| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > anim2d | Structured version Visualization version GIF version | ||
| Description: Add a conjunct to left of antecedent and consequent in a deduction. (Contributed by NM, 14-May-1993.) |
| Ref | Expression |
|---|---|
| anim1d.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
| Ref | Expression |
|---|---|
| anim2d | ⊢ (𝜑 → ((𝜃 ∧ 𝜓) → (𝜃 ∧ 𝜒))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | idd 24 | . 2 ⊢ (𝜑 → (𝜃 → 𝜃)) | |
| 2 | anim1d.1 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
| 3 | 1, 2 | anim12d 609 | 1 ⊢ (𝜑 → ((𝜃 ∧ 𝜓) → (𝜃 ∧ 𝜒))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: darii 2665 festino 2674 baroco 2676 moeq3 3700 sbcimdv 3839 ssel 3957 sscon 4123 uniss 4896 trel3 5244 axprlem4 5401 ssopab2 5526 coss1 5840 fununi 6616 imadif 6625 fss 6727 ssimaex 6969 ssoprab2 7480 poxp 8132 soxp 8133 poseq 8162 suppofssd 8207 pmss12g 8888 ss2ixp 8929 xpdom2 9086 fisup2g 9486 fisupcl 9487 fiinf2g 9519 inf3lem1 9647 epfrs 9750 cfub 10268 cflm 10269 fin23lem34 10365 isf32lem2 10373 axcc4 10458 domtriomlem 10461 ltexprlem3 11057 nnunb 12502 indstr 12937 qbtwnxr 13221 qsqueeze 13222 xrsupsslem 13328 xrinfmsslem 13329 ioc0 13414 climshftlem 15595 o1rlimmul 15640 ramub2 17039 monmat2matmon 22767 tgcl 22912 neips 23056 ssnei2 23059 tgcnp 23196 cnpnei 23207 cnpco 23210 hauscmplem 23349 hauscmp 23350 llyss 23422 nllyss 23423 lfinun 23468 kgen2ss 23498 txcnpi 23551 txcmplem1 23584 fgss 23816 cnpflf2 23943 fclsss1 23965 fclscf 23968 alexsubALT 23994 cnextcn 24010 tsmsxp 24098 mopni3 24438 psmetutop 24511 tngngp3 24600 iscau4 25236 caussi 25254 ovolgelb 25438 mbfi1flim 25681 ellimc3 25837 lhop1 25976 tgbtwndiff 28490 axcontlem4 28951 clwwlknonwwlknonb 30092 sspmval 30719 shmodsi 31375 atcvat4i 32383 cdj3lem2b 32423 ifeqeqx 32528 acunirnmpt 32642 xrge0infss 32742 constrextdg2lem 33787 crefss 33885 issgon 34159 cvmlift2lem12 35341 satfv1 35390 satfvsucsuc 35392 ss2mcls 35595 btwndiff 36050 seglecgr12im 36133 fnessref 36380 waj-ax 36437 lukshef-ax2 36438 bj-isrvec 37317 icorempo 37374 finxpreclem1 37412 fvineqsneq 37435 pibt2 37440 tan2h 37641 poimirlem31 37680 poimir 37682 mblfinlem3 37688 mblfinlem4 37689 ismblfin 37690 cvrat4 39467 athgt 39480 ps-2 39502 paddss1 39841 paddss2 39842 cdlemg33b0 40725 cdlemg33a 40730 dihjat1lem 41452 fphpdo 42807 irrapxlem2 42813 pell14qrss1234 42846 pell1qrss14 42858 acongtr 42969 ofoaid1 43349 ofoaid2 43350 fzunt 43446 fzuntd 43447 fzunt1d 43448 fzuntgd 43449 grumnudlem 44276 ax6e2eq 44549 modelaxreplem1 44970 islptre 45615 limccog 45616 grilcbri2 47983 opnneilv 48850 |
| Copyright terms: Public domain | W3C validator |