClWWalks‘𝐺) ∧ 𝑦 ∈ (ClWWalks‘𝐺)) ∧ 𝑧 ∈ (ClWWalks‘𝐺)) ∧ ((♯‘𝑦) = (♯‘𝑧) ∧ (♯‘𝑥) = (♯‘𝑦))) ∧ 𝑚 ∈ (0...(♯‘𝑦))) ∧ 𝑥 = (𝑦 cyclShift 𝑚)) ∧ 𝑘 ∈ (0...(♯‘𝑧))) → (𝑦 = (𝑧 cyclShift 𝑘) → ∃𝑛 ∈ (0...(♯‘𝑧))𝑥 = (𝑧 cyclShift 𝑛)))
2928rexlimdva 3196 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((((𝑥 ∈ (ClWWalks‘𝐺) ∧ 𝑦 ∈ (ClWWalks‘𝐺)) ∧ 𝑧 ∈ (ClWWalks‘𝐺)) ∧ ((♯‘𝑦) = (♯‘𝑧) ∧ (♯‘𝑥) = (♯‘𝑦))) ∧ 𝑚 ∈ (0...(♯‘𝑦))) ∧ 𝑥 = (𝑦 cyclShift 𝑚)) → (∃𝑘 ∈ (0...(♯‘𝑧))𝑦 = (𝑧 cyclShift 𝑘) → ∃𝑛 ∈ (0...(♯‘𝑧))𝑥 = (𝑧 cyclShift 𝑛)))
3029rexlimdva2 3199 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝑥 ∈ (ClWWalks‘𝐺) ∧ 𝑦 ∈ (ClWWalks‘𝐺)) ∧ 𝑧 ∈ (ClWWalks‘𝐺)) ∧ ((♯‘𝑦) = (♯‘𝑧) ∧ (♯‘𝑥) = (♯‘𝑦))) → (∃𝑚 ∈ (0...(♯‘𝑦))𝑥 = (𝑦 cyclShift 𝑚) → (∃𝑘 ∈ (0...(♯‘𝑧))𝑦 = (𝑧 cyclShift 𝑘) → ∃𝑛 ∈ (0...(♯‘𝑧))𝑥 = (𝑧 cyclShift 𝑛))))
3120, 30syl7bi 258 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝑥 ∈ (ClWWalks‘𝐺) ∧ 𝑦 ∈ (ClWWalks‘𝐺)) ∧ 𝑧 ∈ (ClWWalks‘𝐺)) ∧ ((♯‘𝑦) = (♯‘𝑧) ∧ (♯‘𝑥) = (♯‘𝑦))) → (∃𝑚 ∈ (0...(♯‘𝑦))𝑥 = (𝑦 cyclShift 𝑚) → (∃𝑛 ∈ (0...(♯‘𝑧))𝑦 = (𝑧 cyclShift 𝑛) → ∃𝑛 ∈ (0...(♯‘𝑧))𝑥 = (𝑧 cyclShift 𝑛))))
3217, 31syl5bi 245 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝑥 ∈ (ClWWalks‘𝐺) ∧ 𝑦 ∈ (ClWWalks‘𝐺)) ∧ 𝑧 ∈ (ClWWalks‘𝐺)) ∧ ((♯‘𝑦) = (♯‘𝑧) ∧ (♯‘𝑥) = (♯‘𝑦))) → (∃𝑛 ∈ (0...(♯‘𝑦))𝑥 = (𝑦 cyclShift 𝑛) → (∃𝑛 ∈ (0...(♯‘𝑧))𝑦 = (𝑧 cyclShift 𝑛) → ∃𝑛 ∈ (0...(♯‘𝑧))𝑥 = (𝑧 cyclShift 𝑛))))
3332exp31 423 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑥 ∈ (ClWWalks‘𝐺) ∧ 𝑦 ∈ (ClWWalks‘𝐺)) → (𝑧 ∈ (ClWWalks‘𝐺) → (((♯‘𝑦) = (♯‘𝑧) ∧ (♯‘𝑥) = (♯‘𝑦)) → (∃𝑛 ∈ (0...(♯‘𝑦))𝑥 = (𝑦 cyclShift 𝑛) → (∃𝑛 ∈ (0...(♯‘𝑧))𝑦 = (𝑧 cyclShift 𝑛) → ∃𝑛 ∈ (0...(♯‘𝑧))𝑥 = (𝑧 cyclShift 𝑛))))))
