| Mathbox for Rohan Ridenour |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > expanduniss | Structured version Visualization version GIF version | ||
| Description: Expand ∪ 𝐴 ⊆ 𝐵 to primitives. (Contributed by Rohan Ridenour, 13-Aug-2023.) |
| Ref | Expression |
|---|---|
| expanduniss | ⊢ (∪ 𝐴 ⊆ 𝐵 ↔ ∀𝑥(𝑥 ∈ 𝐴 → ∀𝑦(𝑦 ∈ 𝑥 → 𝑦 ∈ 𝐵))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | unissb 4889 | . 2 ⊢ (∪ 𝐴 ⊆ 𝐵 ↔ ∀𝑥 ∈ 𝐴 𝑥 ⊆ 𝐵) | |
| 2 | df-ss 3914 | . . 3 ⊢ (𝑥 ⊆ 𝐵 ↔ ∀𝑦(𝑦 ∈ 𝑥 → 𝑦 ∈ 𝐵)) | |
| 3 | 2 | expandral 44393 | . 2 ⊢ (∀𝑥 ∈ 𝐴 𝑥 ⊆ 𝐵 ↔ ∀𝑥(𝑥 ∈ 𝐴 → ∀𝑦(𝑦 ∈ 𝑥 → 𝑦 ∈ 𝐵))) |
| 4 | 1, 3 | bitri 275 | 1 ⊢ (∪ 𝐴 ⊆ 𝐵 ↔ ∀𝑥(𝑥 ∈ 𝐴 → ∀𝑦(𝑦 ∈ 𝑥 → 𝑦 ∈ 𝐵))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∀wal 1539 ∈ wcel 2111 ∀wral 3047 ⊆ wss 3897 ∪ cuni 4856 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ral 3048 df-v 3438 df-ss 3914 df-uni 4857 |
| This theorem is referenced by: ismnuprim 44397 |
| Copyright terms: Public domain | W3C validator |