| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > anim2d | Structured version Visualization version GIF version | ||
| Description: Add a conjunct to left of antecedent and consequent in a deduction. (Contributed by NM, 14-May-1993.) |
| Ref | Expression |
|---|---|
| anim1d.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
| Ref | Expression |
|---|---|
| anim2d | ⊢ (𝜑 → ((𝜃 ∧ 𝜓) → (𝜃 ∧ 𝜒))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | idd 24 | . 2 ⊢ (𝜑 → (𝜃 → 𝜃)) | |
| 2 | anim1d.1 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
| 3 | 1, 2 | anim12d 609 | 1 ⊢ (𝜑 → ((𝜃 ∧ 𝜓) → (𝜃 ∧ 𝜒))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: darii 2659 festino 2668 baroco 2670 moeq3 3669 sbcimdv 3808 ssel 3926 sscon 4091 uniss 4865 trel3 5205 axprlem4 5362 ssopab2 5484 coss1 5793 fununi 6552 imadif 6561 fss 6663 ssimaex 6902 ssoprab2 7409 poxp 8053 soxp 8054 poseq 8083 suppofssd 8128 pmss12g 8788 ss2ixp 8829 xpdom2 8980 fisup2g 9348 fisupcl 9349 fiinf2g 9381 elirrv 9478 inf3lem1 9513 epfrs 9616 cfub 10132 cflm 10133 fin23lem34 10229 isf32lem2 10237 axcc4 10322 domtriomlem 10325 ltexprlem3 10921 nnunb 12369 indstr 12806 qbtwnxr 13091 qsqueeze 13092 xrsupsslem 13198 xrinfmsslem 13199 ioc0 13284 climshftlem 15473 o1rlimmul 15518 ramub2 16918 chnrss 18513 monmat2matmon 22732 tgcl 22877 neips 23021 ssnei2 23024 tgcnp 23161 cnpnei 23172 cnpco 23175 hauscmplem 23314 hauscmp 23315 llyss 23387 nllyss 23388 lfinun 23433 kgen2ss 23463 txcnpi 23516 txcmplem1 23549 fgss 23781 cnpflf2 23908 fclsss1 23930 fclscf 23933 alexsubALT 23959 cnextcn 23975 tsmsxp 24063 mopni3 24402 psmetutop 24475 tngngp3 24564 iscau4 25199 caussi 25217 ovolgelb 25401 mbfi1flim 25644 ellimc3 25800 lhop1 25939 tgbtwndiff 28477 axcontlem4 28938 clwwlknonwwlknonb 30076 sspmval 30703 shmodsi 31359 atcvat4i 32367 cdj3lem2b 32407 ifeqeqx 32512 acunirnmpt 32631 xrge0infss 32733 constrextdg2lem 33751 crefss 33852 issgon 34126 cvmlift2lem12 35326 satfv1 35375 satfvsucsuc 35377 ss2mcls 35580 btwndiff 36040 seglecgr12im 36123 fnessref 36370 waj-ax 36427 lukshef-ax2 36428 bj-isrvec 37307 icorempo 37364 finxpreclem1 37402 fvineqsneq 37425 pibt2 37430 tan2h 37631 poimirlem31 37670 poimir 37672 mblfinlem3 37678 mblfinlem4 37679 ismblfin 37680 cvrat4 39461 athgt 39474 ps-2 39496 paddss1 39835 paddss2 39836 cdlemg33b0 40719 cdlemg33a 40724 dihjat1lem 41446 fphpdo 42829 irrapxlem2 42835 pell14qrss1234 42868 pell1qrss14 42880 acongtr 42990 ofoaid1 43370 ofoaid2 43371 fzunt 43467 fzuntd 43468 fzunt1d 43469 fzuntgd 43470 grumnudlem 44297 ax6e2eq 44569 modelaxreplem1 44990 islptre 45638 limccog 45639 grilcbri2 48021 opnneilv 48919 |
| Copyright terms: Public domain | W3C validator |