| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > anim2d | Structured version Visualization version GIF version | ||
| Description: Add a conjunct to left of antecedent and consequent in a deduction. (Contributed by NM, 14-May-1993.) |
| Ref | Expression |
|---|---|
| anim1d.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
| Ref | Expression |
|---|---|
| anim2d | ⊢ (𝜑 → ((𝜃 ∧ 𝜓) → (𝜃 ∧ 𝜒))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | idd 24 | . 2 ⊢ (𝜑 → (𝜃 → 𝜃)) | |
| 2 | anim1d.1 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
| 3 | 1, 2 | anim12d 609 | 1 ⊢ (𝜑 → ((𝜃 ∧ 𝜓) → (𝜃 ∧ 𝜒))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: darii 2658 festino 2667 baroco 2669 moeq3 3683 sbcimdv 3822 ssel 3940 sscon 4106 uniss 4879 trel3 5224 axprlem4 5381 ssopab2 5506 coss1 5819 fununi 6591 imadif 6600 fss 6704 ssimaex 6946 ssoprab2 7457 poxp 8107 soxp 8108 poseq 8137 suppofssd 8182 pmss12g 8842 ss2ixp 8883 xpdom2 9036 fisup2g 9420 fisupcl 9421 fiinf2g 9453 inf3lem1 9581 epfrs 9684 cfub 10202 cflm 10203 fin23lem34 10299 isf32lem2 10307 axcc4 10392 domtriomlem 10395 ltexprlem3 10991 nnunb 12438 indstr 12875 qbtwnxr 13160 qsqueeze 13161 xrsupsslem 13267 xrinfmsslem 13268 ioc0 13353 climshftlem 15540 o1rlimmul 15585 ramub2 16985 monmat2matmon 22711 tgcl 22856 neips 23000 ssnei2 23003 tgcnp 23140 cnpnei 23151 cnpco 23154 hauscmplem 23293 hauscmp 23294 llyss 23366 nllyss 23367 lfinun 23412 kgen2ss 23442 txcnpi 23495 txcmplem1 23528 fgss 23760 cnpflf2 23887 fclsss1 23909 fclscf 23912 alexsubALT 23938 cnextcn 23954 tsmsxp 24042 mopni3 24382 psmetutop 24455 tngngp3 24544 iscau4 25179 caussi 25197 ovolgelb 25381 mbfi1flim 25624 ellimc3 25780 lhop1 25919 tgbtwndiff 28433 axcontlem4 28894 clwwlknonwwlknonb 30035 sspmval 30662 shmodsi 31318 atcvat4i 32326 cdj3lem2b 32366 ifeqeqx 32471 acunirnmpt 32583 xrge0infss 32683 constrextdg2lem 33738 crefss 33839 issgon 34113 cvmlift2lem12 35301 satfv1 35350 satfvsucsuc 35352 ss2mcls 35555 btwndiff 36015 seglecgr12im 36098 fnessref 36345 waj-ax 36402 lukshef-ax2 36403 bj-isrvec 37282 icorempo 37339 finxpreclem1 37377 fvineqsneq 37400 pibt2 37405 tan2h 37606 poimirlem31 37645 poimir 37647 mblfinlem3 37653 mblfinlem4 37654 ismblfin 37655 cvrat4 39437 athgt 39450 ps-2 39472 paddss1 39811 paddss2 39812 cdlemg33b0 40695 cdlemg33a 40700 dihjat1lem 41422 fphpdo 42805 irrapxlem2 42811 pell14qrss1234 42844 pell1qrss14 42856 acongtr 42967 ofoaid1 43347 ofoaid2 43348 fzunt 43444 fzuntd 43445 fzunt1d 43446 fzuntgd 43447 grumnudlem 44274 ax6e2eq 44547 modelaxreplem1 44968 islptre 45617 limccog 45618 grilcbri2 48003 opnneilv 48897 |
| Copyright terms: Public domain | W3C validator |