| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > anim2d | Structured version Visualization version GIF version | ||
| Description: Add a conjunct to left of antecedent and consequent in a deduction. (Contributed by NM, 14-May-1993.) |
| Ref | Expression |
|---|---|
| anim1d.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
| Ref | Expression |
|---|---|
| anim2d | ⊢ (𝜑 → ((𝜃 ∧ 𝜓) → (𝜃 ∧ 𝜒))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | idd 24 | . 2 ⊢ (𝜑 → (𝜃 → 𝜃)) | |
| 2 | anim1d.1 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
| 3 | 1, 2 | anim12d 609 | 1 ⊢ (𝜑 → ((𝜃 ∧ 𝜓) → (𝜃 ∧ 𝜒))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: darii 2658 festino 2667 baroco 2669 moeq3 3674 sbcimdv 3813 ssel 3931 sscon 4096 uniss 4869 trel3 5211 axprlem4 5368 ssopab2 5493 coss1 5802 fununi 6561 imadif 6570 fss 6672 ssimaex 6912 ssoprab2 7421 poxp 8068 soxp 8069 poseq 8098 suppofssd 8143 pmss12g 8803 ss2ixp 8844 xpdom2 8996 fisup2g 9378 fisupcl 9379 fiinf2g 9411 elirrv 9508 inf3lem1 9543 epfrs 9646 cfub 10162 cflm 10163 fin23lem34 10259 isf32lem2 10267 axcc4 10352 domtriomlem 10355 ltexprlem3 10951 nnunb 12398 indstr 12835 qbtwnxr 13120 qsqueeze 13121 xrsupsslem 13227 xrinfmsslem 13228 ioc0 13313 climshftlem 15499 o1rlimmul 15544 ramub2 16944 monmat2matmon 22727 tgcl 22872 neips 23016 ssnei2 23019 tgcnp 23156 cnpnei 23167 cnpco 23170 hauscmplem 23309 hauscmp 23310 llyss 23382 nllyss 23383 lfinun 23428 kgen2ss 23458 txcnpi 23511 txcmplem1 23544 fgss 23776 cnpflf2 23903 fclsss1 23925 fclscf 23928 alexsubALT 23954 cnextcn 23970 tsmsxp 24058 mopni3 24398 psmetutop 24471 tngngp3 24560 iscau4 25195 caussi 25213 ovolgelb 25397 mbfi1flim 25640 ellimc3 25796 lhop1 25935 tgbtwndiff 28469 axcontlem4 28930 clwwlknonwwlknonb 30068 sspmval 30695 shmodsi 31351 atcvat4i 32359 cdj3lem2b 32399 ifeqeqx 32504 acunirnmpt 32616 xrge0infss 32716 constrextdg2lem 33714 crefss 33815 issgon 34089 cvmlift2lem12 35286 satfv1 35335 satfvsucsuc 35337 ss2mcls 35540 btwndiff 36000 seglecgr12im 36083 fnessref 36330 waj-ax 36387 lukshef-ax2 36388 bj-isrvec 37267 icorempo 37324 finxpreclem1 37362 fvineqsneq 37385 pibt2 37390 tan2h 37591 poimirlem31 37630 poimir 37632 mblfinlem3 37638 mblfinlem4 37639 ismblfin 37640 cvrat4 39422 athgt 39435 ps-2 39457 paddss1 39796 paddss2 39797 cdlemg33b0 40680 cdlemg33a 40685 dihjat1lem 41407 fphpdo 42790 irrapxlem2 42796 pell14qrss1234 42829 pell1qrss14 42841 acongtr 42951 ofoaid1 43331 ofoaid2 43332 fzunt 43428 fzuntd 43429 fzunt1d 43430 fzuntgd 43431 grumnudlem 44258 ax6e2eq 44531 modelaxreplem1 44952 islptre 45601 limccog 45602 grilcbri2 47987 opnneilv 48881 |
| Copyright terms: Public domain | W3C validator |