Users' Mathboxes Mathbox for Rohan Ridenour < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  expandral Structured version   Visualization version   GIF version

Theorem expandral 41371
Description: Expand a restricted universal quantifier to primitives. (Contributed by Rohan Ridenour, 13-Aug-2023.)
Hypothesis
Ref Expression
expandral.1 (𝜑𝜓)
Assertion
Ref Expression
expandral (∀𝑥𝐴 𝜑 ↔ ∀𝑥(𝑥𝐴𝜓))

Proof of Theorem expandral
StepHypRef Expression
1 expandral.1 . . 3 (𝜑𝜓)
21ralbii 3097 . 2 (∀𝑥𝐴 𝜑 ↔ ∀𝑥𝐴 𝜓)
3 df-ral 3075 . 2 (∀𝑥𝐴 𝜓 ↔ ∀𝑥(𝑥𝐴𝜓))
42, 3bitri 278 1 (∀𝑥𝐴 𝜑 ↔ ∀𝑥(𝑥𝐴𝜓))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wal 1536  wcel 2111  wral 3070
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811
This theorem depends on definitions:  df-bi 210  df-ral 3075
This theorem is referenced by:  expanduniss  41374  ismnuprim  41375
  Copyright terms: Public domain W3C validator