| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > anim2d | Structured version Visualization version GIF version | ||
| Description: Add a conjunct to left of antecedent and consequent in a deduction. (Contributed by NM, 14-May-1993.) |
| Ref | Expression |
|---|---|
| anim1d.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
| Ref | Expression |
|---|---|
| anim2d | ⊢ (𝜑 → ((𝜃 ∧ 𝜓) → (𝜃 ∧ 𝜒))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | idd 24 | . 2 ⊢ (𝜑 → (𝜃 → 𝜃)) | |
| 2 | anim1d.1 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
| 3 | 1, 2 | anim12d 609 | 1 ⊢ (𝜑 → ((𝜃 ∧ 𝜓) → (𝜃 ∧ 𝜒))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: darii 2662 festino 2671 baroco 2673 moeq3 3668 sbcimdv 3807 ssel 3925 sscon 4094 uniss 4868 trel3 5211 axprlem4 5368 ssopab2 5491 coss1 5802 fununi 6564 imadif 6573 fss 6675 ssimaex 6916 ssoprab2 7423 poxp 8067 soxp 8068 poseq 8097 suppofssd 8142 pmss12g 8802 ss2ixp 8843 xpdom2 8995 fisup2g 9363 fisupcl 9364 fiinf2g 9396 elirrv 9493 inf3lem1 9528 epfrs 9631 cfub 10150 cflm 10151 fin23lem34 10247 isf32lem2 10255 axcc4 10340 domtriomlem 10343 ltexprlem3 10939 nnunb 12387 indstr 12824 qbtwnxr 13109 qsqueeze 13110 xrsupsslem 13216 xrinfmsslem 13217 ioc0 13302 climshftlem 15491 o1rlimmul 15536 ramub2 16936 chnrss 18531 monmat2matmon 22749 tgcl 22894 neips 23038 ssnei2 23041 tgcnp 23178 cnpnei 23189 cnpco 23192 hauscmplem 23331 hauscmp 23332 llyss 23404 nllyss 23405 lfinun 23450 kgen2ss 23480 txcnpi 23533 txcmplem1 23566 fgss 23798 cnpflf2 23925 fclsss1 23947 fclscf 23950 alexsubALT 23976 cnextcn 23992 tsmsxp 24080 mopni3 24419 psmetutop 24492 tngngp3 24581 iscau4 25216 caussi 25234 ovolgelb 25418 mbfi1flim 25661 ellimc3 25817 lhop1 25956 tgbtwndiff 28494 axcontlem4 28956 clwwlknonwwlknonb 30097 sspmval 30724 shmodsi 31380 atcvat4i 32388 cdj3lem2b 32428 ifeqeqx 32533 acunirnmpt 32652 xrge0infss 32754 constrextdg2lem 33772 crefss 33873 issgon 34147 r1omhfb 35134 r1omhfbregs 35144 cvmlift2lem12 35369 satfv1 35418 satfvsucsuc 35420 ss2mcls 35623 btwndiff 36082 seglecgr12im 36165 fnessref 36412 waj-ax 36469 lukshef-ax2 36470 bj-isrvec 37349 icorempo 37406 finxpreclem1 37444 fvineqsneq 37467 pibt2 37472 tan2h 37662 poimirlem31 37701 poimir 37703 mblfinlem3 37709 mblfinlem4 37710 ismblfin 37711 cvrat4 39552 athgt 39565 ps-2 39587 paddss1 39926 paddss2 39927 cdlemg33b0 40810 cdlemg33a 40815 dihjat1lem 41537 fphpdo 42924 irrapxlem2 42930 pell14qrss1234 42963 pell1qrss14 42975 acongtr 43085 ofoaid1 43465 ofoaid2 43466 fzunt 43562 fzuntd 43563 fzunt1d 43564 fzuntgd 43565 grumnudlem 44392 ax6e2eq 44664 modelaxreplem1 45085 islptre 45733 limccog 45734 grilcbri2 48125 opnneilv 49023 |
| Copyright terms: Public domain | W3C validator |