| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > daraptiALT | Structured version Visualization version GIF version | ||
| Description: Alternate proof of darapti 2684, shorter but using more axioms. See comment of dariiALT 2666. (Contributed by David A. Wheeler, 27-Aug-2016.) (Proof modification is discouraged.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| darapti.maj | ⊢ ∀𝑥(𝜑 → 𝜓) |
| darapti.min | ⊢ ∀𝑥(𝜑 → 𝜒) |
| darapti.e | ⊢ ∃𝑥𝜑 |
| Ref | Expression |
|---|---|
| daraptiALT | ⊢ ∃𝑥(𝜒 ∧ 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | darapti.e | . 2 ⊢ ∃𝑥𝜑 | |
| 2 | darapti.min | . . . 4 ⊢ ∀𝑥(𝜑 → 𝜒) | |
| 3 | 2 | spi 2185 | . . 3 ⊢ (𝜑 → 𝜒) |
| 4 | darapti.maj | . . . 4 ⊢ ∀𝑥(𝜑 → 𝜓) | |
| 5 | 4 | spi 2185 | . . 3 ⊢ (𝜑 → 𝜓) |
| 6 | 3, 5 | jca 511 | . 2 ⊢ (𝜑 → (𝜒 ∧ 𝜓)) |
| 7 | 1, 6 | eximii 1837 | 1 ⊢ ∃𝑥(𝜒 ∧ 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∀wal 1538 ∃wex 1779 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-12 2178 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |