| Metamath
Proof Explorer Theorem List (p. 36 of 497) | < Previous Next > | |
| Bad symbols? Try the
GIF version. |
||
|
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
||
| Color key: | (1-30845) |
(30846-32368) |
(32369-49617) |
| Type | Label | Description |
|---|---|---|
| Statement | ||
| Theorem | ceqsralv 3501* | Restricted quantifier version of ceqsalv 3500. (Contributed by NM, 21-Jun-2013.) Avoid ax-9 2118, ax-12 2177, ax-ext 2707. (Revised by SN, 8-Sep-2024.) |
| ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (𝐴 ∈ 𝐵 → (∀𝑥 ∈ 𝐵 (𝑥 = 𝐴 → 𝜑) ↔ 𝜓)) | ||
| Theorem | gencl 3502* | Implicit substitution for class with embedded variable. (Contributed by NM, 17-May-1996.) |
| ⊢ (𝜃 ↔ ∃𝑥(𝜒 ∧ 𝐴 = 𝐵)) & ⊢ (𝐴 = 𝐵 → (𝜑 ↔ 𝜓)) & ⊢ (𝜒 → 𝜑) ⇒ ⊢ (𝜃 → 𝜓) | ||
| Theorem | 2gencl 3503* | Implicit substitution for class with embedded variable. (Contributed by NM, 17-May-1996.) |
| ⊢ (𝐶 ∈ 𝑆 ↔ ∃𝑥 ∈ 𝑅 𝐴 = 𝐶) & ⊢ (𝐷 ∈ 𝑆 ↔ ∃𝑦 ∈ 𝑅 𝐵 = 𝐷) & ⊢ (𝐴 = 𝐶 → (𝜑 ↔ 𝜓)) & ⊢ (𝐵 = 𝐷 → (𝜓 ↔ 𝜒)) & ⊢ ((𝑥 ∈ 𝑅 ∧ 𝑦 ∈ 𝑅) → 𝜑) ⇒ ⊢ ((𝐶 ∈ 𝑆 ∧ 𝐷 ∈ 𝑆) → 𝜒) | ||
| Theorem | 3gencl 3504* | Implicit substitution for class with embedded variable. (Contributed by NM, 17-May-1996.) |
| ⊢ (𝐷 ∈ 𝑆 ↔ ∃𝑥 ∈ 𝑅 𝐴 = 𝐷) & ⊢ (𝐹 ∈ 𝑆 ↔ ∃𝑦 ∈ 𝑅 𝐵 = 𝐹) & ⊢ (𝐺 ∈ 𝑆 ↔ ∃𝑧 ∈ 𝑅 𝐶 = 𝐺) & ⊢ (𝐴 = 𝐷 → (𝜑 ↔ 𝜓)) & ⊢ (𝐵 = 𝐹 → (𝜓 ↔ 𝜒)) & ⊢ (𝐶 = 𝐺 → (𝜒 ↔ 𝜃)) & ⊢ ((𝑥 ∈ 𝑅 ∧ 𝑦 ∈ 𝑅 ∧ 𝑧 ∈ 𝑅) → 𝜑) ⇒ ⊢ ((𝐷 ∈ 𝑆 ∧ 𝐹 ∈ 𝑆 ∧ 𝐺 ∈ 𝑆) → 𝜃) | ||
| Theorem | cgsexg 3505* | Implicit substitution inference for general classes. (Contributed by NM, 26-Aug-2007.) |
| ⊢ (𝑥 = 𝐴 → 𝜒) & ⊢ (𝜒 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (𝐴 ∈ 𝑉 → (∃𝑥(𝜒 ∧ 𝜑) ↔ 𝜓)) | ||
| Theorem | cgsex2g 3506* | Implicit substitution inference for general classes. (Contributed by NM, 26-Jul-1995.) |
| ⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → 𝜒) & ⊢ (𝜒 → (𝜑 ↔ 𝜓)) ⇒ ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (∃𝑥∃𝑦(𝜒 ∧ 𝜑) ↔ 𝜓)) | ||
| Theorem | cgsex4g 3507* | An implicit substitution inference for 4 general classes. (Contributed by NM, 5-Aug-1995.) Avoid ax-10 2141, ax-11 2157. (Revised by GG, 28-Jun-2024.) Avoid ax-9 2118, ax-ext 2707. (Revised by Wolf Lammen, 21-Mar-2025.) |
| ⊢ (((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) ∧ (𝑧 = 𝐶 ∧ 𝑤 = 𝐷)) → 𝜒) & ⊢ (𝜒 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (((𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑆) ∧ (𝐶 ∈ 𝑅 ∧ 𝐷 ∈ 𝑆)) → (∃𝑥∃𝑦∃𝑧∃𝑤(𝜒 ∧ 𝜑) ↔ 𝜓)) | ||
| Theorem | cgsex4gOLD 3508* | Obsolete version of cgsex4g 3507 as of 21-Mar-2025. (Contributed by NM, 5-Aug-1995.) Avoid ax-10 2141, ax-11 2157. (Revised by GG, 28-Jun-2024.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ (((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) ∧ (𝑧 = 𝐶 ∧ 𝑤 = 𝐷)) → 𝜒) & ⊢ (𝜒 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (((𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑆) ∧ (𝐶 ∈ 𝑅 ∧ 𝐷 ∈ 𝑆)) → (∃𝑥∃𝑦∃𝑧∃𝑤(𝜒 ∧ 𝜑) ↔ 𝜓)) | ||
| Theorem | ceqsex 3509* | Elimination of an existential quantifier, using implicit substitution. (Contributed by NM, 2-Mar-1995.) (Revised by Mario Carneiro, 10-Oct-2016.) (Proof shortened by Wolf Lammen, 22-Jan-2025.) |
| ⊢ Ⅎ𝑥𝜓 & ⊢ 𝐴 ∈ V & ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (∃𝑥(𝑥 = 𝐴 ∧ 𝜑) ↔ 𝜓) | ||
| Theorem | ceqsexOLD 3510* | Obsolete version of ceqsex 3509 as of 22-Jan-2025. (Contributed by NM, 2-Mar-1995.) (Revised by Mario Carneiro, 10-Oct-2016.) (New usage is discouraged.) (Proof modification is discouraged.) |
| ⊢ Ⅎ𝑥𝜓 & ⊢ 𝐴 ∈ V & ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (∃𝑥(𝑥 = 𝐴 ∧ 𝜑) ↔ 𝜓) | ||
| Theorem | ceqsexv 3511* | Elimination of an existential quantifier, using implicit substitution. (Contributed by NM, 2-Mar-1995.) Avoid ax-12 2177. (Revised by GG, 12-Oct-2024.) (Proof shortened by Wolf Lammen, 22-Jan-2025.) |
