| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > festinoALT | Structured version Visualization version GIF version | ||
| Description: Alternate proof of festino 2672, shorter but using more axioms. See comment of dariiALT 2664. (Contributed by David A. Wheeler, 27-Aug-2016.) (Proof modification is discouraged.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| festino.maj | ⊢ ∀𝑥(𝜑 → ¬ 𝜓) |
| festino.min | ⊢ ∃𝑥(𝜒 ∧ 𝜓) |
| Ref | Expression |
|---|---|
| festinoALT | ⊢ ∃𝑥(𝜒 ∧ ¬ 𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | festino.min | . 2 ⊢ ∃𝑥(𝜒 ∧ 𝜓) | |
| 2 | festino.maj | . . . . 5 ⊢ ∀𝑥(𝜑 → ¬ 𝜓) | |
| 3 | 2 | spi 2183 | . . . 4 ⊢ (𝜑 → ¬ 𝜓) |
| 4 | 3 | con2i 139 | . . 3 ⊢ (𝜓 → ¬ 𝜑) |
| 5 | 4 | anim2i 617 | . 2 ⊢ ((𝜒 ∧ 𝜓) → (𝜒 ∧ ¬ 𝜑)) |
| 6 | 1, 5 | eximii 1836 | 1 ⊢ ∃𝑥(𝜒 ∧ ¬ 𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∀wal 1537 ∃wex 1778 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-12 2176 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1779 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |