| Mathbox for Rohan Ridenour |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > expandral | Structured version Visualization version GIF version | ||
| Description: Expand a restricted universal quantifier to primitives. (Contributed by Rohan Ridenour, 13-Aug-2023.) |
| Ref | Expression |
|---|---|
| expandral.1 | ⊢ (𝜑 ↔ 𝜓) |
| Ref | Expression |
|---|---|
| expandral | ⊢ (∀𝑥 ∈ 𝐴 𝜑 ↔ ∀𝑥(𝑥 ∈ 𝐴 → 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | expandral.1 | . . 3 ⊢ (𝜑 ↔ 𝜓) | |
| 2 | 1 | ralbii 3092 | . 2 ⊢ (∀𝑥 ∈ 𝐴 𝜑 ↔ ∀𝑥 ∈ 𝐴 𝜓) |
| 3 | df-ral 3061 | . 2 ⊢ (∀𝑥 ∈ 𝐴 𝜓 ↔ ∀𝑥(𝑥 ∈ 𝐴 → 𝜓)) | |
| 4 | 2, 3 | bitri 275 | 1 ⊢ (∀𝑥 ∈ 𝐴 𝜑 ↔ ∀𝑥(𝑥 ∈ 𝐴 → 𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∀wal 1538 ∈ wcel 2108 ∀wral 3060 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 |
| This theorem depends on definitions: df-bi 207 df-ral 3061 |
| This theorem is referenced by: expanduniss 44290 ismnuprim 44291 |
| Copyright terms: Public domain | W3C validator |