| ⊢ 𝐴 ∈ V & ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (∃𝑥(𝑥 = 𝐴 ∧ 𝜑) ↔ 𝜓) | ||
| Theorem | ceqsexv2d 3512* | Elimination of an existential quantifier, using implicit substitution. (Contributed by Thierry Arnoux, 10-Sep-2016.) Shorten, reduce dv conditions. (Revised by Wolf Lammen, 5-Jun-2025.) (Proof shortened by SN, 5-Jun-2025.) |
| ⊢ 𝐴 ∈ V & ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) & ⊢ 𝜓 ⇒ ⊢ ∃𝑥𝜑 | ||
| Theorem | ceqsexv2dOLD 3513* | Obsolete version of ceqsexv2d 3512 as of 5-Jun-2025. (Contributed by Thierry Arnoux, 10-Sep-2016.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ 𝐴 ∈ V & ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) & ⊢ 𝜓 ⇒ ⊢ ∃𝑥𝜑 | ||
| Theorem | ceqsex2 3514* | Elimination of two existential quantifiers, using implicit substitution. (Contributed by Scott Fenton, 7-Jun-2006.) |
| ⊢ Ⅎ𝑥𝜓 & ⊢ Ⅎ𝑦𝜒 & ⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V & ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) & ⊢ (𝑦 = 𝐵 → (𝜓 ↔ 𝜒)) ⇒ ⊢ (∃𝑥∃𝑦(𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ∧ 𝜑) ↔ 𝜒) | ||
| Theorem | ceqsex2v 3515* | Elimination of two existential quantifiers, using implicit substitution. (Contributed by Scott Fenton, 7-Jun-2006.) Avoid ax-10 2141 and ax-11 2157. (Revised by GG, 20-Aug-2023.) |
| ⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V & ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) & ⊢ (𝑦 = 𝐵 → (𝜓 ↔ 𝜒)) ⇒ ⊢ (∃𝑥∃𝑦(𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ∧ 𝜑) ↔ 𝜒) | ||
| Theorem | ceqsex3v 3516* | Elimination of three existential quantifiers, using implicit substitution. (Contributed by NM, 16-Aug-2011.) |
| ⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V & ⊢ 𝐶 ∈ V & ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) & ⊢ (𝑦 = 𝐵 → (𝜓 ↔ 𝜒)) & ⊢ (𝑧 = 𝐶 → (𝜒 ↔ 𝜃)) ⇒ ⊢ (∃𝑥∃𝑦∃𝑧((𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ∧ 𝑧 = 𝐶) ∧ 𝜑) ↔ 𝜃) | ||
| Theorem | ceqsex4v 3517* | Elimination of four existential quantifiers, using implicit substitution. (Contributed by NM, 23-Sep-2011.) |
| ⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V & ⊢ 𝐶 ∈ V & ⊢ 𝐷 ∈ V & ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) & ⊢ (𝑦 = 𝐵 → (𝜓 ↔ 𝜒)) & ⊢ (𝑧 = 𝐶 → (𝜒 ↔ 𝜃)) & ⊢ (𝑤 = 𝐷 → (𝜃 ↔ 𝜏)) ⇒ ⊢ (∃𝑥∃𝑦∃𝑧∃𝑤((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) ∧ (𝑧 = 𝐶 ∧ 𝑤 = 𝐷) ∧ 𝜑) ↔ 𝜏) | ||
| Theorem | ceqsex6v 3518* | Elimination of six existential quantifiers, using implicit substitution. (Contributed by NM, 21-Sep-2011.) |
| ⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V & ⊢ 𝐶 ∈ V & ⊢ 𝐷 ∈ V & ⊢ 𝐸 ∈ V & ⊢ 𝐹 ∈ V & ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) & ⊢ (𝑦 = 𝐵 → (𝜓 ↔ 𝜒)) & ⊢ (𝑧 = 𝐶 → (𝜒 ↔ 𝜃)) & ⊢ (𝑤 = 𝐷 → (𝜃 ↔ 𝜏)) & ⊢ (𝑣 = 𝐸 → (𝜏 ↔ 𝜂)) & ⊢ (𝑢 = 𝐹 → (𝜂 ↔ 𝜁)) ⇒ ⊢ (∃𝑥∃𝑦∃𝑧∃𝑤∃𝑣∃𝑢((𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ∧ 𝑧 = 𝐶) ∧ (𝑤 = 𝐷 ∧ 𝑣 = 𝐸 ∧ 𝑢 = 𝐹) ∧ 𝜑) ↔ 𝜁) | ||
| Theorem | ceqsex8v 3519* | Elimination of eight existential quantifiers, using implicit substitution. (Contributed by NM, 23-Sep-2011.) |
| ⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V & ⊢ 𝐶 ∈ V & ⊢ 𝐷 ∈ V & ⊢ 𝐸 ∈ V & ⊢ 𝐹 ∈ V & ⊢ 𝐺 ∈ V & ⊢ 𝐻 ∈ V & ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) & ⊢ (𝑦 = 𝐵 → (𝜓 ↔ 𝜒)) & ⊢ (𝑧 = 𝐶 → (𝜒 ↔ 𝜃)) & ⊢ (𝑤 = 𝐷 → (𝜃 ↔ 𝜏)) & ⊢ (𝑣 = 𝐸 → (𝜏 ↔ 𝜂)) & ⊢ (𝑢 = 𝐹 → (𝜂 ↔ 𝜁)) & ⊢ (𝑡 = 𝐺 → (𝜁 ↔ 𝜎)) & ⊢ (𝑠 = 𝐻 → (𝜎 ↔ 𝜌)) ⇒ ⊢ (∃𝑥∃𝑦∃𝑧∃𝑤∃𝑣∃𝑢∃𝑡∃𝑠(((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) ∧ (𝑧 = 𝐶 ∧ 𝑤 = 𝐷)) ∧ ((𝑣 = 𝐸 ∧ 𝑢 = 𝐹) ∧ (𝑡 = 𝐺 ∧ 𝑠 = 𝐻)) ∧ 𝜑) ↔ 𝜌) | ||
| Theorem | gencbvex 3520* | Change of bound variable using implicit substitution. (Contributed by NM, 17-May-1996.) (Proof shortened by Andrew Salmon, 8-Jun-2011.) |
