Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > darapti | Structured version Visualization version GIF version |
Description: "Darapti", one of the syllogisms of Aristotelian logic. All 𝜑 is 𝜓, all 𝜑 is 𝜒, and some 𝜑 exist, therefore some 𝜒 is 𝜓. In Aristotelian notation, AAI-3: MaP and MaS therefore SiP. For example, "All squares are rectangles" and "All squares are rhombuses", therefore "Some rhombuses are rectangles". (Contributed by David A. Wheeler, 28-Aug-2016.) Reduce dependencies on axioms. (Revised by BJ, 16-Sep-2022.) |
Ref | Expression |
---|---|
darapti.maj | ⊢ ∀𝑥(𝜑 → 𝜓) |
darapti.min | ⊢ ∀𝑥(𝜑 → 𝜒) |
darapti.e | ⊢ ∃𝑥𝜑 |
Ref | Expression |
---|---|
darapti | ⊢ ∃𝑥(𝜒 ∧ 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | darapti.min | . . . 4 ⊢ ∀𝑥(𝜑 → 𝜒) | |
2 | darapti.maj | . . . 4 ⊢ ∀𝑥(𝜑 → 𝜓) | |
3 | id 22 | . . . . 5 ⊢ (((𝜑 → 𝜒) ∧ (𝜑 → 𝜓)) → ((𝜑 → 𝜒) ∧ (𝜑 → 𝜓))) | |
4 | 3 | alanimi 1820 | . . . 4 ⊢ ((∀𝑥(𝜑 → 𝜒) ∧ ∀𝑥(𝜑 → 𝜓)) → ∀𝑥((𝜑 → 𝜒) ∧ (𝜑 → 𝜓))) |
5 | 1, 2, 4 | mp2an 688 | . . 3 ⊢ ∀𝑥((𝜑 → 𝜒) ∧ (𝜑 → 𝜓)) |
6 | pm3.43 473 | . . . 4 ⊢ (((𝜑 → 𝜒) ∧ (𝜑 → 𝜓)) → (𝜑 → (𝜒 ∧ 𝜓))) | |
7 | 6 | alimi 1815 | . . 3 ⊢ (∀𝑥((𝜑 → 𝜒) ∧ (𝜑 → 𝜓)) → ∀𝑥(𝜑 → (𝜒 ∧ 𝜓))) |
8 | 5, 7 | ax-mp 5 | . 2 ⊢ ∀𝑥(𝜑 → (𝜒 ∧ 𝜓)) |
9 | darapti.e | . 2 ⊢ ∃𝑥𝜑 | |
10 | exim 1837 | . 2 ⊢ (∀𝑥(𝜑 → (𝜒 ∧ 𝜓)) → (∃𝑥𝜑 → ∃𝑥(𝜒 ∧ 𝜓))) | |
11 | 8, 9, 10 | mp2 9 | 1 ⊢ ∃𝑥(𝜒 ∧ 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∀wal 1537 ∃wex 1783 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 |
This theorem depends on definitions: df-bi 206 df-an 396 df-ex 1784 |
This theorem is referenced by: felapton 2687 |
Copyright terms: Public domain | W3C validator |