Mathbox for Rohan Ridenour |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > expandrexn | Structured version Visualization version GIF version |
Description: Expand a restricted existential quantifier to primitives while contracting a double negation. (Contributed by Rohan Ridenour, 13-Aug-2023.) |
Ref | Expression |
---|---|
expandrexn.1 | ⊢ (𝜑 ↔ ¬ 𝜓) |
Ref | Expression |
---|---|
expandrexn | ⊢ (∃𝑥 ∈ 𝐴 𝜑 ↔ ¬ ∀𝑥(𝑥 ∈ 𝐴 → 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | expandrexn.1 | . . 3 ⊢ (𝜑 ↔ ¬ 𝜓) | |
2 | 1 | rexbii 3181 | . 2 ⊢ (∃𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑥 ∈ 𝐴 ¬ 𝜓) |
3 | df-rex 3070 | . 2 ⊢ (∃𝑥 ∈ 𝐴 ¬ 𝜓 ↔ ∃𝑥(𝑥 ∈ 𝐴 ∧ ¬ 𝜓)) | |
4 | exanali 1862 | . 2 ⊢ (∃𝑥(𝑥 ∈ 𝐴 ∧ ¬ 𝜓) ↔ ¬ ∀𝑥(𝑥 ∈ 𝐴 → 𝜓)) | |
5 | 2, 3, 4 | 3bitri 297 | 1 ⊢ (∃𝑥 ∈ 𝐴 𝜑 ↔ ¬ ∀𝑥(𝑥 ∈ 𝐴 → 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 396 ∀wal 1537 ∃wex 1782 ∈ wcel 2106 ∃wrex 3065 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 |
This theorem depends on definitions: df-bi 206 df-an 397 df-ex 1783 df-rex 3070 |
This theorem is referenced by: expandrex 41910 ismnuprim 41912 |
Copyright terms: Public domain | W3C validator |