| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > anim2d | Structured version Visualization version GIF version | ||
| Description: Add a conjunct to left of antecedent and consequent in a deduction. (Contributed by NM, 14-May-1993.) |
| Ref | Expression |
|---|---|
| anim1d.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
| Ref | Expression |
|---|---|
| anim2d | ⊢ (𝜑 → ((𝜃 ∧ 𝜓) → (𝜃 ∧ 𝜒))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | idd 24 | . 2 ⊢ (𝜑 → (𝜃 → 𝜃)) | |
| 2 | anim1d.1 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
| 3 | 1, 2 | anim12d 609 | 1 ⊢ (𝜑 → ((𝜃 ∧ 𝜓) → (𝜃 ∧ 𝜒))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: darii 2659 festino 2668 baroco 2670 moeq3 3686 sbcimdv 3825 ssel 3943 sscon 4109 uniss 4882 trel3 5227 axprlem4 5384 ssopab2 5509 coss1 5822 fununi 6594 imadif 6603 fss 6707 ssimaex 6949 ssoprab2 7460 poxp 8110 soxp 8111 poseq 8140 suppofssd 8185 pmss12g 8845 ss2ixp 8886 xpdom2 9041 fisup2g 9427 fisupcl 9428 fiinf2g 9460 inf3lem1 9588 epfrs 9691 cfub 10209 cflm 10210 fin23lem34 10306 isf32lem2 10314 axcc4 10399 domtriomlem 10402 ltexprlem3 10998 nnunb 12445 indstr 12882 qbtwnxr 13167 qsqueeze 13168 xrsupsslem 13274 xrinfmsslem 13275 ioc0 13360 climshftlem 15547 o1rlimmul 15592 ramub2 16992 monmat2matmon 22718 tgcl 22863 neips 23007 ssnei2 23010 tgcnp 23147 cnpnei 23158 cnpco 23161 hauscmplem 23300 hauscmp 23301 llyss 23373 nllyss 23374 lfinun 23419 kgen2ss 23449 txcnpi 23502 txcmplem1 23535 fgss 23767 cnpflf2 23894 fclsss1 23916 fclscf 23919 alexsubALT 23945 cnextcn 23961 tsmsxp 24049 mopni3 24389 psmetutop 24462 tngngp3 24551 iscau4 25186 caussi 25204 ovolgelb 25388 mbfi1flim 25631 ellimc3 25787 lhop1 25926 tgbtwndiff 28440 axcontlem4 28901 clwwlknonwwlknonb 30042 sspmval 30669 shmodsi 31325 atcvat4i 32333 cdj3lem2b 32373 ifeqeqx 32478 acunirnmpt 32590 xrge0infss 32690 constrextdg2lem 33745 crefss 33846 issgon 34120 cvmlift2lem12 35308 satfv1 35357 satfvsucsuc 35359 ss2mcls 35562 btwndiff 36022 seglecgr12im 36105 fnessref 36352 waj-ax 36409 lukshef-ax2 36410 bj-isrvec 37289 icorempo 37346 finxpreclem1 37384 fvineqsneq 37407 pibt2 37412 tan2h 37613 poimirlem31 37652 poimir 37654 mblfinlem3 37660 mblfinlem4 37661 ismblfin 37662 cvrat4 39444 athgt 39457 ps-2 39479 paddss1 39818 paddss2 39819 cdlemg33b0 40702 cdlemg33a 40707 dihjat1lem 41429 fphpdo 42812 irrapxlem2 42818 pell14qrss1234 42851 pell1qrss14 42863 acongtr 42974 ofoaid1 43354 ofoaid2 43355 fzunt 43451 fzuntd 43452 fzunt1d 43453 fzuntgd 43454 grumnudlem 44281 ax6e2eq 44554 modelaxreplem1 44975 islptre 45624 limccog 45625 grilcbri2 48007 opnneilv 48901 |
| Copyright terms: Public domain | W3C validator |