| ⊢ 𝐴 ∈ V & ⊢ (𝐴 = 𝑦 → (𝜑 ↔ 𝜓)) & ⊢ (𝐴 = 𝑦 → (𝜒 ↔ 𝜃)) & ⊢ (𝜃 ↔ ∃𝑥(𝜒 ∧ 𝐴 = 𝑦)) ⇒ ⊢ (∃𝑥(𝜒 ∧ 𝜑) ↔ ∃𝑦(𝜃 ∧ 𝜓)) | ||
| Theorem | gencbvex2 3521* | Restatement of gencbvex 3520 with weaker hypotheses. (Contributed by Jeff Hankins, 6-Dec-2006.) |
| ⊢ 𝐴 ∈ V & ⊢ (𝐴 = 𝑦 → (𝜑 ↔ 𝜓)) & ⊢ (𝐴 = 𝑦 → (𝜒 ↔ 𝜃)) & ⊢ (𝜃 → ∃𝑥(𝜒 ∧ 𝐴 = 𝑦)) ⇒ ⊢ (∃𝑥(𝜒 ∧ 𝜑) ↔ ∃𝑦(𝜃 ∧ 𝜓)) | ||
| Theorem | gencbval 3522* | Change of bound variable using implicit substitution. (Contributed by NM, 17-May-1996.) |
| ⊢ 𝐴 ∈ V & ⊢ (𝐴 = 𝑦 → (𝜑 ↔ 𝜓)) & ⊢ (𝐴 = 𝑦 → (𝜒 ↔ 𝜃)) & ⊢ (𝜃 ↔ ∃𝑥(𝜒 ∧ 𝐴 = 𝑦)) ⇒ ⊢ (∀𝑥(𝜒 → 𝜑) ↔ ∀𝑦(𝜃 → 𝜓)) | ||
| Theorem | sbhypf 3523* | Introduce an explicit substitution into an implicit substitution hypothesis. See also csbhypf 3902. (Contributed by Raph Levien, 10-Apr-2004.) (Proof shortened by Wolf Lammen, 25-Jan-2025.) |
| ⊢ Ⅎ𝑥𝜓 & ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (𝑦 = 𝐴 → ([𝑦 / 𝑥]𝜑 ↔ 𝜓)) | ||
| Theorem | sbhypfOLD 3524* | Obsolete version of sbhypf 3523 as of 25-Jan-2025. (Contributed by Raph Levien, 10-Apr-2004.) (New usage is discouraged.) (Proof modification is discouraged.) |
| ⊢ Ⅎ𝑥𝜓 & ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (𝑦 = 𝐴 → ([𝑦 / 𝑥]𝜑 ↔ 𝜓)) | ||
| Theorem | spcimgft 3525 | Closed theorem form of spcimgf 3529. (Contributed by Wolf Lammen, 28-Jul-2025.) |
| ⊢ (((Ⅎ𝑥𝐴 ∧ Ⅎ𝑥𝜓) ∧ ∀𝑥(𝑥 = 𝐴 → (𝜑 → 𝜓))) → (𝐴 ∈ 𝑉 → (∀𝑥𝜑 → 𝜓))) | ||
| Theorem | spcimgfi1 3526 | A closed version of spcimgf 3529. (Contributed by Mario Carneiro, 4-Jan-2017.) (Proof shortened by Wolf Lammen, 27-Jul-2025.) |
| ⊢ Ⅎ𝑥𝜓 & ⊢ Ⅎ𝑥𝐴 ⇒ ⊢ (∀𝑥(𝑥 = 𝐴 → (𝜑 → 𝜓)) → (𝐴 ∈ 𝐵 → (∀𝑥𝜑 → 𝜓))) | ||
| Theorem | spcimgfi1OLD 3527 | Obsolete version of spcimgfi1 3526 as of 27-Jul-2025. (Contributed by Mario Carneiro, 4-Jan-2017.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ Ⅎ𝑥𝜓 & ⊢ Ⅎ𝑥𝐴 ⇒ ⊢ (∀𝑥(𝑥 = 𝐴 → (𝜑 → 𝜓)) → (𝐴 ∈ 𝐵 → (∀𝑥𝜑 → 𝜓))) | ||
| Theorem | spcgft 3528 | A closed version of spcgf 3570. (Contributed by Andrew Salmon, 6-Jun-2011.) (Revised by Mario Carneiro, 4-Jan-2017.) |
| ⊢ Ⅎ𝑥𝜓 & ⊢ Ⅎ𝑥𝐴 ⇒ ⊢ (∀𝑥(𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) → (𝐴 ∈ 𝐵 → (∀𝑥𝜑 → 𝜓))) | ||
| Theorem | spcimgf 3529 | Rule of specialization, using implicit substitution. Compare Theorem 7.3 of [Quine] p. 44. (Contributed by Mario Carneiro, 4-Jan-2017.) |
| ⊢ Ⅎ𝑥𝐴 & ⊢ Ⅎ𝑥𝜓 & ⊢ (𝑥 = 𝐴 → (𝜑 → 𝜓)) ⇒ ⊢ (𝐴 ∈ 𝑉 → (∀𝑥𝜑 → 𝜓)) | ||
| Theorem | spcimegf 3530 | Existential specialization, using implicit substitution. (Contributed by Mario Carneiro, 4-Jan-2017.) |
| ⊢ Ⅎ𝑥𝐴 & ⊢ Ⅎ𝑥𝜓 & ⊢ (𝑥 = 𝐴 → (𝜓 → 𝜑)) ⇒ ⊢ (𝐴 ∈ 𝑉 → (𝜓 → ∃𝑥𝜑)) | ||
| Theorem | vtoclgft 3531 | Closed theorem form of vtoclgf 3548. The reverse implication is proven in ceqsal1t 3493. See ceqsalt 3494 for a version with 𝑥 and 𝐴 disjoint. (Contributed by NM, 17-Feb-2013.) (Revised by Mario Carneiro, 12-Oct-2016.) (Proof shortened by JJ, 11-Aug-2021.) Avoid ax-13 2376. (Revised by GG, 6-Oct-2023.) |
| ⊢ (((Ⅎ𝑥𝐴 ∧ Ⅎ𝑥𝜓) ∧ (∀𝑥(𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) ∧ ∀𝑥𝜑) ∧ 𝐴 ∈ 𝑉) → 𝜓) | ||
| Theorem | vtocleg 3532* | Implicit substitution of a class for a setvar variable. (Contributed by NM, 21-Jun-1993.) |
| ⊢ (𝑥 = 𝐴 → 𝜑) ⇒ ⊢ (𝐴 ∈ 𝑉 → 𝜑) | ||
| Theorem | vtoclg 3533* | Implicit substitution of a class expression for a setvar variable. (Contributed by NM, 17-Apr-1995.) Avoid ax-12 2177. (Revised by SN, 20-Apr-2024.) (Proof shortened by Wolf Lammen, 26-Jan-2025.) |
| ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) & ⊢ 𝜑 ⇒ ⊢ (𝐴 ∈ 𝑉 → 𝜓) | ||
| Theorem | vtocle 3534* | Implicit substitution of a class for a setvar variable. (Contributed by NM, 9-Sep-1993.) Avoid df-clab 2714. (Revised by Wolf Lammen, 31-May-2025.) |
| ⊢ 𝐴 ∈ V & ⊢ (𝑥 = 𝐴 → 𝜑) ⇒ ⊢ 𝜑 | ||
