MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  indpi Structured version   Visualization version   GIF version

Theorem indpi 10594
Description: Principle of Finite Induction on positive integers. (Contributed by NM, 23-Mar-1996.) (New usage is discouraged.)
Hypotheses
Ref Expression
indpi.1 (𝑥 = 1o → (𝜑𝜓))
indpi.2 (𝑥 = 𝑦 → (𝜑𝜒))
indpi.3 (𝑥 = (𝑦 +N 1o) → (𝜑𝜃))
indpi.4 (𝑥 = 𝐴 → (𝜑𝜏))
indpi.5 𝜓
indpi.6 (𝑦N → (𝜒𝜃))
Assertion
Ref Expression
indpi (𝐴N𝜏)
Distinct variable groups:   𝑥,𝑦   𝑥,𝐴   𝜓,𝑥   𝜒,𝑥   𝜃,𝑥   𝜏,𝑥   𝜑,𝑦
Allowed substitution hints:   𝜑(𝑥)   𝜓(𝑦)   𝜒(𝑦)   𝜃(𝑦)   𝜏(𝑦)   𝐴(𝑦)

Proof of Theorem indpi
StepHypRef Expression
1 1oex 8280 . . . . . 6 1o ∈ V
21eqvinc 3571 . . . . 5 (1o = 𝐴 ↔ ∃𝑥(𝑥 = 1o𝑥 = 𝐴))
3 indpi.4 . . . . 5 (𝑥 = 𝐴 → (𝜑𝜏))
4 indpi.5 . . . . . 6 𝜓
5 indpi.1 . . . . . 6 (𝑥 = 1o → (𝜑𝜓))
64, 5mpbiri 257 . . . . 5 (𝑥 = 1o𝜑)
72, 3, 6gencl 3461 . . . 4 (1o = 𝐴𝜏)
87eqcoms 2746 . . 3 (𝐴 = 1o𝜏)
98a1i 11 . 2 (𝐴N → (𝐴 = 1o𝜏))
10 pinn 10565 . . . . 5 (𝐴N𝐴 ∈ ω)
11 elni2 10564 . . . . . 6 (𝐴N ↔ (𝐴 ∈ ω ∧ ∅ ∈ 𝐴))
12 nnord 7695 . . . . . . . . 9 (𝐴 ∈ ω → Ord 𝐴)
13 ordsucss 7640 . . . . . . . . 9 (Ord 𝐴 → (∅ ∈ 𝐴 → suc ∅ ⊆ 𝐴))
1412, 13syl 17 . . . . . . . 8 (𝐴 ∈ ω → (∅ ∈ 𝐴 → suc ∅ ⊆ 𝐴))
15 df-1o 8267 . . . . . . . . 9 1o = suc ∅
1615sseq1i 3945 . . . . . . . 8 (1o𝐴 ↔ suc ∅ ⊆ 𝐴)
1714, 16syl6ibr 251 . . . . . . 7 (𝐴 ∈ ω → (∅ ∈ 𝐴 → 1o𝐴))
1817imp 406 . . . . . 6 ((𝐴 ∈ ω ∧ ∅ ∈ 𝐴) → 1o𝐴)
1911, 18sylbi 216 . . . . 5 (𝐴N → 1o𝐴)
20 1onn 8432 . . . . . 6 1o ∈ ω
21 eleq1 2826 . . . . . . . . 9 (𝑥 = 1o → (𝑥N ↔ 1oN))
22 breq2 5074 . . . . . . . . 9 (𝑥 = 1o → (1o <N 𝑥 ↔ 1o <N 1o))
2321, 22anbi12d 630 . . . . . . . 8 (𝑥 = 1o → ((𝑥N ∧ 1o <N 𝑥) ↔ (1oN ∧ 1o <N 1o)))
2423, 5imbi12d 344 . . . . . . 7 (𝑥 = 1o → (((𝑥N ∧ 1o <N 𝑥) → 𝜑) ↔ ((1oN ∧ 1o <N 1o) → 𝜓)))
25 eleq1 2826 . . . . . . . . 9 (𝑥 = 𝑦 → (𝑥N𝑦N))
26 breq2 5074 . . . . . . . . 9 (𝑥 = 𝑦 → (1o <N 𝑥 ↔ 1o <N 𝑦))
2725, 26anbi12d 630 . . . . . . . 8 (𝑥 = 𝑦 → ((𝑥N ∧ 1o <N 𝑥) ↔ (𝑦N ∧ 1o <N 𝑦)))
28 indpi.2 . . . . . . . 8 (𝑥 = 𝑦 → (𝜑𝜒))
2927, 28imbi12d 344 . . . . . . 7 (𝑥 = 𝑦 → (((𝑥N ∧ 1o <N 𝑥) → 𝜑) ↔ ((𝑦N ∧ 1o <N 𝑦) → 𝜒)))
30 pinn 10565 . . . . . . . . . . . . . . 15 (𝑥N𝑥 ∈ ω)
31 eleq1 2826 . . . . . . . . . . . . . . . 16 (𝑥 = suc 𝑦 → (𝑥 ∈ ω ↔ suc 𝑦 ∈ ω))
32 peano2b 7704 . . . . . . . . . . . . . . . 16 (𝑦 ∈ ω ↔ suc 𝑦 ∈ ω)
3331, 32bitr4di 288 . . . . . . . . . . . . . . 15 (𝑥 = suc 𝑦 → (𝑥 ∈ ω ↔ 𝑦 ∈ ω))
3430, 33syl5ib 243 . . . . . . . . . . . . . 14 (𝑥 = suc 𝑦 → (𝑥N𝑦 ∈ ω))
3534adantrd 491 . . . . . . . . . . . . 13 (𝑥 = suc 𝑦 → ((𝑥N ∧ 1o <N 𝑥) → 𝑦 ∈ ω))
36 1pi 10570 . . . . . . . . . . . . . . . 16 1oN
37 ltpiord 10574 . . . . . . . . . . . . . . . 16 ((1oN𝑥N) → (1o <N 𝑥 ↔ 1o𝑥))
3836, 37mpan 686 . . . . . . . . . . . . . . 15 (𝑥N → (1o <N 𝑥 ↔ 1o𝑥))
3938biimpa 476 . . . . . . . . . . . . . 14 ((𝑥N ∧ 1o <N 𝑥) → 1o𝑥)
40 eleq2 2827 . . . . . . . . . . . . . . 15 (𝑥 = suc 𝑦 → (1o𝑥 ↔ 1o ∈ suc 𝑦))
41 elsuci 6317 . . . . . . . . . . . . . . . 16 (1o ∈ suc 𝑦 → (1o𝑦 ∨ 1o = 𝑦))
42 ne0i 4265 . . . . . . . . . . . . . . . . 17 (1o𝑦𝑦 ≠ ∅)
43 0lt1o 8296 . . . . . . . . . . . . . . . . . . 19 ∅ ∈ 1o
44 eleq2 2827 . . . . . . . . . . . . . . . . . . 19 (1o = 𝑦 → (∅ ∈ 1o ↔ ∅ ∈ 𝑦))
4543, 44mpbii 232 . . . . . . . . . . . . . . . . . 18 (1o = 𝑦 → ∅ ∈ 𝑦)
4645ne0d 4266 . . . . . . . . . . . . . . . . 17 (1o = 𝑦𝑦 ≠ ∅)
4742, 46jaoi 853 . . . . . . . . . . . . . . . 16 ((1o𝑦 ∨ 1o = 𝑦) → 𝑦 ≠ ∅)
4841, 47syl 17 . . . . . . . . . . . . . . 15 (1o ∈ suc 𝑦𝑦 ≠ ∅)
4940, 48syl6bi 252 . . . . . . . . . . . . . 14 (𝑥 = suc 𝑦 → (1o𝑥𝑦 ≠ ∅))
5039, 49syl5 34 . . . . . . . . . . . . 13 (𝑥 = suc 𝑦 → ((𝑥N ∧ 1o <N 𝑥) → 𝑦 ≠ ∅))
5135, 50jcad 512 . . . . . . . . . . . 12 (𝑥 = suc 𝑦 → ((𝑥N ∧ 1o <N 𝑥) → (𝑦 ∈ ω ∧ 𝑦 ≠ ∅)))
52 elni 10563 . . . . . . . . . . . 12 (𝑦N ↔ (𝑦 ∈ ω ∧ 𝑦 ≠ ∅))
5351, 52syl6ibr 251 . . . . . . . . . . 11 (𝑥 = suc 𝑦 → ((𝑥N ∧ 1o <N 𝑥) → 𝑦N))
54 simpr 484 . . . . . . . . . . . 12 ((𝑥N ∧ 1o <N 𝑥) → 1o <N 𝑥)
55 breq2 5074 . . . . . . . . . . . 12 (𝑥 = suc 𝑦 → (1o <N 𝑥 ↔ 1o <N suc 𝑦))
5654, 55syl5ib 243 . . . . . . . . . . 11 (𝑥 = suc 𝑦 → ((𝑥N ∧ 1o <N 𝑥) → 1o <N suc 𝑦))
5753, 56jcad 512 . . . . . . . . . 10 (𝑥 = suc 𝑦 → ((𝑥N ∧ 1o <N 𝑥) → (𝑦N ∧ 1o <N suc 𝑦)))
58 addclpi 10579 . . . . . . . . . . . . . . 15 ((𝑦N ∧ 1oN) → (𝑦 +N 1o) ∈ N)
5936, 58mpan2 687 . . . . . . . . . . . . . 14 (𝑦N → (𝑦 +N 1o) ∈ N)
60 addpiord 10571 . . . . . . . . . . . . . . . . . . 19 ((𝑦N ∧ 1oN) → (𝑦 +N 1o) = (𝑦 +o 1o))
6136, 60mpan2 687 . . . . . . . . . . . . . . . . . 18 (𝑦N → (𝑦 +N 1o) = (𝑦 +o 1o))
62 pion 10566 . . . . . . . . . . . . . . . . . . 19 (𝑦N𝑦 ∈ On)
63 oa1suc 8323 . . . . . . . . . . . . . . . . . . 19 (𝑦 ∈ On → (𝑦 +o 1o) = suc 𝑦)
6462, 63syl 17 . . . . . . . . . . . . . . . . . 18 (𝑦N → (𝑦 +o 1o) = suc 𝑦)
6561, 64eqtrd 2778 . . . . . . . . . . . . . . . . 17 (𝑦N → (𝑦 +N 1o) = suc 𝑦)
6665eqeq2d 2749 . . . . . . . . . . . . . . . 16 (𝑦N → (𝑥 = (𝑦 +N 1o) ↔ 𝑥 = suc 𝑦))
6766biimparc 479 . . . . . . . . . . . . . . 15 ((𝑥 = suc 𝑦𝑦N) → 𝑥 = (𝑦 +N 1o))
6867eleq1d 2823 . . . . . . . . . . . . . 14 ((𝑥 = suc 𝑦𝑦N) → (𝑥N ↔ (𝑦 +N 1o) ∈ N))
6959, 68syl5ibr 245 . . . . . . . . . . . . 13 ((𝑥 = suc 𝑦𝑦N) → (𝑦N𝑥N))
7069ex 412 . . . . . . . . . . . 12 (𝑥 = suc 𝑦 → (𝑦N → (𝑦N𝑥N)))
7170pm2.43d 53 . . . . . . . . . . 11 (𝑥 = suc 𝑦 → (𝑦N𝑥N))
7255biimprd 247 . . . . . . . . . . 11 (𝑥 = suc 𝑦 → (1o <N suc 𝑦 → 1o <N 𝑥))
7371, 72anim12d 608 . . . . . . . . . 10 (𝑥 = suc 𝑦 → ((𝑦N ∧ 1o <N suc 𝑦) → (𝑥N ∧ 1o <N 𝑥)))
7457, 73impbid 211 . . . . . . . . 9 (𝑥 = suc 𝑦 → ((𝑥N ∧ 1o <N 𝑥) ↔ (𝑦N ∧ 1o <N suc 𝑦)))
7574imbi1d 341 . . . . . . . 8 (𝑥 = suc 𝑦 → (((𝑥N ∧ 1o <N 𝑥) → 𝜑) ↔ ((𝑦N ∧ 1o <N suc 𝑦) → 𝜑)))
76 indpi.3 . . . . . . . . . . . 12 (𝑥 = (𝑦 +N 1o) → (𝜑𝜃))
7766, 76syl6bir 253 . . . . . . . . . . 11 (𝑦N → (𝑥 = suc 𝑦 → (𝜑𝜃)))
7877adantr 480 . . . . . . . . . 10 ((𝑦N ∧ 1o <N suc 𝑦) → (𝑥 = suc 𝑦 → (𝜑𝜃)))
7978com12 32 . . . . . . . . 9 (𝑥 = suc 𝑦 → ((𝑦N ∧ 1o <N suc 𝑦) → (𝜑𝜃)))
