![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > anim2d | Structured version Visualization version GIF version |
Description: Add a conjunct to left of antecedent and consequent in a deduction. (Contributed by NM, 14-May-1993.) |
Ref | Expression |
---|---|
anim1d.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
Ref | Expression |
---|---|
anim2d | ⊢ (𝜑 → ((𝜃 ∧ 𝜓) → (𝜃 ∧ 𝜒))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | idd 24 | . 2 ⊢ (𝜑 → (𝜃 → 𝜃)) | |
2 | anim1d.1 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
3 | 1, 2 | anim12d 609 | 1 ⊢ (𝜑 → ((𝜃 ∧ 𝜓) → (𝜃 ∧ 𝜒))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 397 |
This theorem is referenced by: darii 2660 festino 2669 baroco 2671 moeq3 3707 sbcimdv 3850 ssel 3974 sselOLD 3975 sscon 4137 uniss 4915 trel3 5274 ssopab2 5545 coss1 5853 fununi 6620 imadif 6629 fss 6731 ssimaex 6973 ssoprab2 7473 poxp 8110 soxp 8111 poseq 8140 suppofssd 8184 pmss12g 8859 ss2ixp 8900 xpdom2 9063 fisup2g 9459 fisupcl 9460 fiinf2g 9491 inf3lem1 9619 epfrs 9722 cfub 10240 cflm 10241 fin23lem34 10337 isf32lem2 10345 axcc4 10430 domtriomlem 10433 ltexprlem3 11029 nnunb 12464 indstr 12896 qbtwnxr 13175 qsqueeze 13176 xrsupsslem 13282 xrinfmsslem 13283 ioc0 13367 climshftlem 15514 o1rlimmul 15559 ramub2 16943 monmat2matmon 22317 tgcl 22463 neips 22608 ssnei2 22611 tgcnp 22748 cnpnei 22759 cnpco 22762 hauscmplem 22901 hauscmp 22902 llyss 22974 nllyss 22975 lfinun 23020 kgen2ss 23050 txcnpi 23103 txcmplem1 23136 fgss 23368 cnpflf2 23495 fclsss1 23517 fclscf 23520 alexsubALT 23546 cnextcn 23562 tsmsxp 23650 mopni3 23994 psmetutop 24067 tngngp3 24164 iscau4 24787 caussi 24805 ovolgelb 24988 mbfi1flim 25232 ellimc3 25387 lhop1 25522 tgbtwndiff 27746 axcontlem4 28214 clwwlknonwwlknonb 29348 sspmval 29973 shmodsi 30629 atcvat4i 31637 cdj3lem2b 31677 ifeqeqx 31761 acunirnmpt 31871 xrge0infss 31960 crefss 32817 issgon 33109 cvmlift2lem12 34293 satfv1 34342 satfvsucsuc 34344 ss2mcls 34547 btwndiff 34987 seglecgr12im 35070 fnessref 35230 waj-ax 35287 lukshef-ax2 35288 bj-isrvec 36163 icorempo 36220 finxpreclem1 36258 fvineqsneq 36281 pibt2 36286 tan2h 36468 poimirlem31 36507 poimir 36509 mblfinlem3 36515 mblfinlem4 36516 ismblfin 36517 cvrat4 38302 athgt 38315 ps-2 38337 paddss1 38676 paddss2 38677 cdlemg33b0 39560 cdlemg33a 39565 dihjat1lem 40287 fphpdo 41540 irrapxlem2 41546 pell14qrss1234 41579 pell1qrss14 41591 acongtr 41702 ofoaid1 42093 ofoaid2 42094 fzunt 42191 fzuntd 42192 fzunt1d 42193 fzuntgd 42194 grumnudlem 43029 ax6e2eq 43303 islptre 44321 limccog 44322 opnneilv 47494 |
Copyright terms: Public domain | W3C validator |