| Theorem | vtocleOLD 3535* | Obsolete version of vtocle 3534 as of 31-May-2025. (Contributed by NM, 9-Sep-1993.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ 𝐴 ∈ V & ⊢ (𝑥 = 𝐴 → 𝜑) ⇒ ⊢ 𝜑 | ||
| Theorem | vtoclbg 3536* | Implicit substitution of a class for a setvar variable. (Contributed by NM, 29-Apr-1994.) |
| ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜒)) & ⊢ (𝑥 = 𝐴 → (𝜓 ↔ 𝜃)) & ⊢ (𝜑 ↔ 𝜓) ⇒ ⊢ (𝐴 ∈ 𝑉 → (𝜒 ↔ 𝜃)) | ||
| Theorem | vtocl 3537* | Implicit substitution of a class for a setvar variable. (Contributed by NM, 30-Aug-1993.) Remove dependency on ax-10 2141. (Revised by BJ, 29-Nov-2020.) (Proof shortened by SN, 20-Apr-2024.) (Proof shortened by Wolf Lammen, 20-Jun-2025.) |
| ⊢ 𝐴 ∈ V & ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) & ⊢ 𝜑 ⇒ ⊢ 𝜓 | ||
| Theorem | vtoclOLD 3538* | Obsolete version of vtocl 3537 as of 20-Jun-2025. (Contributed by NM, 30-Aug-1993.) Remove dependency on ax-10 2141. (Revised by BJ, 29-Nov-2020.) (Proof shortened by SN, 20-Apr-2024.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ 𝐴 ∈ V & ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) & ⊢ 𝜑 ⇒ ⊢ 𝜓 | ||
| Theorem | vtocldf 3539 | Implicit substitution of a class for a setvar variable. (Contributed by Mario Carneiro, 15-Oct-2016.) |
| ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → (𝜓 ↔ 𝜒)) & ⊢ (𝜑 → 𝜓) & ⊢ Ⅎ𝑥𝜑 & ⊢ (𝜑 → Ⅎ𝑥𝐴) & ⊢ (𝜑 → Ⅎ𝑥𝜒) ⇒ ⊢ (𝜑 → 𝜒) | ||
| Theorem | vtocld 3540* | Implicit substitution of a class for a setvar variable. (Contributed by Mario Carneiro, 15-Oct-2016.) Avoid ax-10 2141, ax-11 2157, ax-12 2177. (Revised by SN, 2-Sep-2024.) |
| ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → (𝜓 ↔ 𝜒)) & ⊢ (𝜑 → 𝜓) ⇒ ⊢ (𝜑 → 𝜒) | ||
| Theorem | vtocl2d 3541* | Implicit substitution of two classes for two setvar variables. (Contributed by Thierry Arnoux, 25-Aug-2020.) (Revised by BTernaryTau, 19-Oct-2023.) |
| ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝐵 ∈ 𝑊) & ⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → (𝜓 ↔ 𝜒)) & ⊢ (𝜑 → 𝜓) ⇒ ⊢ (𝜑 → 𝜒) | ||
| Theorem | vtoclef 3542* | Implicit substitution of a class for a setvar variable. (Contributed by NM, 18-Aug-1993.) |
| ⊢ Ⅎ𝑥𝜑 & ⊢ 𝐴 ∈ V & ⊢ (𝑥 = 𝐴 → 𝜑) ⇒ ⊢ 𝜑 | ||
| Theorem | vtoclf 3543* | Implicit substitution of a class for a setvar variable. This is a generalization of chvar 2399. (Contributed by NM, 30-Aug-1993.) (Proof shortened by Wolf Lammen, 26-Jan-2025.) |
| ⊢ Ⅎ𝑥𝜓 & ⊢ 𝐴 ∈ V & ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) & ⊢ 𝜑 ⇒ ⊢ 𝜓 | ||
| Theorem | vtoclfOLD 3544* | Obsolete version of vtoclf 3543 as of 26-Jan-2025. (Contributed by NM, 30-Aug-1993.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ Ⅎ𝑥𝜓 & ⊢ 𝐴 ∈ V & ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) & ⊢ 𝜑 ⇒ ⊢ 𝜓 | ||
| Theorem | vtocl2 3545* | Implicit substitution of classes for setvar variables. (Contributed by NM, 26-Jul-1995.) (Proof shortened by Andrew Salmon, 8-Jun-2011.) |
| ⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V & ⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → (𝜑 ↔ 𝜓)) & ⊢ 𝜑 ⇒ ⊢ 𝜓 | ||
| Theorem | vtocl3 3546* | Implicit substitution of classes for setvar variables. (Contributed by NM, 3-Jun-1995.) (Proof shortened by Andrew Salmon, 8-Jun-2011.) Avoid ax-10 2141 and ax-11 2157. (Revised by GG, 20-Aug-2023.) (Proof shortened by Wolf Lammen, 23-Aug-2023.) |
| ⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V & ⊢ 𝐶 ∈ V & ⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ∧ 𝑧 = 𝐶) → (𝜑 ↔ 𝜓)) & ⊢ 𝜑 ⇒ ⊢ 𝜓 | ||
| Theorem | vtoclb 3547* | Implicit substitution of a class for a setvar variable. (Contributed by NM, 23-Dec-1993.) |
| ⊢ 𝐴 ∈ V & ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜒)) & ⊢ (𝑥 = 𝐴 → (𝜓 ↔ 𝜃)) & ⊢ (𝜑 ↔ 𝜓) ⇒ ⊢ (𝜒 ↔ 𝜃) | ||
