|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > gencl | Structured version Visualization version GIF version | ||
| Description: Implicit substitution for class with embedded variable. (Contributed by NM, 17-May-1996.) | 
| Ref | Expression | 
|---|---|
| gencl.1 | ⊢ (𝜃 ↔ ∃𝑥(𝜒 ∧ 𝐴 = 𝐵)) | 
| gencl.2 | ⊢ (𝐴 = 𝐵 → (𝜑 ↔ 𝜓)) | 
| gencl.3 | ⊢ (𝜒 → 𝜑) | 
| Ref | Expression | 
|---|---|
| gencl | ⊢ (𝜃 → 𝜓) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | gencl.1 | . 2 ⊢ (𝜃 ↔ ∃𝑥(𝜒 ∧ 𝐴 = 𝐵)) | |
| 2 | gencl.3 | . . . . 5 ⊢ (𝜒 → 𝜑) | |
| 3 | gencl.2 | . . . . 5 ⊢ (𝐴 = 𝐵 → (𝜑 ↔ 𝜓)) | |
| 4 | 2, 3 | imbitrid 244 | . . . 4 ⊢ (𝐴 = 𝐵 → (𝜒 → 𝜓)) | 
| 5 | 4 | impcom 407 | . . 3 ⊢ ((𝜒 ∧ 𝐴 = 𝐵) → 𝜓) | 
| 6 | 5 | exlimiv 1930 | . 2 ⊢ (∃𝑥(𝜒 ∧ 𝐴 = 𝐵) → 𝜓) | 
| 7 | 1, 6 | sylbi 217 | 1 ⊢ (𝜃 → 𝜓) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∃wex 1779 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 | 
| This theorem is referenced by: 2gencl 3524 3gencl 3525 indpi 10947 axrrecex 11203 | 
| Copyright terms: Public domain | W3C validator |