MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  indpi Structured version   Visualization version   GIF version

Theorem indpi 10867
Description: Principle of Finite Induction on positive integers. (Contributed by NM, 23-Mar-1996.) (New usage is discouraged.)
Hypotheses
Ref Expression
indpi.1 (𝑥 = 1o → (𝜑𝜓))
indpi.2 (𝑥 = 𝑦 → (𝜑𝜒))
indpi.3 (𝑥 = (𝑦 +N 1o) → (𝜑𝜃))
indpi.4 (𝑥 = 𝐴 → (𝜑𝜏))
indpi.5 𝜓
indpi.6 (𝑦N → (𝜒𝜃))
Assertion
Ref Expression
indpi (𝐴N𝜏)
Distinct variable groups:   𝑥,𝑦   𝑥,𝐴   𝜓,𝑥   𝜒,𝑥   𝜃,𝑥   𝜏,𝑥   𝜑,𝑦
Allowed substitution hints:   𝜑(𝑥)   𝜓(𝑦)   𝜒(𝑦)   𝜃(𝑦)   𝜏(𝑦)   𝐴(𝑦)

Proof of Theorem indpi
StepHypRef Expression
1 1oex 8447 . . . . . 6 1o ∈ V
21eqvinc 3618 . . . . 5 (1o = 𝐴 ↔ ∃𝑥(𝑥 = 1o𝑥 = 𝐴))
3 indpi.4 . . . . 5 (𝑥 = 𝐴 → (𝜑𝜏))
4 indpi.5 . . . . . 6 𝜓
5 indpi.1 . . . . . 6 (𝑥 = 1o → (𝜑𝜓))
64, 5mpbiri 258 . . . . 5 (𝑥 = 1o𝜑)
72, 3, 6gencl 3492 . . . 4 (1o = 𝐴𝜏)
87eqcoms 2738 . . 3 (𝐴 = 1o𝜏)
98a1i 11 . 2 (𝐴N → (𝐴 = 1o𝜏))
10 pinn 10838 . . . . 5 (𝐴N𝐴 ∈ ω)
11 elni2 10837 . . . . . 6 (𝐴N ↔ (𝐴 ∈ ω ∧ ∅ ∈ 𝐴))
12 nnord 7853 . . . . . . . . 9 (𝐴 ∈ ω → Ord 𝐴)
13 ordsucss 7796 . . . . . . . . 9 (Ord 𝐴 → (∅ ∈ 𝐴 → suc ∅ ⊆ 𝐴))
1412, 13syl 17 . . . . . . . 8 (𝐴 ∈ ω → (∅ ∈ 𝐴 → suc ∅ ⊆ 𝐴))
15 df-1o 8437 . . . . . . . . 9 1o = suc ∅
1615sseq1i 3978 . . . . . . . 8 (1o𝐴 ↔ suc ∅ ⊆ 𝐴)
1714, 16imbitrrdi 252 . . . . . . 7 (𝐴 ∈ ω → (∅ ∈ 𝐴 → 1o𝐴))
1817imp 406 . . . . . 6 ((𝐴 ∈ ω ∧ ∅ ∈ 𝐴) → 1o𝐴)
1911, 18sylbi 217 . . . . 5 (𝐴N → 1o𝐴)
20 1onn 8607 . . . . . 6 1o ∈ ω
21 eleq1 2817 . . . . . . . . 9 (𝑥 = 1o → (𝑥N ↔ 1oN))
22 breq2 5114 . . . . . . . . 9 (𝑥 = 1o → (1o <N 𝑥 ↔ 1o <N 1o))
2321, 22anbi12d 632 . . . . . . . 8 (𝑥 = 1o → ((𝑥N ∧ 1o <N 𝑥) ↔ (1oN ∧ 1o <N 1o)))
2423, 5imbi12d 344 . . . . . . 7 (𝑥 = 1o → (((𝑥N ∧ 1o <N 𝑥) → 𝜑) ↔ ((1oN ∧ 1o <N 1o) → 𝜓)))
25 eleq1 2817 . . . . . . . . 9 (𝑥 = 𝑦 → (𝑥N𝑦N))
26 breq2 5114 . . . . . . . . 9 (𝑥 = 𝑦 → (1o <N 𝑥 ↔ 1o <N 𝑦))
2725, 26anbi12d 632 . . . . . . . 8 (𝑥 = 𝑦 → ((𝑥N ∧ 1o <N 𝑥) ↔ (𝑦N ∧ 1o <N 𝑦)))
28 indpi.2 . . . . . . . 8 (𝑥 = 𝑦 → (𝜑𝜒))
2927, 28imbi12d 344 . . . . . . 7 (𝑥 = 𝑦 → (((𝑥N ∧ 1o <N 𝑥) → 𝜑) ↔ ((𝑦N ∧ 1o <N 𝑦) → 𝜒)))
30 pinn 10838 . . . . . . . . . . . . . . 15 (𝑥N𝑥 ∈ ω)
31 eleq1 2817 . . . . . . . . . . . . . . . 16 (𝑥 = suc 𝑦 → (𝑥 ∈ ω ↔ suc 𝑦 ∈ ω))
32 peano2b 7862 . . . . . . . . . . . . . . . 16 (𝑦 ∈ ω ↔ suc 𝑦 ∈ ω)
3331, 32bitr4di 289 . . . . . . . . . . . . . . 15 (𝑥 = suc 𝑦 → (𝑥 ∈ ω ↔ 𝑦 ∈ ω))
3430, 33imbitrid 244 . . . . . . . . . . . . . 14 (𝑥 = suc 𝑦 → (𝑥N𝑦 ∈ ω))
3534adantrd 491 . . . . . . . . . . . . 13 (𝑥 = suc 𝑦 → ((𝑥N ∧ 1o <N 𝑥) → 𝑦 ∈ ω))
36 1pi 10843 . . . . . . . . . . . . . . . 16 1oN
37 ltpiord 10847 . . . . . . . . . . . . . . . 16 ((1oN𝑥N) → (1o <N 𝑥 ↔ 1o𝑥))
3836, 37mpan 690 . . . . . . . . . . . . . . 15 (𝑥N → (1o <N 𝑥 ↔ 1o𝑥))
3938biimpa 476 . . . . . . . . . . . . . 14 ((𝑥N ∧ 1o <N 𝑥) → 1o𝑥)
40 eleq2 2818 . . . . . . . . . . . . . . 15 (𝑥 = suc 𝑦 → (1o𝑥 ↔ 1o ∈ suc 𝑦))
41 elsuci 6404 . . . . . . . . . . . . . . . 16 (1o ∈ suc 𝑦 → (1o𝑦 ∨ 1o = 𝑦))
42 ne0i 4307 . . . . . . . . . . . . . . . . 17 (1o𝑦𝑦 ≠ ∅)
43 0lt1o 8471 . . . . . . . . . . . . . . . . . . 19 ∅ ∈ 1o
44 eleq2 2818 . . . . . . . . . . . . . . . . . . 19 (1o = 𝑦 → (∅ ∈ 1o ↔ ∅ ∈ 𝑦))
4543, 44mpbii 233 . . . . . . . . . . . . . . . . . 18 (1o = 𝑦 → ∅ ∈ 𝑦)
4645ne0d 4308 . . . . . . . . . . . . . . . . 17 (1o = 𝑦𝑦 ≠ ∅)
4742, 46jaoi 857 . . . . . . . . . . . . . . . 16 ((1o𝑦 ∨ 1o = 𝑦) → 𝑦 ≠ ∅)
4841, 47syl 17 . . . . . . . . . . . . . . 15 (1o ∈ suc 𝑦𝑦 ≠ ∅)
4940, 48biimtrdi 253 . . . . . . . . . . . . . 14 (𝑥 = suc 𝑦 → (1o𝑥𝑦 ≠ ∅))
5039, 49syl5 34 . . . . . . . . . . . . 13 (𝑥 = suc 𝑦 → ((𝑥N ∧ 1o <N 𝑥) → 𝑦 ≠ ∅))
5135, 50jcad 512 . . . . . . . . . . . 12 (𝑥 = suc 𝑦 → ((𝑥N ∧ 1o <N 𝑥) → (𝑦 ∈ ω ∧ 𝑦 ≠ ∅)))
52 elni 10836 . . . . . . . . . . . 12 (𝑦N ↔ (𝑦 ∈ ω ∧ 𝑦 ≠ ∅))
5351, 52imbitrrdi 252 . . . . . . . . . . 11 (𝑥 = suc 𝑦 → ((𝑥N ∧ 1o <N 𝑥) → 𝑦N))
54 simpr 484 . . . . . . . . . . . 12 ((𝑥N ∧ 1o <N 𝑥) → 1o <N 𝑥)
55 breq2 5114 . . . . . . . . . . . 12 (𝑥 = suc 𝑦 → (1o <N 𝑥 ↔ 1o <N suc 𝑦))
5654, 55imbitrid 244 . . . . . . . . . . 11 (𝑥 = suc 𝑦 → ((𝑥N ∧ 1o <N 𝑥) → 1o <N suc 𝑦))
5753, 56jcad 512 . . . . . . . . . 10 (𝑥 = suc 𝑦 → ((𝑥N ∧ 1o <N 𝑥) → (𝑦N ∧ 1o <N suc 𝑦)))
58 addclpi 10852 . . . . . . . . . . . . . . 15 ((𝑦N ∧ 1oN) → (𝑦 +N 1o) ∈ N)
5936, 58mpan2 691 . . . . . . . . . . . . . 14 (𝑦N → (𝑦 +N 1o) ∈ N)
60 addpiord 10844 . . . . . . . . . . . . . . . . . . 19 ((𝑦N ∧ 1oN) → (𝑦 +N 1o) = (𝑦 +o 1o))
6136, 60mpan2 691 . . . . . . . . . . . . . . . . . 18 (𝑦N → (𝑦 +N 1o) = (𝑦 +o 1o))
62 pion 10839 . . . . . . . . . . . . . . . . . . 19 (𝑦N𝑦 ∈ On)
63 oa1suc 8498 . . . . . . . . . . . . . . . . . . 19 (𝑦 ∈ On → (𝑦 +o 1o) = suc 𝑦)
6462, 63syl 17 . . . . . . . . . . . . . . . . . 18 (𝑦N → (𝑦 +o 1o) = suc 𝑦)
6561, 64eqtrd 2765 . . . . . . . . . . . . . . . . 17 (𝑦N → (𝑦 +N 1o) = suc 𝑦)
6665eqeq2d 2741 . . . . . . . . . . . . . . . 16 (𝑦N → (𝑥 = (𝑦 +N 1o) ↔ 𝑥 = suc 𝑦))
6766biimparc 479 . . . . . . . . . . . . . . 15 ((𝑥 = suc 𝑦𝑦N) → 𝑥 = (𝑦 +N 1o))
6867eleq1d 2814 . . . . . . . . . . . . . 14 ((𝑥 = suc 𝑦𝑦N) → (𝑥N ↔ (𝑦 +N 1o) ∈ N))
6959, 68imbitrrid 246 . . . . . . . . . . . . 13 ((𝑥 = suc 𝑦𝑦N) → (𝑦N𝑥N))
7069ex 412 . . . . . . . . . . . 12 (𝑥 = suc 𝑦 → (𝑦N → (𝑦N𝑥N)))
7170pm2.43d 53 . . . . . . . . . . 11 (𝑥 = suc 𝑦 → (𝑦N𝑥N))
7255biimprd 248 . . . . . . . . . . 11 (𝑥 = suc 𝑦 → (1o <N suc 𝑦 → 1o <N 𝑥))
7371, 72anim12d 609 . . . . . . . . . 10 (𝑥 = suc 𝑦 → ((𝑦N ∧ 1o <N suc 𝑦) → (𝑥N ∧ 1o <N 𝑥)))
7457, 73impbid 212 . . . . . . . . 9 (𝑥 = suc 𝑦 → ((𝑥N ∧ 1o <N 𝑥) ↔ (𝑦N ∧ 1o <N suc 𝑦)))
7574imbi1d 341 . . . . . . . 8 (𝑥 = suc 𝑦 → (((𝑥N ∧ 1o <N 𝑥) → 𝜑) ↔ ((𝑦N ∧ 1o <N suc 𝑦) → 𝜑)))
76 indpi.3 . . . . . . . . . . . 12 (𝑥 = (𝑦 +N 1o) → (𝜑𝜃))
7766, 76biimtrrdi 254 . . . . . . . . . . 11 (𝑦N → (𝑥 = suc 𝑦 → (𝜑𝜃)))
7877adantr 480 . . . . . . . . . 10 ((𝑦N ∧ 1o <N suc 𝑦) → (𝑥 = suc 𝑦 → (𝜑𝜃)))
7978com12 32 . . . . . . . . 9 (𝑥 = suc 𝑦 → ((𝑦N ∧ 1o <N suc 𝑦) → (𝜑𝜃)))
8079pm5.74d 273 . . . . . . . 8 (𝑥 = suc 𝑦 → (((𝑦N ∧ 1o <N suc 𝑦) → 𝜑) ↔ ((𝑦N ∧ 1o <N suc 𝑦) → 𝜃)))
8175, 80bitrd 279 . . . . . . 7 (𝑥 = suc 𝑦 → (((𝑥N ∧ 1o <N 𝑥) → 𝜑) ↔ ((𝑦N ∧ 1o <N suc 𝑦) → 𝜃)))
82 eleq1 2817 . . . . . . . . 9 (𝑥 = 𝐴 → (𝑥N𝐴N))
83 breq2 5114 . . . . . . . . 9 (𝑥 = 𝐴 → (1o <N 𝑥 ↔ 1o <N 𝐴))
8482, 83anbi12d 632 . . . . . . . 8 (𝑥 = 𝐴 → ((𝑥N ∧ 1o <N 𝑥) ↔ (𝐴N ∧ 1o <N 𝐴)))
8584, 3imbi12d 344 . . . . . . 7 (𝑥 = 𝐴 → (((𝑥N ∧ 1o <N 𝑥) → 𝜑) ↔ ((𝐴N ∧ 1o <N 𝐴) → 𝜏)))
8642a1i 12 . . . . . . 7 (1o ∈ ω → ((1oN ∧ 1o <N 1o) → 𝜓))
87 ltpiord 10847 . . . . . . . . . . . . . . 15 ((1oN𝑦N) → (1o <N 𝑦 ↔ 1o𝑦))
8836, 87mpan 690 . . . . . . . . . . . . . 14 (𝑦N → (1o <N 𝑦 ↔ 1o𝑦))
8988pm5.32i 574 . . . . . . . . . . . . 13 ((𝑦N ∧ 1o <N 𝑦) ↔ (𝑦N ∧ 1o𝑦))
9089simplbi2 500 . . . . . . . . . . . 12 (𝑦N → (1o𝑦 → (𝑦N ∧ 1o <N 𝑦)))
9190imim1d 82 . . . . . . . . . . 11 (𝑦N → (((𝑦N ∧ 1o <N 𝑦) → 𝜒) → (1o𝑦𝜒)))
92 ltrelpi 10849 . . . . . . . . . . . . . . 15 <N ⊆ (N × N)
9392brel 5706 . . . . . . . . . . . . . 14 (1o <N suc 𝑦 → (1oN ∧ suc 𝑦N))
94 ltpiord 10847 . . . . . . . . . . . . . 14 ((1oN ∧ suc 𝑦N) → (1o <N suc 𝑦 ↔ 1o ∈ suc 𝑦))
9593, 94syl 17 . . . . . . . . . . . . 13 (1o <N suc 𝑦 → (1o <N suc 𝑦 ↔ 1o ∈ suc 𝑦))
9695ibi 267 . . . . . . . . . . . 12 (1o <N suc 𝑦 → 1o ∈ suc 𝑦)
971eqvinc 3618 . . . . . . . . . . . . . . 15 (1o = 𝑦 ↔ ∃𝑥(𝑥 = 1o𝑥 = 𝑦))
9897, 28, 6gencl 3492 . . . . . . . . . . . . . 14 (1o = 𝑦𝜒)
99 jao 962 . . . . . . . . . . . . . 14 ((1o𝑦𝜒) → ((1o = 𝑦𝜒) → ((1o𝑦 ∨ 1o = 𝑦) → 𝜒)))
10098, 99mpi 20 . . . . . . . . . . . . 13 ((1o𝑦𝜒) → ((1o𝑦 ∨ 1o = 𝑦) → 𝜒))
10141, 100syl5 34 . . . . . . . . . . . 12 ((1o𝑦𝜒) → (1o ∈ suc 𝑦𝜒))
10296, 101syl5 34 . . . . . . . . . . 11 ((1o𝑦𝜒) → (1o <N suc 𝑦𝜒))
10391, 102syl6com 37 . . . . . . . . . 10 (((𝑦N ∧ 1o <N 𝑦) → 𝜒) → (𝑦N → (1o <N suc 𝑦𝜒)))
104103impd 410 . . . . . . . . 9 (((𝑦N ∧ 1o <N 𝑦) → 𝜒) → ((𝑦N ∧ 1o <N suc 𝑦) → 𝜒))
10515sseq1i 3978 . . . . . . . . . . 11 (1o𝑦 ↔ suc ∅ ⊆ 𝑦)
106 0ex 5265 . . . . . . . . . . . 12 ∅ ∈ V