| Theorem | vtoclgf 3548 | Implicit substitution of a class for a setvar variable, with bound-variable hypotheses in place of disjoint variable restrictions. (Contributed by NM, 21-Sep-2003.) (Proof shortened by Mario Carneiro, 10-Oct-2016.) |
| ⊢ Ⅎ𝑥𝐴 & ⊢ Ⅎ𝑥𝜓 & ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) & ⊢ 𝜑 ⇒ ⊢ (𝐴 ∈ 𝑉 → 𝜓) | ||
| Theorem | vtoclg1f 3549* | Version of vtoclgf 3548 with one nonfreeness hypothesis replaced with a disjoint variable condition, thus avoiding dependency on ax-10 2141 and ax-11 2157. (Contributed by BJ, 1-May-2019.) |
| ⊢ Ⅎ𝑥𝜓 & ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) & ⊢ 𝜑 ⇒ ⊢ (𝐴 ∈ 𝑉 → 𝜓) | ||
| Theorem | vtoclgOLD 3550* | Obsolete version of vtoclg 3533 as of 26-Jan-2025. (Contributed by NM, 17-Apr-1995.) Avoid ax-12 2177. (Revised by SN, 20-Apr-2024.) (New usage is discouraged.) (Proof modification is discouraged.) |
| ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) & ⊢ 𝜑 ⇒ ⊢ (𝐴 ∈ 𝑉 → 𝜓) | ||
| Theorem | vtocl2gf 3551 | Implicit substitution of a class for a setvar variable. (Contributed by NM, 25-Apr-1995.) |
| ⊢ Ⅎ𝑥𝐴 & ⊢ Ⅎ𝑦𝐴 & ⊢ Ⅎ𝑦𝐵 & ⊢ Ⅎ𝑥𝜓 & ⊢ Ⅎ𝑦𝜒 & ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) & ⊢ (𝑦 = 𝐵 → (𝜓 ↔ 𝜒)) & ⊢ 𝜑 ⇒ ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → 𝜒) | ||
| Theorem | vtocl3gf 3552 | Implicit substitution of a class for a setvar variable. (Contributed by NM, 10-Aug-2013.) (Revised by Mario Carneiro, 10-Oct-2016.) |
| ⊢ Ⅎ𝑥𝐴 & ⊢ Ⅎ𝑦𝐴 & ⊢ Ⅎ𝑧𝐴 & ⊢ Ⅎ𝑦𝐵 & ⊢ Ⅎ𝑧𝐵 & ⊢ Ⅎ𝑧𝐶 & ⊢ Ⅎ𝑥𝜓 & ⊢ Ⅎ𝑦𝜒 & ⊢ Ⅎ𝑧𝜃 & ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) & ⊢ (𝑦 = 𝐵 → (𝜓 ↔ 𝜒)) & ⊢ (𝑧 = 𝐶 → (𝜒 ↔ 𝜃)) & ⊢ 𝜑 ⇒ ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋) → 𝜃) | ||
| Theorem | vtocl2g 3553* | Implicit substitution of 2 classes for 2 setvar variables. (Contributed by NM, 25-Apr-1995.) Remove dependency on ax-10 2141, ax-11 2157, and ax-13 2376. (Revised by Steven Nguyen, 29-Nov-2022.) |
| ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) & ⊢ (𝑦 = 𝐵 → (𝜓 ↔ 𝜒)) & ⊢ 𝜑 ⇒ ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → 𝜒) | ||
| Theorem | vtocl3g 3554* | Implicit substitution of a class for a setvar variable. Version of vtocl3gf 3552 with disjoint variable conditions instead of nonfreeness hypotheses, requiring fewer axioms. (Contributed by GG, 3-Oct-2024.) |
| ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) & ⊢ (𝑦 = 𝐵 → (𝜓 ↔ 𝜒)) & ⊢ (𝑧 = 𝐶 → (𝜒 ↔ 𝜃)) & ⊢ 𝜑 ⇒ ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋) → 𝜃) | ||
| Theorem | vtoclgaf 3555* | Implicit substitution of a class for a setvar variable. (Contributed by NM, 17-Feb-2006.) (Revised by Mario Carneiro, 10-Oct-2016.) |
| ⊢ Ⅎ𝑥𝐴 & ⊢ Ⅎ𝑥𝜓 & ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) & ⊢ (𝑥 ∈ 𝐵 → 𝜑) ⇒ ⊢ (𝐴 ∈ 𝐵 → 𝜓) | ||
| Theorem | vtoclga 3556* | Implicit substitution of a class for a setvar variable. (Contributed by NM, 20-Aug-1995.) Avoid ax-10 2141 and ax-11 2157. (Revised by GG, 20-Aug-2023.) |
| ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) & ⊢ (𝑥 ∈ 𝐵 → 𝜑) ⇒ ⊢ (𝐴 ∈ 𝐵 → 𝜓) | ||
| Theorem | vtocl2ga 3557* | Implicit substitution of 2 classes for 2 setvar variables. (Contributed by NM, 20-Aug-1995.) Avoid ax-10 2141 and ax-11 2157. (Revised by GG, 20-Aug-2023.) (Proof shortened by Wolf Lammen, 23-Aug-2023.) |
| ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) & ⊢ (𝑦 = 𝐵 → (𝜓 ↔ 𝜒)) & ⊢ ((𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐷) → 𝜑) ⇒ ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → 𝜒) | ||
| Theorem | vtocl2gaf 3558* | Implicit substitution of 2 classes for 2 setvar variables. (Contributed by NM, 10-Aug-2013.) (Proof shortened by Wolf Lammen, 31-May-2025.) |
