![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > anim2d | Structured version Visualization version GIF version |
Description: Add a conjunct to left of antecedent and consequent in a deduction. (Contributed by NM, 14-May-1993.) |
Ref | Expression |
---|---|
anim1d.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
Ref | Expression |
---|---|
anim2d | ⊢ (𝜑 → ((𝜃 ∧ 𝜓) → (𝜃 ∧ 𝜒))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | idd 24 | . 2 ⊢ (𝜑 → (𝜃 → 𝜃)) | |
2 | anim1d.1 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
3 | 1, 2 | anim12d 608 | 1 ⊢ (𝜑 → ((𝜃 ∧ 𝜓) → (𝜃 ∧ 𝜒))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 df-an 396 |
This theorem is referenced by: darii 2668 festino 2677 baroco 2679 moeq3 3734 sbcimdv 3878 ssel 4002 sscon 4166 uniss 4939 trel3 5293 ssopab2 5565 coss1 5880 fununi 6653 imadif 6662 fss 6763 ssimaex 7007 ssoprab2 7518 poxp 8169 soxp 8170 poseq 8199 suppofssd 8244 pmss12g 8927 ss2ixp 8968 xpdom2 9133 fisup2g 9537 fisupcl 9538 fiinf2g 9569 inf3lem1 9697 epfrs 9800 cfub 10318 cflm 10319 fin23lem34 10415 isf32lem2 10423 axcc4 10508 domtriomlem 10511 ltexprlem3 11107 nnunb 12549 indstr 12981 qbtwnxr 13262 qsqueeze 13263 xrsupsslem 13369 xrinfmsslem 13370 ioc0 13454 climshftlem 15620 o1rlimmul 15665 ramub2 17061 monmat2matmon 22851 tgcl 22997 neips 23142 ssnei2 23145 tgcnp 23282 cnpnei 23293 cnpco 23296 hauscmplem 23435 hauscmp 23436 llyss 23508 nllyss 23509 lfinun 23554 kgen2ss 23584 txcnpi 23637 txcmplem1 23670 fgss 23902 cnpflf2 24029 fclsss1 24051 fclscf 24054 alexsubALT 24080 cnextcn 24096 tsmsxp 24184 mopni3 24528 psmetutop 24601 tngngp3 24698 iscau4 25332 caussi 25350 ovolgelb 25534 mbfi1flim 25778 ellimc3 25934 lhop1 26073 tgbtwndiff 28532 axcontlem4 29000 clwwlknonwwlknonb 30138 sspmval 30765 shmodsi 31421 atcvat4i 32429 cdj3lem2b 32469 ifeqeqx 32565 acunirnmpt 32677 xrge0infss 32767 crefss 33795 issgon 34087 cvmlift2lem12 35282 satfv1 35331 satfvsucsuc 35333 ss2mcls 35536 btwndiff 35991 seglecgr12im 36074 fnessref 36323 waj-ax 36380 lukshef-ax2 36381 bj-isrvec 37260 icorempo 37317 finxpreclem1 37355 fvineqsneq 37378 pibt2 37383 tan2h 37572 poimirlem31 37611 poimir 37613 mblfinlem3 37619 mblfinlem4 37620 ismblfin 37621 cvrat4 39400 athgt 39413 ps-2 39435 paddss1 39774 paddss2 39775 cdlemg33b0 40658 cdlemg33a 40663 dihjat1lem 41385 fphpdo 42773 irrapxlem2 42779 pell14qrss1234 42812 pell1qrss14 42824 acongtr 42935 ofoaid1 43320 ofoaid2 43321 fzunt 43417 fzuntd 43418 fzunt1d 43419 fzuntgd 43420 grumnudlem 44254 ax6e2eq 44528 islptre 45540 limccog 45541 grilcbri2 47828 opnneilv 48588 |
Copyright terms: Public domain | W3C validator |