3433com15 101 . . . . . . . . . . . . . . . . . . . . 21 (∃𝑛 ∈ (0...(♯‘𝑧))𝑦 = (𝑧 cyclShift 𝑛) → (𝑧 ∈ (ClWWalks‘𝐺) → (((♯‘𝑦) = (♯‘𝑧) ∧ (♯‘𝑥) = (♯‘𝑦)) → (∃𝑛 ∈ (0...(♯‘𝑦))𝑥 = (𝑦 cyclShift 𝑛) → ((𝑥 ∈ (ClWWalks‘𝐺) ∧ 𝑦 ∈ (ClWWalks‘𝐺)) → ∃𝑛 ∈ (0...(♯‘𝑧))𝑥 = (𝑧 cyclShift 𝑛))))))
3534impcom 411 . . . . . . . . . . . . . . . . . . . 20 ((𝑧 ∈ (ClWWalks‘𝐺) ∧ ∃𝑛 ∈ (0...(♯‘𝑧))𝑦 = (𝑧 cyclShift 𝑛)) → (((♯‘𝑦) = (♯‘𝑧) ∧ (♯‘𝑥) = (♯‘𝑦)) → (∃𝑛 ∈ (0...(♯‘𝑦))𝑥 = (𝑦 cyclShift 𝑛) → ((𝑥 ∈ (ClWWalks‘𝐺) ∧ 𝑦 ∈ (ClWWalks‘𝐺)) → ∃𝑛 ∈ (0...(♯‘𝑧))𝑥 = (𝑧 cyclShift 𝑛)))))
36353adant1 1132 . . . . . . . . . . . . . . . . . . 19 ((𝑦 ∈ (ClWWalks‘𝐺) ∧ 𝑧 ∈ (ClWWalks‘𝐺) ∧ ∃𝑛 ∈ (0...(♯‘𝑧))𝑦 = (𝑧 cyclShift 𝑛)) → (((♯‘𝑦) = (♯‘𝑧) ∧ (♯‘𝑥) = (♯‘𝑦)) → (∃𝑛 ∈ (0...(♯‘𝑦))𝑥 = (𝑦 cyclShift 𝑛) → ((𝑥 ∈ (ClWWalks‘𝐺) ∧ 𝑦 ∈ (ClWWalks‘𝐺)) → ∃𝑛 ∈ (0...(♯‘𝑧))𝑥 = (𝑧 cyclShift 𝑛)))))
3736impcom 411 . . . . . . . . . . . . . . . . . 18 ((((♯‘𝑦) = (♯‘𝑧) ∧ (♯‘𝑥) = (♯‘𝑦)) ∧ (𝑦 ∈ (ClWWalks‘𝐺) ∧ 𝑧 ∈ (ClWWalks‘𝐺) ∧ ∃𝑛 ∈ (0...(♯‘𝑧))𝑦 = (𝑧 cyclShift 𝑛))) → (∃𝑛 ∈ (0...(♯‘𝑦))𝑥 = (𝑦 cyclShift 𝑛) → ((𝑥 ∈ (ClWWalks‘𝐺) ∧ 𝑦 ∈ (ClWWalks‘𝐺)) → ∃𝑛 ∈ (0...(♯‘𝑧))𝑥 = (𝑧 cyclShift 𝑛))))
3837com13 88 . . . . . . . . . . . . . . . . 17 ((𝑥 ∈ (ClWWalks‘𝐺) ∧ 𝑦 ∈ (ClWWalks‘𝐺)) → (∃𝑛 ∈ (0...(♯‘𝑦))𝑥 = (𝑦 cyclShift 𝑛) → ((((♯‘𝑦) = (♯‘𝑧) ∧ (♯‘𝑥) = (♯‘𝑦)) ∧ (𝑦 ∈ (ClWWalks‘𝐺) ∧ 𝑧 ∈ (ClWWalks‘𝐺) ∧ ∃𝑛 ∈ (0...(♯‘𝑧))𝑦 = (𝑧 cyclShift 𝑛))) → ∃𝑛 ∈ (0...(♯‘𝑧))𝑥 = (𝑧 cyclShift 𝑛))))
39383impia 1119 . . . . . . . . . . . . . . . 16 ((𝑥 ∈ (ClWWalks‘𝐺) ∧ 𝑦 ∈ (ClWWalks‘𝐺) ∧ ∃𝑛 ∈ (0...(♯‘𝑦))𝑥 = (𝑦 cyclShift 𝑛)) → ((((♯‘𝑦) = (♯‘𝑧) ∧ (♯‘𝑥) = (♯‘𝑦)) ∧ (𝑦 ∈ (ClWWalks‘𝐺) ∧ 𝑧 ∈ (ClWWalks‘𝐺) ∧ ∃𝑛 ∈ (0...(♯‘𝑧))𝑦 = (𝑧 cyclShift 𝑛))) → ∃𝑛 ∈ (0...(♯‘𝑧))𝑥 = (𝑧 cyclShift 𝑛)))
4039impcom 411 . . . . . . . . . . . . . . 15 (((((♯‘𝑦) = (♯‘𝑧) ∧ (♯‘𝑥) = (♯‘𝑦)) ∧ (𝑦 ∈ (ClWWalks‘𝐺) ∧ 𝑧 ∈ (ClWWalks‘𝐺) ∧ ∃𝑛 ∈ (0...(♯‘𝑧))𝑦 = (𝑧 cyclShift 𝑛))) ∧ (𝑥 ∈ (ClWWalks‘𝐺) ∧ 𝑦 ∈ (ClWWalks‘𝐺) ∧ ∃𝑛 ∈ (0...(♯‘𝑦))𝑥 = (𝑦 cyclShift 𝑛))) → ∃𝑛 ∈ (0...(♯‘𝑧))𝑥 = (𝑧 cyclShift 𝑛))
4113, 14, 403jca 1130 . . . . . . . . . . . . . 14 (((((♯‘𝑦) = (♯‘𝑧) ∧ (♯‘𝑥) = (♯‘𝑦)) ∧ (𝑦 ∈ (ClWWalks‘𝐺) ∧ 𝑧 ∈ (ClWWalks‘𝐺) ∧ ∃𝑛 ∈ (0...(♯‘𝑧))𝑦 = (𝑧 cyclShift 𝑛))) ∧ (𝑥 ∈ (ClWWalks‘𝐺) ∧ 𝑦 ∈ (ClWWalks‘𝐺) ∧ ∃𝑛 ∈ (0...(♯‘𝑦))𝑥 = (𝑦 cyclShift 𝑛))) → (𝑥 ∈ (ClWWalks‘𝐺) ∧ 𝑧 ∈ (ClWWalks‘𝐺) ∧ ∃𝑛 ∈ (0...(♯‘𝑧))𝑥 = (𝑧 cyclShift 𝑛)))
424erclwwlkeq 28073 . . . . . . . . . . . . . . 15 ((𝑥 ∈ V ∧ 𝑧 ∈ V) → (𝑥 𝑧 ↔ (𝑥 ∈ (ClWWalks‘𝐺) ∧ 𝑧 ∈ (ClWWalks‘𝐺) ∧ ∃𝑛 ∈ (0...(♯‘𝑧))𝑥 = (𝑧 cyclShift 𝑛))))
43423adant2 1133 . . . . . . . . . . . . . 14 ((𝑥 ∈ V ∧ 𝑦 ∈ V ∧ 𝑧 ∈ V) → (𝑥 𝑧 ↔ (𝑥 ∈ (ClWWalks‘𝐺) ∧ 𝑧 ∈ (ClWWalks‘𝐺) ∧ ∃𝑛 ∈ (0...(♯‘𝑧))𝑥 = (𝑧 cyclShift 𝑛))))
4441, 43syl5ibrcom 250 . . . . . . . . . . . . 13 (((((♯‘𝑦) = (♯‘𝑧) ∧ (♯‘𝑥) = (♯‘𝑦)) ∧ (𝑦 ∈ (ClWWalks‘𝐺) ∧ 𝑧 ∈ (ClWWalks‘𝐺) ∧ ∃𝑛 ∈ (0...(♯‘𝑧))𝑦 = (𝑧 cyclShift 𝑛))) ∧ (𝑥 ∈ (ClWWalks‘𝐺) ∧ 𝑦 ∈ (ClWWalks‘𝐺) ∧ ∃𝑛 ∈ (0...(♯‘𝑦))𝑥 = (𝑦 cyclShift 𝑛))) → ((𝑥 ∈ V ∧ 𝑦 ∈ V ∧ 𝑧 ∈ V) → 𝑥 𝑧))
4544exp31 423 . . . . . . . . . . . 12 (((♯‘𝑦) = (♯‘𝑧) ∧ (♯‘𝑥) = (♯‘𝑦)) → ((𝑦 ∈ (ClWWalks‘𝐺) ∧ 𝑧 ∈ (ClWWalks‘𝐺) ∧ ∃𝑛 ∈ (0...(♯‘𝑧))𝑦 = (𝑧 cyclShift 𝑛)) → ((𝑥 ∈ (ClWWalks‘𝐺) ∧ 𝑦 ∈ (ClWWalks‘𝐺) ∧ ∃𝑛 ∈ (0...(♯‘𝑦))𝑥 = (𝑦 cyclShift 𝑛)) → ((𝑥 ∈ V ∧ 𝑦 ∈ V ∧ 𝑧 ∈ V) → 𝑥 𝑧))))
4645com24 95 . . . . . . . . . . 11 (((♯‘𝑦) = (♯‘𝑧) ∧ (♯‘𝑥) = (♯‘𝑦)) → ((𝑥 ∈ V ∧ 𝑦 ∈ V ∧ 𝑧 ∈ V) → ((𝑥 ∈ (ClWWalks‘𝐺) ∧ 𝑦 ∈ (ClWWalks‘𝐺) ∧ ∃𝑛 ∈ (0...(♯‘𝑦))𝑥 = (𝑦 cyclShift 𝑛)) → ((𝑦 ∈ (ClWWalks‘𝐺) ∧ 𝑧 ∈ (ClWWalks‘𝐺) ∧ ∃𝑛 ∈ (0...(♯‘𝑧))𝑦 = (𝑧 cyclShift 𝑛)) → 𝑥 𝑧))))
4746ex 416 . . . . . . . . . 10 ((♯‘𝑦) = (♯‘𝑧) → ((♯‘𝑥) = (♯‘𝑦) → ((𝑥 ∈ V ∧ 𝑦 ∈ V ∧ 𝑧 ∈ V) → ((𝑥 ∈ (ClWWalks‘𝐺) ∧ 𝑦 ∈ (ClWWalks‘𝐺) ∧ ∃𝑛 ∈ (0...(♯‘𝑦))𝑥 = (𝑦 cyclShift 𝑛)) → ((𝑦 ∈ (ClWWalks‘𝐺) ∧ 𝑧 ∈ (ClWWalks‘𝐺) ∧ ∃𝑛 ∈ (0...(♯‘𝑧))𝑦 = (𝑧 cyclShift 𝑛)) → 𝑥 𝑧)))))
4847com4t 93 . . . . . . . . 9 ((𝑥 ∈ V ∧ 𝑦 ∈ V ∧ 𝑧 ∈ V) → ((𝑥 ∈ (ClWWalks‘𝐺) ∧ 𝑦 ∈ (ClWWalks‘𝐺) ∧ ∃𝑛 ∈ (0...(♯‘𝑦))𝑥 = (𝑦 cyclShift 𝑛)) → ((♯‘𝑦) = (♯‘𝑧) → ((♯‘𝑥) = (♯‘𝑦) → ((𝑦 ∈ (ClWWalks‘𝐺) ∧ 𝑧 ∈ (ClWWalks‘𝐺) ∧ ∃𝑛 ∈ (0...(♯‘𝑧))𝑦 = (𝑧 cyclShift 𝑛)) → 𝑥 𝑧)))))
4912, 48sylbid 243 . . . . . . . 8 ((𝑥 ∈ V ∧ 𝑦 ∈ V ∧ 𝑧 ∈ V) → (𝑥 𝑦 → ((♯‘𝑦) = (♯‘𝑧) → ((♯‘𝑥) = (♯‘𝑦) → ((𝑦 ∈ (ClWWalks‘𝐺) ∧ 𝑧 ∈ (ClWWalks‘𝐺) ∧ ∃𝑛 ∈ (0...(♯‘𝑧))𝑦 = (𝑧 cyclShift 𝑛)) → 𝑥 𝑧)))))
5049com25 99 . . . . . . 7 ((𝑥 ∈ V ∧ 𝑦 ∈ V ∧ 𝑧 ∈ V) → ((𝑦 ∈ (ClWWalks‘𝐺) ∧ 𝑧 ∈ (ClWWalks‘𝐺) ∧ ∃𝑛 ∈ (0...(♯‘𝑧))𝑦 = (𝑧 cyclShift 𝑛)) → ((♯‘𝑦) = (♯‘𝑧) → ((♯‘𝑥) = (♯‘𝑦) → (𝑥 𝑦𝑥 𝑧)))))
5110, 50sylbid 243 . . . . . 6 ((𝑥 ∈ V ∧ 𝑦 ∈ V ∧ 𝑧 ∈ V) → (𝑦 𝑧 → ((♯‘𝑦) = (♯‘𝑧) → ((♯‘𝑥) = (♯‘𝑦) → (𝑥 𝑦𝑥 𝑧)))))
528, 51mpdd 43 . . . . 5 ((𝑥 ∈ V ∧ 𝑦 ∈ V ∧ 𝑧 ∈ V) → (𝑦 𝑧 → ((♯‘𝑥) = (♯‘𝑦) → (𝑥 𝑦𝑥 𝑧))))
5352com24 95 . . . 4 ((𝑥 ∈ V ∧ 𝑦 ∈ V ∧ 𝑧 ∈ V) → (𝑥 𝑦 → ((♯‘𝑥) = (♯‘𝑦) → (𝑦 𝑧𝑥 𝑧))))
546, 53mpdd 43 . . 3 ((𝑥 ∈ V ∧ 𝑦 ∈ V ∧ 𝑧 ∈ V) → (𝑥 𝑦 → (𝑦 𝑧𝑥 𝑧)))
5554impd 414 . 2 ((𝑥 ∈ V ∧ 𝑦 ∈ V ∧ 𝑧 ∈ V) → ((𝑥 𝑦𝑦 𝑧) → 𝑥 𝑧))
561, 2, 3, 55mp3an 1463 1 ((𝑥 𝑦𝑦 𝑧) → 𝑥 𝑧)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  w3a 1089   = wceq 1543  wcel 2110  wne 2935  wrex 3055  Vcvv 3401  c0 4227   class class class wbr 5043  {copab 5105  cfv 6369  (class class class)co 7202  0cc0 10712  ...cfz 13078  chash 13879  Word cword 14052   cyclShift ccsh 14336  Vtxcvtx 27059  ClWWalkscclwwlk 28036
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2706  ax-rep 5168  ax-sep 5181  ax-nul 5188  ax-pow 5247  ax-pr 5311  ax-un 7512  ax-cnex 10768  ax-resscn 10769  ax-1cn 10770  ax-icn 10771  ax-addcl 10772  ax-addrcl 10773  ax-mulcl 10774  ax-mulrcl 10775  ax-mulcom 10776  ax-addass 10777  ax-mulass 10778  ax-distr 10779  ax-i2m1 10780  ax-1ne0 10781  ax-1rid 10782  ax-rnegex 10783  ax-rrecex 10784  ax-cnre 10785  ax-pre-lttri 10786  ax-pre-lttrn 10787  ax-pre-ltadd 10788  ax-pre-mulgt0 10789  ax-pre-sup 10790
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2537  df-eu 2566  df-clab 2713  df-cleq 2726  df-clel 2812  df-nfc 2882  df-ne 2936  df-nel 3040  df-ral 3059  df-rex 3060  df-reu 3061  df-rmo 3062  df-rab 3063  df-v 3403  df-sbc 3688  df-csb 3803  df-dif 3860  df-un 3862  df-in 3864  df-ss 3874  df-pss 3876  df-nul 4228  df-if 4430  df-pw 4505  df-sn 4532  df-pr 4534  df-tp 4536  df-op 4538  df-uni 4810  df-int 4850  df-iun 4896  df-br 5044  df-opab 5106  df-mpt 5125  df-tr 5151  df-id 5444  df-eprel 5449  df-po 5457  df-so 5458  df-fr 5498  df-we 5500  df-xp 5546  df-rel 5547  df-cnv 5548  df-co 5549  df-dm 5550  df-rn 5551  df-res 5552  df-ima 5553  df-pred 6149  df-ord 6205  df-on 6206  df-lim 6207  df-suc 6208  df-iota 6327  df-fun 6371  df-fn 6372  df-f 6373  df-f1 6374  df-fo 6375  df-f1o 6376  df-fv 6377  df-riota 7159  df-ov 7205  df-oprab 7206  df-mpo 7207  df-om 7634  df-1st 7750  df-2nd 7751  df-wrecs 8036  df-recs 8097  df-rdg 8135  df-1o 8191  df-er 8380  df-map 8499  df-en 8616  df-dom 8617  df-sdom 8618  df-fin 8619  df-sup 9047  df-inf 9048  df-card 9538  df-pnf 10852  df-mnf 10853  df-xr 10854  df-ltxr 10855  df-le 10856  df-sub 11047  df-neg 11048  df-div 11473  df-nn 11814  df-2 11876  df-n0 12074  df-z 12160  df-uz 12422  df-rp 12570  df-fz 13079  df-fzo 13222  df-fl 13350  df-mod 13426  df-hash 13880  df-word 14053  df-concat 14109  df-substr 14189  df-pfx 14219  df-csh 14337  df-clwwlk 28037
This theorem is referenced by:  erclwwlk  28078
  Copyright terms: Public domain W3C validator