|   | Mathbox for Richard Penner | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > Mathboxes > frege55lem1a | Structured version Visualization version GIF version | ||
| Description: Necessary deduction regarding substitution of value in equality. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.) | 
| Ref | Expression | 
|---|---|
| frege55lem1a | ⊢ ((𝜏 → if-(𝜓, 𝜑, ¬ 𝜑)) → (𝜏 → (𝜓 ↔ 𝜑))) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | frege54cor0a 43876 | . . 3 ⊢ ((𝜓 ↔ 𝜑) ↔ if-(𝜓, 𝜑, ¬ 𝜑)) | |
| 2 | 1 | biimpri 228 | . 2 ⊢ (if-(𝜓, 𝜑, ¬ 𝜑) → (𝜓 ↔ 𝜑)) | 
| 3 | 2 | imim2i 16 | 1 ⊢ ((𝜏 → if-(𝜓, 𝜑, ¬ 𝜑)) → (𝜏 → (𝜓 ↔ 𝜑))) | 
| Colors of variables: wff setvar class | 
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 if-wif 1063 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-frege28 43843 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-ifp 1064 | 
| This theorem is referenced by: frege55cor1a 43882 | 
| Copyright terms: Public domain | W3C validator |