8079pm5.74d 272 . . . . . . . 8 (𝑥 = suc 𝑦 → (((𝑦N ∧ 1o <N suc 𝑦) → 𝜑) ↔ ((𝑦N ∧ 1o <N suc 𝑦) → 𝜃)))
8175, 80bitrd 278 . . . . . . 7 (𝑥 = suc 𝑦 → (((𝑥N ∧ 1o <N 𝑥) → 𝜑) ↔ ((𝑦N ∧ 1o <N suc 𝑦) → 𝜃)))
82 eleq1 2826 . . . . . . . . 9 (𝑥 = 𝐴 → (𝑥N𝐴N))
83 breq2 5074 . . . . . . . . 9 (𝑥 = 𝐴 → (1o <N 𝑥 ↔ 1o <N 𝐴))
8482, 83anbi12d 630 . . . . . . . 8 (𝑥 = 𝐴 → ((𝑥N ∧ 1o <N 𝑥) ↔ (𝐴N ∧ 1o <N 𝐴)))
8584, 3imbi12d 344 . . . . . . 7 (𝑥 = 𝐴 → (((𝑥N ∧ 1o <N 𝑥) → 𝜑) ↔ ((𝐴N ∧ 1o <N 𝐴) → 𝜏)))
8642a1i 12 . . . . . . 7 (1o ∈ ω → ((1oN ∧ 1o <N 1o) → 𝜓))
87 ltpiord 10574 . . . . . . . . . . . . . . 15 ((1oN𝑦N) → (1o <N 𝑦 ↔ 1o𝑦))
8836, 87mpan 686 . . . . . . . . . . . . . 14 (𝑦N → (1o <N 𝑦 ↔ 1o𝑦))
8988pm5.32i 574 . . . . . . . . . . . . 13 ((𝑦N ∧ 1o <N 𝑦) ↔ (𝑦N ∧ 1o𝑦))
9089simplbi2 500 . . . . . . . . . . . 12 (𝑦N → (1o𝑦 → (𝑦N ∧ 1o <N 𝑦)))
9190imim1d 82 . . . . . . . . . . 11 (𝑦N → (((𝑦N ∧ 1o <N 𝑦) → 𝜒) → (1o𝑦𝜒)))
92 ltrelpi 10576 . . . . . . . . . . . . . . 15 <N ⊆ (N × N)
9392brel 5643 . . . . . . . . . . . . . 14 (1o <N suc 𝑦 → (1oN ∧ suc 𝑦N))
94 ltpiord 10574 . . . . . . . . . . . . . 14 ((1oN ∧ suc 𝑦N) → (1o <N suc 𝑦 ↔ 1o ∈ suc 𝑦))
9593, 94syl 17 . . . . . . . . . . . . 13 (1o <N suc 𝑦 → (1o <N suc 𝑦 ↔ 1o ∈ suc 𝑦))
9695ibi 266 . . . . . . . . . . . 12 (1o <N suc 𝑦 → 1o ∈ suc 𝑦)
971eqvinc 3571 . . . . . . . . . . . . . . 15 (1o = 𝑦 ↔ ∃𝑥(𝑥 = 1o𝑥 = 𝑦))
9897, 28, 6gencl 3461 . . . . . . . . . . . . . 14 (1o = 𝑦𝜒)
99 jao 957 . . . . . . . . . . . . . 14 ((1o𝑦𝜒) → ((1o = 𝑦𝜒) → ((1o𝑦 ∨ 1o = 𝑦) → 𝜒)))
10098, 99mpi 20 . . . . . . . . . . . . 13 ((1o𝑦𝜒) → ((1o𝑦 ∨ 1o = 𝑦) → 𝜒))
10141, 100syl5 34 . . . . . . . . . . . 12 ((1o𝑦𝜒) → (1o ∈ suc 𝑦𝜒))
10296, 101syl5 34 . . . . . . . . . . 11 ((1o𝑦𝜒) → (1o <N suc 𝑦𝜒))
10391, 102syl6com 37 . . . . . . . . . 10 (((𝑦N ∧ 1o <N 𝑦) → 𝜒) → (𝑦N → (1o <N suc 𝑦𝜒)))
104103impd 410 . . . . . . . . 9 (((𝑦N ∧ 1o <N 𝑦) → 𝜒) → ((𝑦N ∧ 1o <N suc 𝑦) → 𝜒))
10515sseq1i 3945 . . . . . . . . . . 11 (1o𝑦 ↔ suc ∅ ⊆ 𝑦)
106 0ex 5226 . . . . . . . . . . . 12 ∅ ∈ V
