MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  festinoALT Structured version   Visualization version   GIF version

Theorem festinoALT 2664
Description: Alternate proof of festino 2663, shorter but using more axioms. See comment of dariiALT 2655. (Contributed by David A. Wheeler, 27-Aug-2016.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypotheses
Ref Expression
festino.maj 𝑥(𝜑 → ¬ 𝜓)
festino.min 𝑥(𝜒𝜓)
Assertion
Ref Expression
festinoALT 𝑥(𝜒 ∧ ¬ 𝜑)

Proof of Theorem festinoALT
StepHypRef Expression
1 festino.min . 2 𝑥(𝜒𝜓)
2 festino.maj . . . . 5 𝑥(𝜑 → ¬ 𝜓)
32spi 2169 . . . 4 (𝜑 → ¬ 𝜓)
43con2i 139 . . 3 (𝜓 → ¬ 𝜑)
54anim2i 616 . 2 ((𝜒𝜓) → (𝜒 ∧ ¬ 𝜑))
61, 5eximii 1831 1 𝑥(𝜒 ∧ ¬ 𝜑)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  wal 1531  wex 1773
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-12 2163
This theorem depends on definitions:  df-bi 206  df-an 396  df-ex 1774
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator