MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  erclwwlktr Structured version   Visualization version   GIF version

Theorem erclwwlktr 29275
Description: ∼ is a transitive relation over the set of closed walks (defined as words). (Contributed by Alexander van der Vekens, 10-Apr-2018.) (Revised by AV, 30-Apr-2021.)
Hypothesis
Ref Expression
erclwwlk.r ∼ = {βŸ¨π‘’, π‘€βŸ© ∣ (𝑒 ∈ (ClWWalksβ€˜πΊ) ∧ 𝑀 ∈ (ClWWalksβ€˜πΊ) ∧ βˆƒπ‘› ∈ (0...(β™―β€˜π‘€))𝑒 = (𝑀 cyclShift 𝑛))}
Assertion
Ref Expression
erclwwlktr ((π‘₯ ∼ 𝑦 ∧ 𝑦 ∼ 𝑧) β†’ π‘₯ ∼ 𝑧)
Distinct variable groups:   𝑛,𝐺,𝑒,𝑀   π‘₯,𝑛,𝑒,𝑀,𝑦   𝑧,𝑛,𝑒,𝑀,π‘₯
Allowed substitution hints:   ∼ (π‘₯,𝑦,𝑧,𝑀,𝑒,𝑛)   𝐺(π‘₯,𝑦,𝑧)

Proof of Theorem erclwwlktr
Dummy variables π‘š π‘˜ are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 vex 3479 . 2 π‘₯ ∈ V
2 vex 3479 . 2 𝑦 ∈ V
3 vex 3479 . 2 𝑧 ∈ V
4 erclwwlk.r . . . . . 6 ∼ = {βŸ¨π‘’, π‘€βŸ© ∣ (𝑒 ∈ (ClWWalksβ€˜πΊ) ∧ 𝑀 ∈ (ClWWalksβ€˜πΊ) ∧ βˆƒπ‘› ∈ (0...(β™―β€˜π‘€))𝑒 = (𝑀 cyclShift 𝑛))}
54erclwwlkeqlen 29272 . . . . 5 ((π‘₯ ∈ V ∧ 𝑦 ∈ V) β†’ (π‘₯ ∼ 𝑦 β†’ (β™―β€˜π‘₯) = (β™―β€˜π‘¦)))
653adant3 1133 . . . 4 ((π‘₯ ∈ V ∧ 𝑦 ∈ V ∧ 𝑧 ∈ V) β†’ (π‘₯ ∼ 𝑦 β†’ (β™―β€˜π‘₯) = (β™―β€˜π‘¦)))
74erclwwlkeqlen 29272 . . . . . . 7 ((𝑦 ∈ V ∧ 𝑧 ∈ V) β†’ (𝑦 ∼ 𝑧 β†’ (β™―β€˜π‘¦) = (β™―β€˜π‘§)))
873adant1 1131 . . . . . 6 ((π‘₯ ∈ V ∧ 𝑦 ∈ V ∧ 𝑧 ∈ V) β†’ (𝑦 ∼ 𝑧 β†’ (β™―β€˜π‘¦) = (β™―β€˜π‘§)))
94erclwwlkeq 29271 . . . . . . . 8 ((𝑦 ∈ V ∧ 𝑧 ∈ V) β†’ (𝑦 ∼ 𝑧 ↔ (𝑦 ∈ (ClWWalksβ€˜πΊ) ∧ 𝑧 ∈ (ClWWalksβ€˜πΊ) ∧ βˆƒπ‘› ∈ (0...(β™―β€˜π‘§))𝑦 = (𝑧 cyclShift 𝑛))))
1093adant1 1131 . . . . . . 7 ((π‘₯ ∈ V ∧ 𝑦 ∈ V ∧ 𝑧 ∈ V) β†’ (𝑦 ∼ 𝑧 ↔ (𝑦 ∈ (ClWWalksβ€˜πΊ) ∧ 𝑧 ∈ (ClWWalksβ€˜πΊ) ∧ βˆƒπ‘› ∈ (0...(β™―β€˜π‘§))𝑦 = (𝑧 cyclShift 𝑛))))
114erclwwlkeq 29271 . . . . . . . . . 10 ((π‘₯ ∈ V ∧ 𝑦 ∈ V) β†’ (π‘₯ ∼ 𝑦 ↔ (π‘₯ ∈ (ClWWalksβ€˜πΊ) ∧ 𝑦 ∈ (ClWWalksβ€˜πΊ) ∧ βˆƒπ‘› ∈ (0...(β™―β€˜π‘¦))π‘₯ = (𝑦 cyclShift 𝑛))))
