MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gencl Structured version   Visualization version   GIF version

Theorem gencl 3515
Description: Implicit substitution for class with embedded variable. (Contributed by NM, 17-May-1996.)
Hypotheses
Ref Expression
gencl.1 (𝜃 ↔ ∃𝑥(𝜒𝐴 = 𝐵))
gencl.2 (𝐴 = 𝐵 → (𝜑𝜓))
gencl.3 (𝜒𝜑)
Assertion
Ref Expression
gencl (𝜃𝜓)
Distinct variable group:   𝜓,𝑥
Allowed substitution hints:   𝜑(𝑥)   𝜒(𝑥)   𝜃(𝑥)   𝐴(𝑥)   𝐵(𝑥)

Proof of Theorem gencl
StepHypRef Expression
1 gencl.1 . 2 (𝜃 ↔ ∃𝑥(𝜒𝐴 = 𝐵))
2 gencl.3 . . . . 5 (𝜒𝜑)
3 gencl.2 . . . . 5 (𝐴 = 𝐵 → (𝜑𝜓))
42, 3imbitrid 243 . . . 4 (𝐴 = 𝐵 → (𝜒𝜓))
54impcom 407 . . 3 ((𝜒𝐴 = 𝐵) → 𝜓)
65exlimiv 1932 . 2 (∃𝑥(𝜒𝐴 = 𝐵) → 𝜓)
71, 6sylbi 216 1 (𝜃𝜓)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1540  wex 1780
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912
This theorem depends on definitions:  df-bi 206  df-an 396  df-ex 1781
This theorem is referenced by:  2gencl  3516  3gencl  3517  indpi  10908  axrrecex  11164
  Copyright terms: Public domain W3C validator