Proof of Theorem 3gencl
| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | 3gencl.3 | . . . . 5
⊢ (𝐺 ∈ 𝑆 ↔ ∃𝑧 ∈ 𝑅 𝐶 = 𝐺) | 
| 2 |  | df-rex 3071 | . . . . 5
⊢
(∃𝑧 ∈
𝑅 𝐶 = 𝐺 ↔ ∃𝑧(𝑧 ∈ 𝑅 ∧ 𝐶 = 𝐺)) | 
| 3 | 1, 2 | bitri 275 | . . . 4
⊢ (𝐺 ∈ 𝑆 ↔ ∃𝑧(𝑧 ∈ 𝑅 ∧ 𝐶 = 𝐺)) | 
| 4 |  | 3gencl.6 | . . . . 5
⊢ (𝐶 = 𝐺 → (𝜒 ↔ 𝜃)) | 
| 5 | 4 | imbi2d 340 | . . . 4
⊢ (𝐶 = 𝐺 → (((𝐷 ∈ 𝑆 ∧ 𝐹 ∈ 𝑆) → 𝜒) ↔ ((𝐷 ∈ 𝑆 ∧ 𝐹 ∈ 𝑆) → 𝜃))) | 
| 6 |  | 3gencl.1 | . . . . . 6
⊢ (𝐷 ∈ 𝑆 ↔ ∃𝑥 ∈ 𝑅 𝐴 = 𝐷) | 
| 7 |  | 3gencl.2 | . . . . . 6
⊢ (𝐹 ∈ 𝑆 ↔ ∃𝑦 ∈ 𝑅 𝐵 = 𝐹) | 
| 8 |  | 3gencl.4 | . . . . . . 7
⊢ (𝐴 = 𝐷 → (𝜑 ↔ 𝜓)) | 
| 9 | 8 | imbi2d 340 | . . . . . 6
⊢ (𝐴 = 𝐷 → ((𝑧 ∈ 𝑅 → 𝜑) ↔ (𝑧 ∈ 𝑅 → 𝜓))) | 
| 10 |  | 3gencl.5 | . . . . . . 7
⊢ (𝐵 = 𝐹 → (𝜓 ↔ 𝜒)) | 
| 11 | 10 | imbi2d 340 | . . . . . 6
⊢ (𝐵 = 𝐹 → ((𝑧 ∈ 𝑅 → 𝜓) ↔ (𝑧 ∈ 𝑅 → 𝜒))) | 
| 12 |  | 3gencl.7 | . . . . . . 7
⊢ ((𝑥 ∈ 𝑅 ∧ 𝑦 ∈ 𝑅 ∧ 𝑧 ∈ 𝑅) → 𝜑) | 
| 13 | 12 | 3expia 1122 | . . . . . 6
⊢ ((𝑥 ∈ 𝑅 ∧ 𝑦 ∈ 𝑅) → (𝑧 ∈ 𝑅 → 𝜑)) | 
| 14 | 6, 7, 9, 11, 13 | 2gencl 3524 | . . . . 5
⊢ ((𝐷 ∈ 𝑆 ∧ 𝐹 ∈ 𝑆) → (𝑧 ∈ 𝑅 → 𝜒)) | 
| 15 | 14 | com12 32 | . . . 4
⊢ (𝑧 ∈ 𝑅 → ((𝐷 ∈ 𝑆 ∧ 𝐹 ∈ 𝑆) → 𝜒)) | 
| 16 | 3, 5, 15 | gencl 3523 | . . 3
⊢ (𝐺 ∈ 𝑆 → ((𝐷 ∈ 𝑆 ∧ 𝐹 ∈ 𝑆) → 𝜃)) | 
| 17 | 16 | com12 32 | . 2
⊢ ((𝐷 ∈ 𝑆 ∧ 𝐹 ∈ 𝑆) → (𝐺 ∈ 𝑆 → 𝜃)) | 
| 18 | 17 | 3impia 1118 | 1
⊢ ((𝐷 ∈ 𝑆 ∧ 𝐹 ∈ 𝑆 ∧ 𝐺 ∈ 𝑆) → 𝜃) |