Users' Mathboxes Mathbox for Rohan Ridenour < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  expandrexn Structured version   Visualization version   GIF version

Theorem expandrexn 41909
Description: Expand a restricted existential quantifier to primitives while contracting a double negation. (Contributed by Rohan Ridenour, 13-Aug-2023.)
Hypothesis
Ref Expression
expandrexn.1 (𝜑 ↔ ¬ 𝜓)
Assertion
Ref Expression
expandrexn (∃𝑥𝐴 𝜑 ↔ ¬ ∀𝑥(𝑥𝐴𝜓))

Proof of Theorem expandrexn
StepHypRef Expression
1 expandrexn.1 . . 3 (𝜑 ↔ ¬ 𝜓)
21rexbii 3181 . 2 (∃𝑥𝐴 𝜑 ↔ ∃𝑥𝐴 ¬ 𝜓)
3 df-rex 3070 . 2 (∃𝑥𝐴 ¬ 𝜓 ↔ ∃𝑥(𝑥𝐴 ∧ ¬ 𝜓))
4 exanali 1862 . 2 (∃𝑥(𝑥𝐴 ∧ ¬ 𝜓) ↔ ¬ ∀𝑥(𝑥𝐴𝜓))
52, 3, 43bitri 297 1 (∃𝑥𝐴 𝜑 ↔ ¬ ∀𝑥(𝑥𝐴𝜓))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  wal 1537  wex 1782  wcel 2106  wrex 3065
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812
This theorem depends on definitions:  df-bi 206  df-an 397  df-ex 1783  df-rex 3070
This theorem is referenced by:  expandrex  41910  ismnuprim  41912
  Copyright terms: Public domain W3C validator