MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ceqsralvOLD Structured version   Visualization version   GIF version

Theorem ceqsralvOLD 3460
Description: Obsolete version of ceqsalv 3457 as of 8-Sep-2024. (Contributed by NM, 21-Jun-2013.) (New usage is discouraged.) (Proof modification is discouraged.)
Hypothesis
Ref Expression
ceqsralv.2 (𝑥 = 𝐴 → (𝜑𝜓))
Assertion
Ref Expression
ceqsralvOLD (𝐴𝐵 → (∀𝑥𝐵 (𝑥 = 𝐴𝜑) ↔ 𝜓))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝜓,𝑥
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem ceqsralvOLD
StepHypRef Expression
1 nfv 1918 . 2 𝑥𝜓
2 ceqsralv.2 . . 3 (𝑥 = 𝐴 → (𝜑𝜓))
32ax-gen 1799 . 2 𝑥(𝑥 = 𝐴 → (𝜑𝜓))
4 ceqsralt 3453 . 2 ((Ⅎ𝑥𝜓 ∧ ∀𝑥(𝑥 = 𝐴 → (𝜑𝜓)) ∧ 𝐴𝐵) → (∀𝑥𝐵 (𝑥 = 𝐴𝜑) ↔ 𝜓))
51, 3, 4mp3an12 1449 1 (𝐴𝐵 → (∀𝑥𝐵 (𝑥 = 𝐴𝜑) ↔ 𝜓))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wal 1537   = wceq 1539  wnf 1787  wcel 2108  wral 3063
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-12 2173  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 396  df-3an 1087  df-tru 1542  df-ex 1784  df-nf 1788  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-ral 3068
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator