Users' Mathboxes Mathbox for Rohan Ridenour < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  expanduniss Structured version   Visualization version   GIF version

Theorem expanduniss 41864
Description: Expand 𝐴𝐵 to primitives. (Contributed by Rohan Ridenour, 13-Aug-2023.)
Assertion
Ref Expression
expanduniss ( 𝐴𝐵 ↔ ∀𝑥(𝑥𝐴 → ∀𝑦(𝑦𝑥𝑦𝐵)))
Distinct variable groups:   𝑥,𝐴   𝑥,𝑦,𝐵
Allowed substitution hint:   𝐴(𝑦)

Proof of Theorem expanduniss
StepHypRef Expression
1 unissb 4878 . 2 ( 𝐴𝐵 ↔ ∀𝑥𝐴 𝑥𝐵)
2 dfss2 3911 . . 3 (𝑥𝐵 ↔ ∀𝑦(𝑦𝑥𝑦𝐵))
32expandral 41861 . 2 (∀𝑥𝐴 𝑥𝐵 ↔ ∀𝑥(𝑥𝐴 → ∀𝑦(𝑦𝑥𝑦𝐵)))
41, 3bitri 274 1 ( 𝐴𝐵 ↔ ∀𝑥(𝑥𝐴 → ∀𝑦(𝑦𝑥𝑦𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wal 1539  wcel 2109  wral 3065  wss 3891   cuni 4844
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1801  ax-4 1815  ax-5 1916  ax-6 1974  ax-7 2014  ax-8 2111  ax-9 2119  ax-11 2157  ax-ext 2710
This theorem depends on definitions:  df-bi 206  df-an 396  df-tru 1544  df-ex 1786  df-sb 2071  df-clab 2717  df-cleq 2731  df-clel 2817  df-ral 3070  df-v 3432  df-in 3898  df-ss 3908  df-uni 4845
This theorem is referenced by:  ismnuprim  41865
  Copyright terms: Public domain W3C validator