Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > anim2d | Structured version Visualization version GIF version |
Description: Add a conjunct to left of antecedent and consequent in a deduction. (Contributed by NM, 14-May-1993.) |
Ref | Expression |
---|---|
anim1d.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
Ref | Expression |
---|---|
anim2d | ⊢ (𝜑 → ((𝜃 ∧ 𝜓) → (𝜃 ∧ 𝜒))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | idd 24 | . 2 ⊢ (𝜑 → (𝜃 → 𝜃)) | |
2 | anim1d.1 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
3 | 1, 2 | anim12d 610 | 1 ⊢ (𝜑 → ((𝜃 ∧ 𝜓) → (𝜃 ∧ 𝜒))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 398 |
This theorem is referenced by: darii 2665 festino 2674 baroco 2676 moeq3 3661 sbcimdv 3804 ssel 3928 sselOLD 3929 sscon 4089 uniss 4864 trel3 5223 ssopab2 5494 coss1 5801 fununi 6563 imadif 6572 fss 6672 ssimaex 6913 ssoprab2 7409 poxp 8040 soxp 8041 poseq 8049 suppofssd 8093 pmss12g 8732 ss2ixp 8773 xpdom2 8936 fisup2g 9329 fisupcl 9330 fiinf2g 9361 inf3lem1 9489 epfrs 9592 cfub 10110 cflm 10111 fin23lem34 10207 isf32lem2 10215 axcc4 10300 domtriomlem 10303 ltexprlem3 10899 nnunb 12334 indstr 12761 qbtwnxr 13039 qsqueeze 13040 xrsupsslem 13146 xrinfmsslem 13147 ioc0 13231 climshftlem 15382 o1rlimmul 15427 ramub2 16812 monmat2matmon 22078 tgcl 22224 neips 22369 ssnei2 22372 tgcnp 22509 cnpnei 22520 cnpco 22523 hauscmplem 22662 hauscmp 22663 llyss 22735 nllyss 22736 lfinun 22781 kgen2ss 22811 txcnpi 22864 txcmplem1 22897 fgss 23129 cnpflf2 23256 fclsss1 23278 fclscf 23281 alexsubALT 23307 cnextcn 23323 tsmsxp 23411 mopni3 23755 psmetutop 23828 tngngp3 23925 iscau4 24548 caussi 24566 ovolgelb 24749 mbfi1flim 24993 ellimc3 25148 lhop1 25283 tgbtwndiff 27155 axcontlem4 27623 clwwlknonwwlknonb 28757 sspmval 29382 shmodsi 30038 atcvat4i 31046 cdj3lem2b 31086 ifeqeqx 31170 acunirnmpt 31281 xrge0infss 31368 crefss 32095 issgon 32387 cvmlift2lem12 33573 satfv1 33622 satfvsucsuc 33624 ss2mcls 33827 btwndiff 34466 seglecgr12im 34549 fnessref 34683 waj-ax 34740 lukshef-ax2 34741 bj-isrvec 35619 icorempo 35676 finxpreclem1 35714 fvineqsneq 35737 pibt2 35742 tan2h 35925 poimirlem31 35964 poimir 35966 mblfinlem3 35972 mblfinlem4 35973 ismblfin 35974 cvrat4 37762 athgt 37775 ps-2 37797 paddss1 38136 paddss2 38137 cdlemg33b0 39020 cdlemg33a 39025 dihjat1lem 39747 fphpdo 40952 irrapxlem2 40958 pell14qrss1234 40991 pell1qrss14 41003 acongtr 41114 ofoaid1 41376 ofoaid2 41377 fzunt 41436 fzuntd 41437 fzunt1d 41438 fzuntgd 41439 grumnudlem 42276 ax6e2eq 42550 islptre 43548 limccog 43549 opnneilv 46620 |
Copyright terms: Public domain | W3C validator |