12113adant3 1133 . . . . . . . . 9 ((π‘₯ ∈ V ∧ 𝑦 ∈ V ∧ 𝑧 ∈ V) β†’ (π‘₯ ∼ 𝑦 ↔ (π‘₯ ∈ (ClWWalksβ€˜πΊ) ∧ 𝑦 ∈ (ClWWalksβ€˜πΊ) ∧ βˆƒπ‘› ∈ (0...(β™―β€˜π‘¦))π‘₯ = (𝑦 cyclShift 𝑛))))
13 simpr1 1195 . . . . . . . . . . . . . . 15 (((((β™―β€˜π‘¦) = (β™―β€˜π‘§) ∧ (β™―β€˜π‘₯) = (β™―β€˜π‘¦)) ∧ (𝑦 ∈ (ClWWalksβ€˜πΊ) ∧ 𝑧 ∈ (ClWWalksβ€˜πΊ) ∧ βˆƒπ‘› ∈ (0...(β™―β€˜π‘§))𝑦 = (𝑧 cyclShift 𝑛))) ∧ (π‘₯ ∈ (ClWWalksβ€˜πΊ) ∧ 𝑦 ∈ (ClWWalksβ€˜πΊ) ∧ βˆƒπ‘› ∈ (0...(β™―β€˜π‘¦))π‘₯ = (𝑦 cyclShift 𝑛))) β†’ π‘₯ ∈ (ClWWalksβ€˜πΊ))
14 simplr2 1217 . . . . . . . . . . . . . . 15 (((((β™―β€˜π‘¦) = (β™―β€˜π‘§) ∧ (β™―β€˜π‘₯) = (β™―β€˜π‘¦)) ∧ (𝑦 ∈ (ClWWalksβ€˜πΊ) ∧ 𝑧 ∈ (ClWWalksβ€˜πΊ) ∧ βˆƒπ‘› ∈ (0...(β™―β€˜π‘§))𝑦 = (𝑧 cyclShift 𝑛))) ∧ (π‘₯ ∈ (ClWWalksβ€˜πΊ) ∧ 𝑦 ∈ (ClWWalksβ€˜πΊ) ∧ βˆƒπ‘› ∈ (0...(β™―β€˜π‘¦))π‘₯ = (𝑦 cyclShift 𝑛))) β†’ 𝑧 ∈ (ClWWalksβ€˜πΊ))
15 oveq2 7417 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑛 = π‘š β†’ (𝑦 cyclShift 𝑛) = (𝑦 cyclShift π‘š))
1615eqeq2d 2744 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑛 = π‘š β†’ (π‘₯ = (𝑦 cyclShift 𝑛) ↔ π‘₯ = (𝑦 cyclShift π‘š)))
1716cbvrexvw 3236 . . . . . . . . . . . . . . . . . . . . . . . 24 (βˆƒπ‘› ∈ (0...(β™―β€˜π‘¦))π‘₯ = (𝑦 cyclShift 𝑛) ↔ βˆƒπ‘š ∈ (0...(β™―β€˜π‘¦))π‘₯ = (𝑦 cyclShift π‘š))
18 oveq2 7417 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑛 = π‘˜ β†’ (𝑧 cyclShift 𝑛) = (𝑧 cyclShift π‘˜))
1918eqeq2d 2744 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑛 = π‘˜ β†’ (𝑦 = (𝑧 cyclShift 𝑛) ↔ 𝑦 = (𝑧 cyclShift π‘˜)))
2019cbvrexvw 3236 . . . . . . . . . . . . . . . . . . . . . . . . 25 (βˆƒπ‘› ∈ (0...(β™―β€˜π‘§))𝑦 = (𝑧 cyclShift 𝑛) ↔ βˆƒπ‘˜ ∈ (0...(β™―β€˜π‘§))𝑦 = (𝑧 cyclShift π‘˜))
21 eqid 2733 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (Vtxβ€˜πΊ) = (Vtxβ€˜πΊ)
2221clwwlkbp 29238 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝑧 ∈ (ClWWalksβ€˜πΊ) β†’ (𝐺 ∈ V ∧ 𝑧 ∈ Word (Vtxβ€˜πΊ) ∧ 𝑧 β‰  βˆ…))
2322simp2d 1144 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑧 ∈ (ClWWalksβ€˜πΊ) β†’ 𝑧 ∈ Word (Vtxβ€˜πΊ))