| ⊢ Ⅎ𝑥𝐴 & ⊢ Ⅎ𝑦𝐴 & ⊢ Ⅎ𝑦𝐵 & ⊢ Ⅎ𝑥𝜓 & ⊢ Ⅎ𝑦𝜒 & ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) & ⊢ (𝑦 = 𝐵 → (𝜓 ↔ 𝜒)) & ⊢ ((𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐷) → 𝜑) ⇒ ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → 𝜒) | ||
| Theorem | vtocl2gafOLD 3559* | Obsolete version of vtocl2gaf 3558 as of 31-May-2025. (Contributed by NM, 10-Aug-2013.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ Ⅎ𝑥𝐴 & ⊢ Ⅎ𝑦𝐴 & ⊢ Ⅎ𝑦𝐵 & ⊢ Ⅎ𝑥𝜓 & ⊢ Ⅎ𝑦𝜒 & ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) & ⊢ (𝑦 = 𝐵 → (𝜓 ↔ 𝜒)) & ⊢ ((𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐷) → 𝜑) ⇒ ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → 𝜒) | ||
| Theorem | vtocl3gaf 3560* | Implicit substitution of 3 classes for 3 setvar variables. (Contributed by NM, 10-Aug-2013.) (Revised by Mario Carneiro, 11-Oct-2016.) (Proof shortened by Wolf Lammen, 31-May-2025.) |
| ⊢ Ⅎ𝑥𝐴 & ⊢ Ⅎ𝑦𝐴 & ⊢ Ⅎ𝑧𝐴 & ⊢ Ⅎ𝑦𝐵 & ⊢ Ⅎ𝑧𝐵 & ⊢ Ⅎ𝑧𝐶 & ⊢ Ⅎ𝑥𝜓 & ⊢ Ⅎ𝑦𝜒 & ⊢ Ⅎ𝑧𝜃 & ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) & ⊢ (𝑦 = 𝐵 → (𝜓 ↔ 𝜒)) & ⊢ (𝑧 = 𝐶 → (𝜒 ↔ 𝜃)) & ⊢ ((𝑥 ∈ 𝑅 ∧ 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑇) → 𝜑) ⇒ ⊢ ((𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑆 ∧ 𝐶 ∈ 𝑇) → 𝜃) | ||
| Theorem | vtocl3gafOLD 3561* | Obsolete version of vtocl3gaf 3560 as of 31-May-2025. (Contributed by NM, 10-Aug-2013.) (Revised by Mario Carneiro, 11-Oct-2016.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ Ⅎ𝑥𝐴 & ⊢ Ⅎ𝑦𝐴 & ⊢ Ⅎ𝑧𝐴 & ⊢ Ⅎ𝑦𝐵 & ⊢ Ⅎ𝑧𝐵 & ⊢ Ⅎ𝑧𝐶 & ⊢ Ⅎ𝑥𝜓 & ⊢ Ⅎ𝑦𝜒 & ⊢ Ⅎ𝑧𝜃 & ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) & ⊢ (𝑦 = 𝐵 → (𝜓 ↔ 𝜒)) & ⊢ (𝑧 = 𝐶 → (𝜒 ↔ 𝜃)) & ⊢ ((𝑥 ∈ 𝑅 ∧ 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑇) → 𝜑) ⇒ ⊢ ((𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑆 ∧ 𝐶 ∈ 𝑇) → 𝜃) | ||
| Theorem | vtocl3ga 3562* | Implicit substitution of 3 classes for 3 setvar variables. (Contributed by NM, 20-Aug-1995.) Reduce axiom usage. (Revised by GG, 3-Oct-2024.) (Proof shortened by Wolf Lammen, 31-May-2025.) |
| ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) & ⊢ (𝑦 = 𝐵 → (𝜓 ↔ 𝜒)) & ⊢ (𝑧 = 𝐶 → (𝜒 ↔ 𝜃)) & ⊢ ((𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝑅 ∧ 𝑧 ∈ 𝑆) → 𝜑) ⇒ ⊢ ((𝐴 ∈ 𝐷 ∧ 𝐵 ∈ 𝑅 ∧ 𝐶 ∈ 𝑆) → 𝜃) | ||
| Theorem | vtocl3gaOLD 3563* | Obsolete version of vtocl3ga 3562 as of 31-May-2025. (Contributed by NM, 20-Aug-1995.) Reduce axiom usage. (Revised by GG, 3-Oct-2024.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) & ⊢ (𝑦 = 𝐵 → (𝜓 ↔ 𝜒)) & ⊢ (𝑧 = 𝐶 → (𝜒 ↔ 𝜃)) & ⊢ ((𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝑅 ∧ 𝑧 ∈ 𝑆) → 𝜑) ⇒ ⊢ ((𝐴 ∈ 𝐷 ∧ 𝐵 ∈ 𝑅 ∧ 𝐶 ∈ 𝑆) → 𝜃) | ||
| Theorem | vtocl4g 3564* | Implicit substitution of 4 classes for 4 setvar variables. (Contributed by AV, 22-Jan-2019.) |
| ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) & ⊢ (𝑦 = 𝐵 → (𝜓 ↔ 𝜒)) & ⊢ (𝑧 = 𝐶 → (𝜒 ↔ 𝜌)) & ⊢ (𝑤 = 𝐷 → (𝜌 ↔ 𝜃)) & ⊢ 𝜑 ⇒ ⊢ (((𝐴 ∈ 𝑄 ∧ 𝐵 ∈ 𝑅) ∧ (𝐶 ∈ 𝑆 ∧ 𝐷 ∈ 𝑇)) → 𝜃) | ||
| Theorem | vtocl4ga 3565* | Implicit substitution of 4 classes for 4 setvar variables. (Contributed by AV, 22-Jan-2019.) (Proof shortened by Wolf Lammen, 31-May-2025.) |
| ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) & ⊢ (𝑦 = 𝐵 → (𝜓 ↔ 𝜒)) & ⊢ (𝑧 = 𝐶 → (𝜒 ↔ 𝜌)) & ⊢ (𝑤 = 𝐷 → (𝜌 ↔ 𝜃)) & ⊢ (((𝑥 ∈ 𝑄 ∧ 𝑦 ∈ 𝑅) ∧ (𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑇)) → 𝜑) ⇒ ⊢ (((𝐴 ∈ 𝑄 ∧ 𝐵 ∈ 𝑅) ∧ (𝐶 ∈ 𝑆 ∧ 𝐷 ∈ 𝑇)) → 𝜃) | ||
| Theorem | vtocl4gaOLD 3566* | Obsolete version of vtocl4ga 3565 as of 31-May-2025. (Contributed by AV, 22-Jan-2019.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) & ⊢ (𝑦 = 𝐵 → (𝜓 ↔ 𝜒)) & ⊢ (𝑧 = 𝐶 → (𝜒 ↔ 𝜌)) & ⊢ (𝑤 = 𝐷 → (𝜌 ↔ 𝜃)) & ⊢ (((𝑥 ∈ 𝑄 ∧ 𝑦 ∈ 𝑅) ∧ (𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑇)) → 𝜑) ⇒ ⊢ (((𝐴 ∈ 𝑄 ∧ 𝐵 ∈ 𝑅) ∧ (𝐶 ∈ 𝑆 ∧ 𝐷 ∈ 𝑇)) → 𝜃) | ||
| Theorem | vtoclegft 3567* | Implicit substitution of a class for a setvar variable. (Closed theorem version of vtoclef 3542.) (Contributed by NM, 7-Nov-2005.) (Revised by Mario Carneiro, 11-Oct-2016.) (Proof shortened by Wolf Lammen, 26-Jan-2025.) |
| ⊢ ((𝐴 ∈ 𝐵 ∧ Ⅎ𝑥𝜑 ∧ ∀𝑥(𝑥 = 𝐴 → 𝜑)) → 𝜑) | ||
| Theorem | vtoclegftOLD 3568* | Obsolete version of vtoclegft 3567 as of 26-Jan-2025. (Contributed by NM, 7-Nov-2005.) (Revised by Mario Carneiro, 11-Oct-2016.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ ((𝐴 ∈ 𝐵 ∧ Ⅎ𝑥𝜑 ∧ ∀𝑥(𝑥 = 𝐴 → 𝜑)) → 𝜑) | ||
| Theorem | vtoclri 3569* | Implicit substitution of a class for a setvar variable. (Contributed by NM, 21-Nov-1994.) |
| ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) & ⊢ ∀𝑥 ∈ 𝐵 𝜑 ⇒ ⊢ (𝐴 ∈ 𝐵 → 𝜓) | ||
| Theorem | spcgf 3570 | Rule of specialization, using implicit substitution. Compare Theorem 7.3 of [Quine] p. 44. (Contributed by NM, 2-Feb-1997.) (Revised by Andrew Salmon, 12-Aug-2011.) |
| ⊢ Ⅎ𝑥𝐴 & ⊢ Ⅎ𝑥𝜓 & ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (𝐴 ∈ 𝑉 → (∀𝑥𝜑 → 𝜓)) | ||
| Theorem | spcegf 3571 | Existential specialization, using implicit substitution. (Contributed by NM, 2-Feb-1997.) |
| ⊢ Ⅎ𝑥𝐴 & ⊢ Ⅎ𝑥𝜓 & ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (𝐴 ∈ 𝑉 → (𝜓 → ∃𝑥𝜑)) | ||
| Theorem | spcimdv 3572* | Restricted specialization, using implicit substitution. (Contributed by Mario Carneiro, 4-Jan-2017.) Avoid ax-10 2141 and ax-11 2157. (Revised by GG, 20-Aug-2023.) |
| ⊢ (𝜑 → 𝐴 ∈ 𝐵) & ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → (𝜓 → 𝜒)) ⇒ ⊢ (𝜑 → (∀𝑥𝜓 → 𝜒)) | ||
| Theorem | spcdv 3573* | Rule of specialization, using implicit substitution. Analogous to rspcdv 3593. (Contributed by David Moews, 1-May-2017.) |
| ⊢ (𝜑 → 𝐴 ∈ 𝐵) & ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → (𝜓 ↔ 𝜒)) ⇒ ⊢ (𝜑 → (∀𝑥𝜓 → 𝜒)) | ||
| Theorem | spcimedv 3574* | Restricted existential specialization, using implicit substitution. (Contributed by Mario Carneiro, 4-Jan-2017.) |
| ⊢ (𝜑 → 𝐴 ∈ 𝐵) & ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → (𝜒 → 𝜓)) ⇒ ⊢ (𝜑 → (𝜒 → ∃𝑥𝜓)) | ||
| Theorem | spcgv 3575* | Rule of specialization, using implicit substitution. Compare Theorem 7.3 of [Quine] p. 44. (Contributed by NM, 22-Jun-1994.) Avoid ax-10 2141, ax-11 2157. (Revised by Wolf Lammen, 25-Aug-2023.) |
| ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (𝐴 ∈ 𝑉 → (∀𝑥𝜑 → 𝜓)) | ||
| Theorem | spcegv 3576* | Existential specialization, using implicit substitution. (Contributed by NM, 14-Aug-1994.) Avoid ax-10 2141, ax-11 2157. (Revised by Wolf Lammen, 25-Aug-2023.) |
| ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (𝐴 ∈ 𝑉 → (𝜓 → ∃𝑥𝜑)) | ||
| Theorem | spcedv 3577* | Existential specialization, using implicit substitution, deduction version. (Contributed by RP, 12-Aug-2020.) (Revised by AV, 16-Aug-2024.) |
| ⊢ (𝜑 → 𝑋 ∈ 𝑉) & ⊢ (𝜑 → 𝜒) & ⊢ (𝑥 = 𝑋 → (𝜓 ↔ 𝜒)) ⇒ ⊢ (𝜑 → ∃𝑥𝜓) | ||
| Theorem | spc2egv 3578* | Existential specialization with two quantifiers, using implicit substitution. (Contributed by NM, 3-Aug-1995.) |
| ⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → (𝜑 ↔ 𝜓)) ⇒ ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝜓 → ∃𝑥∃𝑦𝜑)) | ||
| Theorem | spc2gv 3579* | Specialization with two quantifiers, using implicit substitution. (Contributed by NM, 27-Apr-2004.) |
| ⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → (𝜑 ↔ 𝜓)) ⇒ ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (∀𝑥∀𝑦𝜑 → 𝜓)) | ||
| Theorem | spc2ed 3580* | Existential specialization with 2 quantifiers, using implicit substitution. (Contributed by Thierry Arnoux, 23-Aug-2017.) |
