Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > anim2d | Structured version Visualization version GIF version |
Description: Add a conjunct to left of antecedent and consequent in a deduction. (Contributed by NM, 14-May-1993.) |
Ref | Expression |
---|---|
anim1d.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
Ref | Expression |
---|---|
anim2d | ⊢ (𝜑 → ((𝜃 ∧ 𝜓) → (𝜃 ∧ 𝜒))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | idd 24 | . 2 ⊢ (𝜑 → (𝜃 → 𝜃)) | |
2 | anim1d.1 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
3 | 1, 2 | anim12d 609 | 1 ⊢ (𝜑 → ((𝜃 ∧ 𝜓) → (𝜃 ∧ 𝜒))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 397 |
This theorem is referenced by: darii 2666 festino 2675 baroco 2677 moeq3 3647 sbcimdv 3790 ssel 3914 sselOLD 3915 sscon 4073 uniss 4847 trel3 5199 ssopab2 5459 coss1 5764 fununi 6509 imadif 6518 fss 6617 ssimaex 6853 ssoprab2 7343 poxp 7969 soxp 7970 suppofssd 8019 pmss12g 8657 ss2ixp 8698 xpdom2 8854 fisup2g 9227 fisupcl 9228 fiinf2g 9259 inf3lem1 9386 epfrs 9489 cfub 10005 cflm 10006 fin23lem34 10102 isf32lem2 10110 axcc4 10195 domtriomlem 10198 ltexprlem3 10794 nnunb 12229 indstr 12656 qbtwnxr 12934 qsqueeze 12935 xrsupsslem 13041 xrinfmsslem 13042 ioc0 13126 climshftlem 15283 o1rlimmul 15328 ramub2 16715 monmat2matmon 21973 tgcl 22119 neips 22264 ssnei2 22267 tgcnp 22404 cnpnei 22415 cnpco 22418 hauscmplem 22557 hauscmp 22558 llyss 22630 nllyss 22631 lfinun 22676 kgen2ss 22706 txcnpi 22759 txcmplem1 22792 fgss 23024 cnpflf2 23151 fclsss1 23173 fclscf 23176 alexsubALT 23202 cnextcn 23218 tsmsxp 23306 mopni3 23650 psmetutop 23723 tngngp3 23820 iscau4 24443 caussi 24461 ovolgelb 24644 mbfi1flim 24888 ellimc3 25043 lhop1 25178 tgbtwndiff 26867 axcontlem4 27335 clwwlknonwwlknonb 28470 sspmval 29095 shmodsi 29751 atcvat4i 30759 cdj3lem2b 30799 ifeqeqx 30885 acunirnmpt 30996 xrge0infss 31083 crefss 31799 issgon 32091 cvmlift2lem12 33276 satfv1 33325 satfvsucsuc 33327 ss2mcls 33530 poseq 33802 btwndiff 34329 seglecgr12im 34412 fnessref 34546 waj-ax 34603 lukshef-ax2 34604 bj-isrvec 35465 icorempo 35522 finxpreclem1 35560 fvineqsneq 35583 pibt2 35588 tan2h 35769 poimirlem31 35808 poimir 35810 mblfinlem3 35816 mblfinlem4 35817 ismblfin 35818 cvrat4 37457 athgt 37470 ps-2 37492 paddss1 37831 paddss2 37832 cdlemg33b0 38715 cdlemg33a 38720 dihjat1lem 39442 fphpdo 40639 irrapxlem2 40645 pell14qrss1234 40678 pell1qrss14 40690 acongtr 40800 fzunt 41062 fzuntd 41063 fzunt1d 41064 fzuntgd 41065 grumnudlem 41903 ax6e2eq 42177 islptre 43160 limccog 43161 opnneilv 46202 |
Copyright terms: Public domain | W3C validator |