![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > anim2d | Structured version Visualization version GIF version |
Description: Add a conjunct to left of antecedent and consequent in a deduction. (Contributed by NM, 14-May-1993.) |
Ref | Expression |
---|---|
anim1d.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
Ref | Expression |
---|---|
anim2d | ⊢ (𝜑 → ((𝜃 ∧ 𝜓) → (𝜃 ∧ 𝜒))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | idd 24 | . 2 ⊢ (𝜑 → (𝜃 → 𝜃)) | |
2 | anim1d.1 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
3 | 1, 2 | anim12d 609 | 1 ⊢ (𝜑 → ((𝜃 ∧ 𝜓) → (𝜃 ∧ 𝜒))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 df-an 396 |
This theorem is referenced by: darii 2662 festino 2671 baroco 2673 moeq3 3720 sbcimdv 3864 ssel 3988 sscon 4152 uniss 4919 trel3 5274 axprlem4 5431 ssopab2 5555 coss1 5868 fununi 6642 imadif 6651 fss 6752 ssimaex 6993 ssoprab2 7500 poxp 8151 soxp 8152 poseq 8181 suppofssd 8226 pmss12g 8907 ss2ixp 8948 xpdom2 9105 fisup2g 9505 fisupcl 9506 fiinf2g 9537 inf3lem1 9665 epfrs 9768 cfub 10286 cflm 10287 fin23lem34 10383 isf32lem2 10391 axcc4 10476 domtriomlem 10479 ltexprlem3 11075 nnunb 12519 indstr 12955 qbtwnxr 13238 qsqueeze 13239 xrsupsslem 13345 xrinfmsslem 13346 ioc0 13430 climshftlem 15606 o1rlimmul 15651 ramub2 17047 monmat2matmon 22845 tgcl 22991 neips 23136 ssnei2 23139 tgcnp 23276 cnpnei 23287 cnpco 23290 hauscmplem 23429 hauscmp 23430 llyss 23502 nllyss 23503 lfinun 23548 kgen2ss 23578 txcnpi 23631 txcmplem1 23664 fgss 23896 cnpflf2 24023 fclsss1 24045 fclscf 24048 alexsubALT 24074 cnextcn 24090 tsmsxp 24178 mopni3 24522 psmetutop 24595 tngngp3 24692 iscau4 25326 caussi 25344 ovolgelb 25528 mbfi1flim 25772 ellimc3 25928 lhop1 26067 tgbtwndiff 28528 axcontlem4 28996 clwwlknonwwlknonb 30134 sspmval 30761 shmodsi 31417 atcvat4i 32425 cdj3lem2b 32465 ifeqeqx 32562 acunirnmpt 32675 xrge0infss 32770 crefss 33809 issgon 34103 cvmlift2lem12 35298 satfv1 35347 satfvsucsuc 35349 ss2mcls 35552 btwndiff 36008 seglecgr12im 36091 fnessref 36339 waj-ax 36396 lukshef-ax2 36397 bj-isrvec 37276 icorempo 37333 finxpreclem1 37371 fvineqsneq 37394 pibt2 37399 tan2h 37598 poimirlem31 37637 poimir 37639 mblfinlem3 37645 mblfinlem4 37646 ismblfin 37647 cvrat4 39425 athgt 39438 ps-2 39460 paddss1 39799 paddss2 39800 cdlemg33b0 40683 cdlemg33a 40688 dihjat1lem 41410 fphpdo 42804 irrapxlem2 42810 pell14qrss1234 42843 pell1qrss14 42855 acongtr 42966 ofoaid1 43347 ofoaid2 43348 fzunt 43444 fzuntd 43445 fzunt1d 43446 fzuntgd 43447 grumnudlem 44280 ax6e2eq 44554 modelaxreplem1 44942 islptre 45574 limccog 45575 grilcbri2 47906 opnneilv 48704 |
Copyright terms: Public domain | W3C validator |