2423ad2antlr 726 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((((π‘₯ ∈ (ClWWalksβ€˜πΊ) ∧ 𝑦 ∈ (ClWWalksβ€˜πΊ)) ∧ 𝑧 ∈ (ClWWalksβ€˜πΊ)) ∧ ((β™―β€˜π‘¦) = (β™―β€˜π‘§) ∧ (β™―β€˜π‘₯) = (β™―β€˜π‘¦))) β†’ 𝑧 ∈ Word (Vtxβ€˜πΊ))
25 simpr 486 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((((π‘₯ ∈ (ClWWalksβ€˜πΊ) ∧ 𝑦 ∈ (ClWWalksβ€˜πΊ)) ∧ 𝑧 ∈ (ClWWalksβ€˜πΊ)) ∧ ((β™―β€˜π‘¦) = (β™―β€˜π‘§) ∧ (β™―β€˜π‘₯) = (β™―β€˜π‘¦))) β†’ ((β™―β€˜π‘¦) = (β™―β€˜π‘§) ∧ (β™―β€˜π‘₯) = (β™―β€˜π‘¦)))
2624, 25cshwcsh2id 14779 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((((π‘₯ ∈ (ClWWalksβ€˜πΊ) ∧ 𝑦 ∈ (ClWWalksβ€˜πΊ)) ∧ 𝑧 ∈ (ClWWalksβ€˜πΊ)) ∧ ((β™―β€˜π‘¦) = (β™―β€˜π‘§) ∧ (β™―β€˜π‘₯) = (β™―β€˜π‘¦))) β†’ (((π‘š ∈ (0...(β™―β€˜π‘¦)) ∧ π‘₯ = (𝑦 cyclShift π‘š)) ∧ (π‘˜ ∈ (0...(β™―β€˜π‘§)) ∧ 𝑦 = (𝑧 cyclShift π‘˜))) β†’ βˆƒπ‘› ∈ (0...(β™―β€˜π‘§))π‘₯ = (𝑧 cyclShift 𝑛)))
2726exp5l 448 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((((π‘₯ ∈ (ClWWalksβ€˜πΊ) ∧ 𝑦 ∈ (ClWWalksβ€˜πΊ)) ∧ 𝑧 ∈ (ClWWalksβ€˜πΊ)) ∧ ((β™―β€˜π‘¦) = (β™―β€˜π‘§) ∧ (β™―β€˜π‘₯) = (β™―β€˜π‘¦))) β†’ (π‘š ∈ (0...(β™―β€˜π‘¦)) β†’ (π‘₯ = (𝑦 cyclShift π‘š) β†’ (π‘˜ ∈ (0...(β™―β€˜π‘§)) β†’ (𝑦 = (𝑧 cyclShift π‘˜) β†’ βˆƒπ‘› ∈ (0...(β™―β€˜π‘§))π‘₯ = (𝑧 cyclShift 𝑛))))))
2827imp41 427 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((((((π‘₯ ∈ (ClWWalksβ€˜πΊ) ∧ 𝑦 ∈ (ClWWalksβ€˜πΊ)) ∧ 𝑧 ∈ (ClWWalksβ€˜πΊ)) ∧ ((β™―β€˜π‘¦) = (β™―β€˜π‘§) ∧ (β™―β€˜π‘₯) = (β™―β€˜π‘¦))) ∧ π‘š ∈ (0...(β™―β€˜π‘¦))) ∧ π‘₯ = (𝑦 cyclShift π‘š)) ∧ π‘˜ ∈ (0...(β™―β€˜π‘§))) β†’ (𝑦 = (𝑧 cyclShift π‘˜) β†’ βˆƒπ‘› ∈ (0...(β™―β€˜π‘§))π‘₯ = (𝑧 cyclShift 𝑛)))
2928rexlimdva 3156 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((((π‘₯ ∈ (ClWWalksβ€˜πΊ) ∧ 𝑦 ∈ (ClWWalksβ€˜πΊ)) ∧ 𝑧 ∈ (ClWWalksβ€˜πΊ)) ∧ ((β™―β€˜π‘¦) = (β™―β€˜π‘§) ∧ (β™―β€˜π‘₯) = (β™―β€˜π‘¦))) ∧ π‘š ∈ (0...(β™―β€˜π‘¦))) ∧ π‘₯ = (𝑦 cyclShift π‘š)) β†’ (βˆƒπ‘˜ ∈ (0...(β™―β€˜π‘§))𝑦 = (𝑧 cyclShift π‘˜) β†’ βˆƒπ‘› ∈ (0...(β™―β€˜π‘§))π‘₯ = (𝑧 cyclShift 𝑛)))
3029rexlimdva2 3158 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((π‘₯ ∈ (ClWWalksβ€˜πΊ) ∧ 𝑦 ∈ (ClWWalksβ€˜πΊ)) ∧ 𝑧 ∈ (ClWWalksβ€˜πΊ)) ∧ ((β™―β€˜π‘¦) = (β™―β€˜π‘§) ∧ (β™―β€˜π‘₯) = (β™―β€˜π‘¦))) β†’ (βˆƒπ‘š ∈ (0...(β™―β€˜π‘¦))π‘₯ = (𝑦 cyclShift π‘š) β†’ (βˆƒπ‘˜ ∈ (0...(β™―β€˜π‘§))𝑦 = (𝑧 cyclShift π‘˜) β†’ βˆƒπ‘› ∈ (0...(β™―β€˜π‘§))π‘₯ = (𝑧 cyclShift 𝑛))))
3120, 30syl7bi 255 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((π‘₯ ∈ (ClWWalksβ€˜πΊ) ∧ 𝑦 ∈ (ClWWalksβ€˜πΊ)) ∧ 𝑧 ∈ (ClWWalksβ€˜πΊ)) ∧ ((β™―β€˜π‘¦) = (β™―β€˜π‘§) ∧ (β™―β€˜π‘₯) = (β™―β€˜π‘¦))) β†’ (βˆƒπ‘š ∈ (0...(β™―β€˜π‘¦))π‘₯ = (𝑦 cyclShift π‘š) β†’ (βˆƒπ‘› ∈ (0...(β™―β€˜π‘§))𝑦 = (𝑧 cyclShift 𝑛) β†’ βˆƒπ‘› ∈ (0...(β™―β€˜π‘§))π‘₯ = (𝑧 cyclShift 𝑛))))
3217, 31biimtrid 241 . . . . . . . . . . . . . . . . . . . . . . 23 ((((π‘₯ ∈ (ClWWalksβ€˜πΊ) ∧ 𝑦 ∈ (ClWWalksβ€˜πΊ)) ∧ 𝑧 ∈ (ClWWalksβ€˜πΊ)) ∧ ((β™―β€˜π‘¦) = (β™―β€˜π‘§) ∧ (β™―β€˜π‘₯) = (β™―β€˜π‘¦))) β†’ (βˆƒπ‘› ∈ (0...(β™―β€˜π‘¦))π‘₯ = (𝑦 cyclShift 𝑛) β†’ (βˆƒπ‘› ∈ (0...(β™―β€˜π‘§))𝑦 = (𝑧 cyclShift 𝑛) β†’ βˆƒπ‘› ∈ (0...(β™―β€˜π‘§))π‘₯ = (𝑧 cyclShift 𝑛))))
3332exp31 421 . . . . . . . . . . . . . . . . . . . . . 22 ((π‘₯ ∈ (ClWWalksβ€˜πΊ) ∧ 𝑦 ∈ (ClWWalksβ€˜πΊ)) β†’ (𝑧 ∈ (ClWWalksβ€˜πΊ) β†’ (((β™―β€˜π‘¦) = (β™―β€˜π‘§) ∧ (β™―β€˜π‘₯) = (β™―β€˜π‘¦)) β†’ (βˆƒπ‘› ∈ (0...(β™―β€˜π‘¦))π‘₯ = (𝑦 cyclShift 𝑛) β†’ (βˆƒπ‘› ∈ (0...(β™―β€˜π‘§))𝑦 = (𝑧 cyclShift 𝑛) β†’ βˆƒπ‘› ∈ (0...(β™―β€˜π‘§))π‘₯ = (𝑧 cyclShift 𝑛))))))
3433com15 101 . . . . . . . . . . . . . . . . . . . . 21 (βˆƒπ‘› ∈ (0...(β™―β€˜π‘§))𝑦 = (𝑧 cyclShift 𝑛) β†’ (𝑧 ∈ (ClWWalksβ€˜πΊ) β†’ (((β™―β€˜π‘¦) = (β™―β€˜π‘§) ∧ (β™―β€˜π‘₯) = (β™―β€˜π‘¦)) β†’ (βˆƒπ‘› ∈ (0...(β™―β€˜π‘¦))π‘₯ = (𝑦 cyclShift 𝑛) β†’ ((π‘₯ ∈ (ClWWalksβ€˜πΊ) ∧ 𝑦 ∈ (ClWWalksβ€˜πΊ)) β†’ βˆƒπ‘› ∈ (0...(β™―β€˜π‘§))π‘₯ = (𝑧 cyclShift 𝑛))))))
3534impcom 409 . . . . . . . . . . . . . . . . . . . 20 ((𝑧 ∈ (ClWWalksβ€˜πΊ) ∧ βˆƒπ‘› ∈ (0...(β™―β€˜π‘§))𝑦 = (𝑧 cyclShift 𝑛)) β†’ (((β™―β€˜π‘¦) = (β™―β€˜π‘§) ∧ (β™―β€˜π‘₯) = (β™―β€˜π‘¦)) β†’ (βˆƒπ‘› ∈ (0...(β™―β€˜π‘¦))π‘₯ = (𝑦 cyclShift 𝑛) β†’ ((π‘₯ ∈ (ClWWalksβ€˜πΊ) ∧ 𝑦 ∈ (ClWWalksβ€˜πΊ)) β†’ βˆƒπ‘› ∈ (0...(β™―β€˜π‘§))π‘₯ = (𝑧 cyclShift 𝑛)))))
36353adant1 1131 . . . . . . . . . . . . . . . . . . 19 ((𝑦 ∈ (ClWWalksβ€˜πΊ) ∧ 𝑧 ∈ (ClWWalksβ€˜πΊ) ∧ βˆƒπ‘› ∈ (0...(β™―β€˜π‘§))𝑦 = (𝑧 cyclShift 𝑛)) β†’ (((β™―β€˜π‘¦) = (β™―β€˜π‘§) ∧ (β™―β€˜π‘₯) = (β™―β€˜π‘¦)) β†’ (βˆƒπ‘› ∈ (0...(β™―β€˜π‘¦))π‘₯ = (𝑦 cyclShift 𝑛) β†’ ((π‘₯ ∈ (ClWWalksβ€˜πΊ) ∧ 𝑦 ∈ (ClWWalksβ€˜πΊ)) β†’ βˆƒπ‘› ∈ (0...(β™―β€˜π‘§))π‘₯ = (𝑧 cyclShift 𝑛)))))
3736impcom 409 . . . . . . . . . . . . . . . . . 18 ((((β™―β€˜π‘¦) = (β™―β€˜π‘§) ∧ (β™―β€˜π‘₯) = (β™―β€˜π‘¦)) ∧ (𝑦 ∈ (ClWWalksβ€˜πΊ) ∧ 𝑧 ∈ (ClWWalksβ€˜πΊ) ∧ βˆƒπ‘› ∈ (0...(β™―β€˜π‘§))𝑦 = (𝑧 cyclShift 𝑛))) β†’ (βˆƒπ‘› ∈ (0...(β™―β€˜π‘¦))π‘₯ = (𝑦 cyclShift 𝑛) β†’ ((π‘₯ ∈ (ClWWalksβ€˜πΊ) ∧ 𝑦 ∈ (ClWWalksβ€˜πΊ)) β†’ βˆƒπ‘› ∈ (0...(β™―β€˜π‘§))π‘₯ = (𝑧 cyclShift 𝑛))))
3837com13 88 . . . . . . . . . . . . . . . . 17 ((π‘₯ ∈ (ClWWalksβ€˜πΊ) ∧ 𝑦 ∈ (ClWWalksβ€˜πΊ)) β†’ (βˆƒπ‘› ∈ (0...(β™―β€˜π‘¦))π‘₯ = (𝑦 cyclShift 𝑛) β†’ ((((β™―β€˜π‘¦) = (β™―β€˜π‘§) ∧ (β™―β€˜π‘₯) = (β™―β€˜π‘¦)) ∧ (𝑦 ∈ (ClWWalksβ€˜πΊ) ∧ 𝑧 ∈ (ClWWalksβ€˜πΊ) ∧ βˆƒπ‘› ∈ (0...(β™―β€˜π‘§))𝑦 = (𝑧 cyclShift 𝑛))) β†’ βˆƒπ‘› ∈ (0...(β™―β€˜π‘§))π‘₯ = (𝑧 cyclShift 𝑛))))
39383impia 1118 . . . . . . . . . . . . . . . 16 ((π‘₯ ∈ (ClWWalksβ€˜πΊ) ∧ 𝑦 ∈ (ClWWalksβ€˜πΊ) ∧ βˆƒπ‘› ∈ (0...(β™―β€˜π‘¦))π‘₯ = (𝑦 cyclShift 𝑛)) β†’ ((((β™―β€˜π‘¦) = (β™―β€˜π‘§) ∧ (β™―β€˜π‘₯) = (β™―β€˜π‘¦)) ∧ (𝑦 ∈ (ClWWalksβ€˜πΊ) ∧ 𝑧 ∈ (ClWWalksβ€˜πΊ) ∧ βˆƒπ‘› ∈ (0...(β™―β€˜π‘§))𝑦 = (𝑧 cyclShift 𝑛))) β†’ βˆƒπ‘› ∈ (0...(β™―β€˜π‘§))π‘₯ = (𝑧 cyclShift 𝑛)))
4039impcom 409 . . . . . . . . . . . . . . 15 (((((β™―β€˜π‘¦) = (β™―β€˜π‘§) ∧ (β™―β€˜π‘₯) = (β™―β€˜π‘¦)) ∧ (𝑦 ∈ (ClWWalksβ€˜πΊ) ∧ 𝑧 ∈ (ClWWalksβ€˜πΊ) ∧ βˆƒπ‘› ∈ (0...(β™―β€˜π‘§))𝑦 = (𝑧 cyclShift 𝑛))) ∧ (π‘₯ ∈ (ClWWalksβ€˜πΊ) ∧ 𝑦 ∈ (ClWWalksβ€˜πΊ) ∧ βˆƒπ‘› ∈ (0...(β™―β€˜π‘¦))π‘₯ = (𝑦 cyclShift 𝑛))) β†’ βˆƒπ‘› ∈ (0...(β™―β€˜π‘§))π‘₯ = (𝑧 cyclShift 𝑛))
