Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > anim2d | Structured version Visualization version GIF version |
Description: Add a conjunct to left of antecedent and consequent in a deduction. (Contributed by NM, 14-May-1993.) |
Ref | Expression |
---|---|
anim1d.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
Ref | Expression |
---|---|
anim2d | ⊢ (𝜑 → ((𝜃 ∧ 𝜓) → (𝜃 ∧ 𝜒))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | idd 24 | . 2 ⊢ (𝜑 → (𝜃 → 𝜃)) | |
2 | anim1d.1 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
3 | 1, 2 | anim12d 608 | 1 ⊢ (𝜑 → ((𝜃 ∧ 𝜓) → (𝜃 ∧ 𝜒))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 396 |
This theorem is referenced by: darii 2666 festino 2675 baroco 2677 moeq3 3642 sbcimdv 3786 ssel 3910 sselOLD 3911 sscon 4069 uniss 4844 trel3 5195 ssopab2 5452 coss1 5753 fununi 6493 imadif 6502 fss 6601 ssimaex 6835 ssoprab2 7321 poxp 7940 soxp 7941 suppofssd 7990 pmss12g 8615 ss2ixp 8656 xpdom2 8807 fisup2g 9157 fisupcl 9158 fiinf2g 9189 inf3lem1 9316 epfrs 9420 cfub 9936 cflm 9937 fin23lem34 10033 isf32lem2 10041 axcc4 10126 domtriomlem 10129 ltexprlem3 10725 nnunb 12159 indstr 12585 qbtwnxr 12863 qsqueeze 12864 xrsupsslem 12970 xrinfmsslem 12971 ioc0 13055 climshftlem 15211 o1rlimmul 15256 ramub2 16643 monmat2matmon 21881 tgcl 22027 neips 22172 ssnei2 22175 tgcnp 22312 cnpnei 22323 cnpco 22326 hauscmplem 22465 hauscmp 22466 llyss 22538 nllyss 22539 lfinun 22584 kgen2ss 22614 txcnpi 22667 txcmplem1 22700 fgss 22932 cnpflf2 23059 fclsss1 23081 fclscf 23084 alexsubALT 23110 cnextcn 23126 tsmsxp 23214 mopni3 23556 psmetutop 23629 tngngp3 23726 iscau4 24348 caussi 24366 ovolgelb 24549 mbfi1flim 24793 ellimc3 24948 lhop1 25083 tgbtwndiff 26771 axcontlem4 27238 clwwlknonwwlknonb 28371 sspmval 28996 shmodsi 29652 atcvat4i 30660 cdj3lem2b 30700 ifeqeqx 30786 acunirnmpt 30898 xrge0infss 30985 crefss 31701 issgon 31991 cvmlift2lem12 33176 satfv1 33225 satfvsucsuc 33227 ss2mcls 33430 poseq 33729 btwndiff 34256 seglecgr12im 34339 fnessref 34473 waj-ax 34530 lukshef-ax2 34531 bj-isrvec 35392 icorempo 35449 finxpreclem1 35487 fvineqsneq 35510 pibt2 35515 tan2h 35696 poimirlem31 35735 poimir 35737 mblfinlem3 35743 mblfinlem4 35744 ismblfin 35745 cvrat4 37384 athgt 37397 ps-2 37419 paddss1 37758 paddss2 37759 cdlemg33b0 38642 cdlemg33a 38647 dihjat1lem 39369 fphpdo 40555 irrapxlem2 40561 pell14qrss1234 40594 pell1qrss14 40606 acongtr 40716 grumnudlem 41792 ax6e2eq 42066 islptre 43050 limccog 43051 opnneilv 46090 |
Copyright terms: Public domain | W3C validator |