107 sucssel 6432 . . . . . . . . . . . 12 (∅ ∈ V → (suc ∅ ⊆ 𝑦 → ∅ ∈ 𝑦))
108106, 107ax-mp 5 . . . . . . . . . . 11 (suc ∅ ⊆ 𝑦 → ∅ ∈ 𝑦)
109105, 108sylbi 217 . . . . . . . . . 10 (1o𝑦 → ∅ ∈ 𝑦)
110 elni2 10837 . . . . . . . . . . 11 (𝑦N ↔ (𝑦 ∈ ω ∧ ∅ ∈ 𝑦))
111 indpi.6 . . . . . . . . . . 11 (𝑦N → (𝜒𝜃))
112110, 111sylbir 235 . . . . . . . . . 10 ((𝑦 ∈ ω ∧ ∅ ∈ 𝑦) → (𝜒𝜃))
113109, 112sylan2 593 . . . . . . . . 9 ((𝑦 ∈ ω ∧ 1o𝑦) → (𝜒𝜃))
114104, 113syl9r 78 . . . . . . . 8 ((𝑦 ∈ ω ∧ 1o𝑦) → (((𝑦N ∧ 1o <N 𝑦) → 𝜒) → ((𝑦N ∧ 1o <N suc 𝑦) → 𝜃)))
115114adantlr 715 . . . . . . 7 (((𝑦 ∈ ω ∧ 1o ∈ ω) ∧ 1o𝑦) → (((𝑦N ∧ 1o <N 𝑦) → 𝜒) → ((𝑦N ∧ 1o <N suc 𝑦) → 𝜃)))
11624, 29, 81, 85, 86, 115findsg 7876 . . . . . 6 (((𝐴 ∈ ω ∧ 1o ∈ ω) ∧ 1o𝐴) → ((𝐴N ∧ 1o <N 𝐴) → 𝜏))
11720, 116mpanl2 701 . . . . 5 ((𝐴 ∈ ω ∧ 1o𝐴) → ((𝐴N ∧ 1o <N 𝐴) → 𝜏))
11810, 19, 117syl2anc 584 . . . 4 (𝐴N → ((𝐴N ∧ 1o <N 𝐴) → 𝜏))
119118expd 415 . . 3 (𝐴N → (𝐴N → (1o <N 𝐴𝜏)))
120119pm2.43i 52 . 2 (𝐴N → (1o <N 𝐴𝜏))
121 nlt1pi 10866 . . . 4 ¬ 𝐴 <N 1o
122 ltsopi 10848 . . . . . 6 <N Or N
123 sotric 5579 . . . . . 6 (( <N Or N ∧ (𝐴N ∧ 1oN)) → (𝐴 <N 1o ↔ ¬ (𝐴 = 1o ∨ 1o <N 𝐴)))
124122, 123mpan 690 . . . . 5 ((𝐴N ∧ 1oN) → (𝐴 <N 1o ↔ ¬ (𝐴 = 1o ∨ 1o <N 𝐴)))
12536, 124mpan2 691 . . . 4 (𝐴N → (𝐴 <N 1o ↔ ¬ (𝐴 = 1o ∨ 1o <N 𝐴)))
126121, 125mtbii 326 . . 3 (𝐴N → ¬ ¬ (𝐴 = 1o ∨ 1o <N 𝐴))
127126notnotrd 133 . 2 (𝐴N → (𝐴 = 1o ∨ 1o <N 𝐴))
1289, 120, 127mpjaod 860 1 (𝐴N𝜏)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847   = wceq 1540  wcel 2109  wne 2926  Vcvv 3450  wss 3917  c0 4299   class class class wbr 5110   Or wor 5548  Ord word 6334  Oncon0 6335  suc csuc 6337  (class class class)co 7390  ωcom 7845  1oc1o 8430   +o coa 8434  Ncnpi 10804   +N cpli 10805   <N clti 10807
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pr 5390  ax-un 7714
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-oadd 8441  df-ni 10832  df-pli 10833  df-lti 10835
This theorem is referenced by:  prlem934  10993
  Copyright terms: Public domain W3C validator