![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > anim2d | Structured version Visualization version GIF version |
Description: Add a conjunct to left of antecedent and consequent in a deduction. (Contributed by NM, 14-May-1993.) |
Ref | Expression |
---|---|
anim1d.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
Ref | Expression |
---|---|
anim2d | ⊢ (𝜑 → ((𝜃 ∧ 𝜓) → (𝜃 ∧ 𝜒))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | idd 24 | . 2 ⊢ (𝜑 → (𝜃 → 𝜃)) | |
2 | anim1d.1 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
3 | 1, 2 | anim12d 610 | 1 ⊢ (𝜑 → ((𝜃 ∧ 𝜓) → (𝜃 ∧ 𝜒))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 398 |
This theorem is referenced by: darii 2661 festino 2670 baroco 2672 moeq3 3709 sbcimdv 3852 ssel 3976 sselOLD 3977 sscon 4139 uniss 4917 trel3 5276 ssopab2 5547 coss1 5856 fununi 6624 imadif 6633 fss 6735 ssimaex 6977 ssoprab2 7477 poxp 8114 soxp 8115 poseq 8144 suppofssd 8188 pmss12g 8863 ss2ixp 8904 xpdom2 9067 fisup2g 9463 fisupcl 9464 fiinf2g 9495 inf3lem1 9623 epfrs 9726 cfub 10244 cflm 10245 fin23lem34 10341 isf32lem2 10349 axcc4 10434 domtriomlem 10437 ltexprlem3 11033 nnunb 12468 indstr 12900 qbtwnxr 13179 qsqueeze 13180 xrsupsslem 13286 xrinfmsslem 13287 ioc0 13371 climshftlem 15518 o1rlimmul 15563 ramub2 16947 monmat2matmon 22326 tgcl 22472 neips 22617 ssnei2 22620 tgcnp 22757 cnpnei 22768 cnpco 22771 hauscmplem 22910 hauscmp 22911 llyss 22983 nllyss 22984 lfinun 23029 kgen2ss 23059 txcnpi 23112 txcmplem1 23145 fgss 23377 cnpflf2 23504 fclsss1 23526 fclscf 23529 alexsubALT 23555 cnextcn 23571 tsmsxp 23659 mopni3 24003 psmetutop 24076 tngngp3 24173 iscau4 24796 caussi 24814 ovolgelb 24997 mbfi1flim 25241 ellimc3 25396 lhop1 25531 tgbtwndiff 27788 axcontlem4 28256 clwwlknonwwlknonb 29390 sspmval 30017 shmodsi 30673 atcvat4i 31681 cdj3lem2b 31721 ifeqeqx 31805 acunirnmpt 31915 xrge0infss 32004 crefss 32860 issgon 33152 cvmlift2lem12 34336 satfv1 34385 satfvsucsuc 34387 ss2mcls 34590 btwndiff 35030 seglecgr12im 35113 fnessref 35290 waj-ax 35347 lukshef-ax2 35348 bj-isrvec 36223 icorempo 36280 finxpreclem1 36318 fvineqsneq 36341 pibt2 36346 tan2h 36528 poimirlem31 36567 poimir 36569 mblfinlem3 36575 mblfinlem4 36576 ismblfin 36577 cvrat4 38362 athgt 38375 ps-2 38397 paddss1 38736 paddss2 38737 cdlemg33b0 39620 cdlemg33a 39625 dihjat1lem 40347 fphpdo 41603 irrapxlem2 41609 pell14qrss1234 41642 pell1qrss14 41654 acongtr 41765 ofoaid1 42156 ofoaid2 42157 fzunt 42254 fzuntd 42255 fzunt1d 42256 fzuntgd 42257 grumnudlem 43092 ax6e2eq 43366 islptre 44383 limccog 44384 opnneilv 47589 |
Copyright terms: Public domain | W3C validator |