4113, 14, 403jca 1129 . . . . . . . . . . . . . 14 (((((β™―β€˜π‘¦) = (β™―β€˜π‘§) ∧ (β™―β€˜π‘₯) = (β™―β€˜π‘¦)) ∧ (𝑦 ∈ (ClWWalksβ€˜πΊ) ∧ 𝑧 ∈ (ClWWalksβ€˜πΊ) ∧ βˆƒπ‘› ∈ (0...(β™―β€˜π‘§))𝑦 = (𝑧 cyclShift 𝑛))) ∧ (π‘₯ ∈ (ClWWalksβ€˜πΊ) ∧ 𝑦 ∈ (ClWWalksβ€˜πΊ) ∧ βˆƒπ‘› ∈ (0...(β™―β€˜π‘¦))π‘₯ = (𝑦 cyclShift 𝑛))) β†’ (π‘₯ ∈ (ClWWalksβ€˜πΊ) ∧ 𝑧 ∈ (ClWWalksβ€˜πΊ) ∧ βˆƒπ‘› ∈ (0...(β™―β€˜π‘§))π‘₯ = (𝑧 cyclShift 𝑛)))
424erclwwlkeq 29271 . . . . . . . . . . . . . . 15 ((π‘₯ ∈ V ∧ 𝑧 ∈ V) β†’ (π‘₯ ∼ 𝑧 ↔ (π‘₯ ∈ (ClWWalksβ€˜πΊ) ∧ 𝑧 ∈ (ClWWalksβ€˜πΊ) ∧ βˆƒπ‘› ∈ (0...(β™―β€˜π‘§))π‘₯ = (𝑧 cyclShift 𝑛))))
43423adant2 1132 . . . . . . . . . . . . . 14 ((π‘₯ ∈ V ∧ 𝑦 ∈ V ∧ 𝑧 ∈ V) β†’ (π‘₯ ∼ 𝑧 ↔ (π‘₯ ∈ (ClWWalksβ€˜πΊ) ∧ 𝑧 ∈ (ClWWalksβ€˜πΊ) ∧ βˆƒπ‘› ∈ (0...(β™―β€˜π‘§))π‘₯ = (𝑧 cyclShift 𝑛))))
4441, 43syl5ibrcom 246 . . . . . . . . . . . . 13 (((((β™―β€˜π‘¦) = (β™―β€˜π‘§) ∧ (β™―β€˜π‘₯) = (β™―β€˜π‘¦)) ∧ (𝑦 ∈ (ClWWalksβ€˜πΊ) ∧ 𝑧 ∈ (ClWWalksβ€˜πΊ) ∧ βˆƒπ‘› ∈ (0...(β™―β€˜π‘§))𝑦 = (𝑧 cyclShift 𝑛))) ∧ (π‘₯ ∈ (ClWWalksβ€˜πΊ) ∧ 𝑦 ∈ (ClWWalksβ€˜πΊ) ∧ βˆƒπ‘› ∈ (0...(β™―β€˜π‘¦))π‘₯ = (𝑦 cyclShift 𝑛))) β†’ ((π‘₯ ∈ V ∧ 𝑦 ∈ V ∧ 𝑧 ∈ V) β†’ π‘₯ ∼ 𝑧))
4544exp31 421 . . . . . . . . . . . 12 (((β™―β€˜π‘¦) = (β™―β€˜π‘§) ∧ (β™―β€˜π‘₯) = (β™―β€˜π‘¦)) β†’ ((𝑦 ∈ (ClWWalksβ€˜πΊ) ∧ 𝑧 ∈ (ClWWalksβ€˜πΊ) ∧ βˆƒπ‘› ∈ (0...(β™―β€˜π‘§))𝑦 = (𝑧 cyclShift 𝑛)) β†’ ((π‘₯ ∈ (ClWWalksβ€˜πΊ) ∧ 𝑦 ∈ (ClWWalksβ€˜πΊ) ∧ βˆƒπ‘› ∈ (0...(β™―β€˜π‘¦))π‘₯ = (𝑦 cyclShift 𝑛)) β†’ ((π‘₯ ∈ V ∧ 𝑦 ∈ V ∧ 𝑧 ∈ V) β†’ π‘₯ ∼ 𝑧))))
4645com24 95 . . . . . . . . . . 11 (((β™―β€˜π‘¦) = (β™―β€˜π‘§) ∧ (β™―β€˜π‘₯) = (β™―β€˜π‘¦)) β†’ ((π‘₯ ∈ V ∧ 𝑦 ∈ V ∧ 𝑧 ∈ V) β†’ ((π‘₯ ∈ (ClWWalksβ€˜πΊ) ∧ 𝑦 ∈ (ClWWalksβ€˜πΊ) ∧ βˆƒπ‘› ∈ (0...(β™―β€˜π‘¦))π‘₯ = (𝑦 cyclShift 𝑛)) β†’ ((𝑦 ∈ (ClWWalksβ€˜πΊ) ∧ 𝑧 ∈ (ClWWalksβ€˜πΊ) ∧ βˆƒπ‘› ∈ (0...(β™―β€˜π‘§))𝑦 = (𝑧 cyclShift 𝑛)) β†’ π‘₯ ∼ 𝑧))))
4746ex 414 . . . . . . . . . 10 ((β™―β€˜π‘¦) = (β™―β€˜π‘§) β†’ ((β™―β€˜π‘₯) = (β™―β€˜π‘¦) β†’ ((π‘₯ ∈ V ∧ 𝑦 ∈ V ∧ 𝑧 ∈ V) β†’ ((π‘₯ ∈ (ClWWalksβ€˜πΊ) ∧ 𝑦 ∈ (ClWWalksβ€˜πΊ) ∧ βˆƒπ‘› ∈ (0...(β™―β€˜π‘¦))π‘₯ = (𝑦 cyclShift 𝑛)) β†’ ((𝑦 ∈ (ClWWalksβ€˜πΊ) ∧ 𝑧 ∈ (ClWWalksβ€˜πΊ) ∧ βˆƒπ‘› ∈ (0...(β™―β€˜π‘§))𝑦 = (𝑧 cyclShift 𝑛)) β†’ π‘₯ ∼ 𝑧)))))
4847com4t 93 . . . . . . . . 9 ((π‘₯ ∈ V ∧ 𝑦 ∈ V ∧ 𝑧 ∈ V) β†’ ((π‘₯ ∈ (ClWWalksβ€˜πΊ) ∧ 𝑦 ∈ (ClWWalksβ€˜πΊ) ∧ βˆƒπ‘› ∈ (0...(β™―β€˜π‘¦))π‘₯ = (𝑦 cyclShift 𝑛)) β†’ ((β™―β€˜π‘¦) = (β™―β€˜π‘§) β†’ ((β™―β€˜π‘₯) = (β™―β€˜π‘¦) β†’ ((𝑦 ∈ (ClWWalksβ€˜πΊ) ∧ 𝑧 ∈ (ClWWalksβ€˜πΊ) ∧ βˆƒπ‘› ∈ (0...(β™―β€˜π‘§))𝑦 = (𝑧 cyclShift 𝑛)) β†’ π‘₯ ∼ 𝑧)))))
4912, 48sylbid 239 . . . . . . . 8 ((π‘₯ ∈ V ∧ 𝑦 ∈ V ∧ 𝑧 ∈ V) β†’ (π‘₯ ∼ 𝑦 β†’ ((β™―β€˜π‘¦) = (β™―β€˜π‘§) β†’ ((β™―β€˜π‘₯) = (β™―β€˜π‘¦) β†’ ((𝑦 ∈ (ClWWalksβ€˜πΊ) ∧ 𝑧 ∈ (ClWWalksβ€˜πΊ) ∧ βˆƒπ‘› ∈ (0...(β™―β€˜π‘§))𝑦 = (𝑧 cyclShift 𝑛)) β†’ π‘₯ ∼ 𝑧)))))
5049com25 99 . . . . . . 7 ((π‘₯ ∈ V ∧ 𝑦 ∈ V ∧ 𝑧 ∈ V) β†’ ((𝑦 ∈ (ClWWalksβ€˜πΊ) ∧ 𝑧 ∈ (ClWWalksβ€˜πΊ) ∧ βˆƒπ‘› ∈ (0...(β™―β€˜π‘§))𝑦 = (𝑧 cyclShift 𝑛)) β†’ ((β™―β€˜π‘¦) = (β™―β€˜π‘§) β†’ ((β™―β€˜π‘₯) = (β™―β€˜π‘¦) β†’ (π‘₯ ∼ 𝑦 β†’ π‘₯ ∼ 𝑧)))))
5110, 50sylbid 239 . . . . . 6 ((π‘₯ ∈ V ∧ 𝑦 ∈ V ∧ 𝑧 ∈ V) β†’ (𝑦 ∼ 𝑧 β†’ ((β™―β€˜π‘¦) = (β™―β€˜π‘§) β†’ ((β™―β€˜π‘₯) = (β™―β€˜π‘¦) β†’ (π‘₯ ∼ 𝑦 β†’ π‘₯ ∼ 𝑧)))))
528, 51mpdd 43 . . . . 5 ((π‘₯ ∈ V ∧ 𝑦 ∈ V ∧ 𝑧 ∈ V) β†’ (𝑦 ∼ 𝑧 β†’ ((β™―β€˜π‘₯) = (β™―β€˜π‘¦) β†’ (π‘₯ ∼ 𝑦 β†’ π‘₯ ∼ 𝑧))))
5352com24 95 . . . 4 ((π‘₯ ∈ V ∧ 𝑦 ∈ V ∧ 𝑧 ∈ V) β†’ (π‘₯ ∼ 𝑦 β†’ ((β™―β€˜π‘₯) = (β™―β€˜π‘¦) β†’ (𝑦 ∼ 𝑧 β†’ π‘₯ ∼ 𝑧))))
546, 53mpdd 43 . . 3 ((π‘₯ ∈ V ∧ 𝑦 ∈ V ∧ 𝑧 ∈ V) β†’ (π‘₯ ∼ 𝑦 β†’ (𝑦 ∼ 𝑧 β†’ π‘₯ ∼ 𝑧)))
5554impd 412 . 2 ((π‘₯ ∈ V ∧ 𝑦 ∈ V ∧ 𝑧 ∈ V) β†’ ((π‘₯ ∼ 𝑦 ∧ 𝑦 ∼ 𝑧) β†’ π‘₯ ∼ 𝑧))
561, 2, 3, 55mp3an 1462 1 ((π‘₯ ∼ 𝑦 ∧ 𝑦 ∼ 𝑧) β†’ π‘₯ ∼ 𝑧)