107 sucssel 6343 . . . . . . . . . . . 12 (∅ ∈ V → (suc ∅ ⊆ 𝑦 → ∅ ∈ 𝑦))
108106, 107ax-mp 5 . . . . . . . . . . 11 (suc ∅ ⊆ 𝑦 → ∅ ∈ 𝑦)
109105, 108sylbi 216 . . . . . . . . . 10 (1o𝑦 → ∅ ∈ 𝑦)
110 elni2 10564 . . . . . . . . . . 11 (𝑦N ↔ (𝑦 ∈ ω ∧ ∅ ∈ 𝑦))
111 indpi.6 . . . . . . . . . . 11 (𝑦N → (𝜒𝜃))
112110, 111sylbir 234 . . . . . . . . . 10 ((𝑦 ∈ ω ∧ ∅ ∈ 𝑦) → (𝜒𝜃))
113109, 112sylan2 592 . . . . . . . . 9 ((𝑦 ∈ ω ∧ 1o𝑦) → (𝜒𝜃))
114104, 113syl9r 78 . . . . . . . 8 ((𝑦 ∈ ω ∧ 1o𝑦) → (((𝑦N ∧ 1o <N 𝑦) → 𝜒) → ((𝑦N ∧ 1o <N suc 𝑦) → 𝜃)))
115114adantlr 711 . . . . . . 7 (((𝑦 ∈ ω ∧ 1o ∈ ω) ∧ 1o𝑦) → (((𝑦N ∧ 1o <N 𝑦) → 𝜒) → ((𝑦N ∧ 1o <N suc 𝑦) → 𝜃)))
11624, 29, 81, 85, 86, 115findsg 7720 . . . . . 6 (((𝐴 ∈ ω ∧ 1o ∈ ω) ∧ 1o𝐴) → ((𝐴N ∧ 1o <N 𝐴) → 𝜏))
11720, 116mpanl2 697 . . . . 5 ((𝐴 ∈ ω ∧ 1o𝐴) → ((𝐴N ∧ 1o <N 𝐴) → 𝜏))
11810, 19, 117syl2anc 583 . . . 4 (𝐴N → ((𝐴N ∧ 1o <N 𝐴) → 𝜏))
119118expd 415 . . 3 (𝐴N → (𝐴N → (1o <N 𝐴𝜏)))
120119pm2.43i 52 . 2 (𝐴N → (1o <N 𝐴𝜏))
121 nlt1pi 10593 . . . 4 ¬ 𝐴 <N 1o
122 ltsopi 10575 . . . . . 6 <N Or N
123 sotric 5522 . . . . . 6 (( <N Or N ∧ (𝐴N ∧ 1oN)) → (𝐴 <N 1o ↔ ¬ (𝐴 = 1o ∨ 1o <N 𝐴)))
124122, 123mpan 686 . . . . 5 ((𝐴N ∧ 1oN) → (𝐴 <N 1o ↔ ¬ (𝐴 = 1o ∨ 1o <N 𝐴)))
12536, 124mpan2 687 . . . 4 (𝐴N → (𝐴 <N 1o ↔ ¬ (𝐴 = 1o ∨ 1o <N 𝐴)))
126121, 125mtbii 325 . . 3 (𝐴N → ¬ ¬ (𝐴 = 1o ∨ 1o <N 𝐴))
127126notnotrd 133 . 2 (𝐴N → (𝐴 = 1o ∨ 1o <N 𝐴))
1289, 120, 127mpjaod 856 1 (𝐴N𝜏)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395  wo 843   = wceq 1539  wcel 2108  wne 2942  Vcvv 3422  wss 3883  c0 4253   class class class wbr 5070   Or wor 5493  Ord word 6250  Oncon0 6251  suc csuc 6253  (class class class)co 7255  ωcom 7687  1oc1o 8260   +o coa 8264  Ncnpi 10531   +N cpli 10532   <N clti 10534
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-oadd 8271  df-ni 10559  df-pli 10560  df-lti 10562
This theorem is referenced by:  prlem934  10720
  Copyright terms: Public domain W3C validator