![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > anim2d | Structured version Visualization version GIF version |
Description: Add a conjunct to left of antecedent and consequent in a deduction. (Contributed by NM, 14-May-1993.) |
Ref | Expression |
---|---|
anim1d.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
Ref | Expression |
---|---|
anim2d | ⊢ (𝜑 → ((𝜃 ∧ 𝜓) → (𝜃 ∧ 𝜒))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | idd 24 | . 2 ⊢ (𝜑 → (𝜃 → 𝜃)) | |
2 | anim1d.1 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
3 | 1, 2 | anim12d 608 | 1 ⊢ (𝜑 → ((𝜃 ∧ 𝜓) → (𝜃 ∧ 𝜒))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 208 df-an 397 |
This theorem is referenced by: sbimdvOLD 2470 sbimdOLD 2472 darii 2724 festino 2733 baroco 2735 moeq3 3639 ssel 3883 sscon 4036 uniss 4766 trel3 5071 ssopab2 5323 coss1 5612 fununi 6299 imadif 6308 fss 6395 ssimaex 6615 ssoprab2 7081 poxp 7675 soxp 7676 suppofssd 7718 pmss12g 8283 ss2ixp 8323 xpdom2 8459 fisup2g 8778 fisupcl 8779 fiinf2g 8810 inf3lem1 8937 epfrs 9019 cfub 9517 cflm 9518 fin23lem34 9614 isf32lem2 9622 axcc4 9707 domtriomlem 9710 ltexprlem3 10306 nnunb 11741 indstr 12165 qbtwnxr 12443 qsqueeze 12444 xrsupsslem 12550 xrinfmsslem 12551 ioc0 12635 climshftlem 14765 o1rlimmul 14809 ramub2 16179 monmat2matmon 21116 tgcl 21261 neips 21405 ssnei2 21408 tgcnp 21545 cnpnei 21556 cnpco 21559 hauscmplem 21698 hauscmp 21699 llyss 21771 nllyss 21772 lfinun 21817 kgen2ss 21847 txcnpi 21900 txcmplem1 21933 fgss 22165 cnpflf2 22292 fclsss1 22314 fclscf 22317 alexsubALT 22343 cnextcn 22359 tsmsxp 22446 mopni3 22787 psmetutop 22860 tngngp3 22948 iscau4 23565 caussi 23583 ovolgelb 23764 mbfi1flim 24007 ellimc3 24160 lhop1 24294 tgbtwndiff 25974 axcontlem4 26436 sspmval 28201 shmodsi 28857 atcvat4i 29865 cdj3lem2b 29905 ifeqeqx 29986 acunirnmpt 30094 xrge0infss 30172 crefss 30730 issgon 30999 cvmlift2lem12 32169 satfv1 32218 satfvsucsuc 32220 ss2mcls 32423 poseq 32704 btwndiff 33097 seglecgr12im 33180 fnessref 33314 waj-ax 33371 lukshef-ax2 33372 icorempo 34163 finxpreclem1 34201 fvineqsneq 34224 pibt2 34229 tan2h 34415 poimirlem31 34454 poimir 34456 mblfinlem3 34462 mblfinlem4 34463 ismblfin 34464 cvrat4 36110 athgt 36123 ps-2 36145 paddss1 36484 paddss2 36485 cdlemg33b0 37368 cdlemg33a 37373 dihjat1lem 38095 fphpdo 38899 irrapxlem2 38905 pell14qrss1234 38938 pell1qrss14 38950 acongtr 39060 grumnudlem 40118 ax6e2eq 40430 islptre 41442 limccog 41443 |
Copyright terms: Public domain | W3C validator |