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ↔ wb 205   ∧ wa 397   ∧ w3a 1088   = wceq 1542   ∈ wcel 2107   β‰  wne 2941  βˆƒwrex 3071  Vcvv 3475  βˆ…c0 4323   class class class wbr 5149  {copab 5211  β€˜cfv 6544  (class class class)co 7409  0cc0 11110  ...cfz 13484  β™―chash 14290  Word cword 14464   cyclShift ccsh 14738  Vtxcvtx 28256  ClWWalkscclwwlk 29234
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pow 5364  ax-pr 5428  ax-un 7725  ax-cnex 11166  ax-resscn 11167  ax-1cn 11168  ax-icn 11169  ax-addcl 11170  ax-addrcl 11171  ax-mulcl 11172  ax-mulrcl 11173  ax-mulcom 11174  ax-addass 11175  ax-mulass 11176  ax-distr 11177  ax-i2m1 11178  ax-1ne0 11179  ax-1rid 11180  ax-rnegex 11181  ax-rrecex 11182  ax-cnre 11183  ax-pre-lttri 11184  ax-pre-lttrn 11185  ax-pre-ltadd 11186  ax-pre-mulgt0 11187  ax-pre-sup 11188
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-rmo 3377  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-pss 3968  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-int 4952  df-iun 5000  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5575  df-eprel 5581  df-po 5589  df-so 5590  df-fr 5632  df-we 5634  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-pred 6301  df-ord 6368  df-on 6369  df-lim 6370  df-suc 6371  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-f1 6549  df-fo 6550  df-f1o 6551  df-fv 6552  df-riota 7365  df-ov 7412  df-oprab 7413  df-mpo 7414  df-om 7856  df-1st 7975  df-2nd 7976  df-frecs 8266  df-wrecs 8297  df-recs 8371  df-rdg 8410  df-1o 8466  df-er 8703  df-map 8822  df-en 8940  df-dom 8941  df-sdom 8942  df-fin 8943  df-sup 9437  df-inf 9438  df-card 9934  df-pnf 11250  df-mnf 11251  df-xr 11252  df-ltxr 11253  df-le 11254  df-sub 11446  df-neg 11447  df-div 11872  df-nn 12213  df-2 12275  df-n0 12473  df-z 12559  df-uz 12823  df-rp 12975  df-fz 13485  df-fzo 13628  df-fl 13757  df-mod 13835  df-hash 14291  df-word 14465  df-concat 14521  df-substr 14591  df-pfx 14621  df-csh 14739  df-clwwlk 29235
This theorem is referenced by:  erclwwlk  29276
  Copyright terms: Public domain W3C validator