| ⊢ Ⅎ𝑥𝜒 & ⊢ Ⅎ𝑦𝜒 & ⊢ ((𝜑 ∧ (𝑥 = 𝐴 ∧ 𝑦 = 𝐵)) → (𝜓 ↔ 𝜒)) ⇒ ⊢ ((𝜑 ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊)) → (𝜒 → ∃𝑥∃𝑦𝜓)) | ||
| Theorem | spc2d 3581* | Specialization with 2 quantifiers, using implicit substitution. (Contributed by Thierry Arnoux, 23-Aug-2017.) |
| ⊢ Ⅎ𝑥𝜒 & ⊢ Ⅎ𝑦𝜒 & ⊢ ((𝜑 ∧ (𝑥 = 𝐴 ∧ 𝑦 = 𝐵)) → (𝜓 ↔ 𝜒)) ⇒ ⊢ ((𝜑 ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊)) → (∀𝑥∀𝑦𝜓 → 𝜒)) | ||
| Theorem | spc3egv 3582* | Existential specialization with three quantifiers, using implicit substitution. (Contributed by NM, 12-May-2008.) Avoid ax-10 2141 and ax-11 2157. (Revised by GG, 20-Aug-2023.) (Proof shortened by Wolf Lammen, 25-Aug-2023.) |
| ⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ∧ 𝑧 = 𝐶) → (𝜑 ↔ 𝜓)) ⇒ ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋) → (𝜓 → ∃𝑥∃𝑦∃𝑧𝜑)) | ||
| Theorem | spc3gv 3583* | Specialization with three quantifiers, using implicit substitution. (Contributed by NM, 12-May-2008.) |
| ⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ∧ 𝑧 = 𝐶) → (𝜑 ↔ 𝜓)) ⇒ ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋) → (∀𝑥∀𝑦∀𝑧𝜑 → 𝜓)) | ||
| Theorem | spcv 3584* | Rule of specialization, using implicit substitution. (Contributed by NM, 22-Jun-1994.) |
| ⊢ 𝐴 ∈ V & ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (∀𝑥𝜑 → 𝜓) | ||
| Theorem | spcev 3585* | Existential specialization, using implicit substitution. (Contributed by NM, 31-Dec-1993.) (Proof shortened by Eric Schmidt, 22-Dec-2006.) |
| ⊢ 𝐴 ∈ V & ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (𝜓 → ∃𝑥𝜑) | ||
| Theorem | spc2ev 3586* | Existential specialization, using implicit substitution. (Contributed by NM, 3-Aug-1995.) |
| ⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V & ⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → (𝜑 ↔ 𝜓)) ⇒ ⊢ (𝜓 → ∃𝑥∃𝑦𝜑) | ||
| Theorem | rspct 3587* | A closed version of rspc 3589. (Contributed by Andrew Salmon, 6-Jun-2011.) |
| ⊢ Ⅎ𝑥𝜓 ⇒ ⊢ (∀𝑥(𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) → (𝐴 ∈ 𝐵 → (∀𝑥 ∈ 𝐵 𝜑 → 𝜓))) | ||
| Theorem | rspcdf 3588* | Restricted specialization, using implicit substitution. (Contributed by Emmett Weisz, 16-Jan-2020.) |
| ⊢ Ⅎ𝑥𝜑 & ⊢ Ⅎ𝑥𝜒 & ⊢ (𝜑 → 𝐴 ∈ 𝐵) & ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → (𝜓 ↔ 𝜒)) ⇒ ⊢ (𝜑 → (∀𝑥 ∈ 𝐵 𝜓 → 𝜒)) | ||
| Theorem | rspc 3589* | Restricted specialization, using implicit substitution. (Contributed by NM, 19-Apr-2005.) (Revised by Mario Carneiro, 11-Oct-2016.) |
| ⊢ Ⅎ𝑥𝜓 & ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (𝐴 ∈ 𝐵 → (∀𝑥 ∈ 𝐵 𝜑 → 𝜓)) | ||
| Theorem | rspce 3590* | Restricted existential specialization, using implicit substitution. (Contributed by NM, 26-May-1998.) (Revised by Mario Carneiro, 11-Oct-2016.) |
| ⊢ Ⅎ𝑥𝜓 & ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) ⇒ ⊢ ((𝐴 ∈ 𝐵 ∧ 𝜓) → ∃𝑥 ∈ 𝐵 𝜑) | ||
| Theorem | rspcimdv 3591* | Restricted specialization, using implicit substitution. (Contributed by Mario Carneiro, 4-Jan-2017.) |
| ⊢ (𝜑 → 𝐴 ∈ 𝐵) & ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → (𝜓 → 𝜒)) ⇒ ⊢ (𝜑 → (∀𝑥 ∈ 𝐵 𝜓 → 𝜒)) | ||
| Theorem | rspcimedv 3592* | Restricted existential specialization, using implicit substitution. (Contributed by Mario Carneiro, 4-Jan-2017.) |
| ⊢ (𝜑 → 𝐴 ∈ 𝐵) & ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → (𝜒 → 𝜓)) ⇒ ⊢ (𝜑 → (𝜒 → ∃𝑥 ∈ 𝐵 𝜓)) | ||
| Theorem | rspcdv 3593* | Restricted specialization, using implicit substitution. (Contributed by NM, 17-Feb-2007.) (Revised by Mario Carneiro, 4-Jan-2017.) |
| ⊢ (𝜑 → 𝐴 ∈ 𝐵) & ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → (𝜓 ↔ 𝜒)) ⇒ ⊢ (𝜑 → (∀𝑥 ∈ 𝐵 𝜓 → 𝜒)) | ||
| Theorem | rspcedv 3594* | Restricted existential specialization, using implicit substitution. (Contributed by FL, 17-Apr-2007.) (Revised by Mario Carneiro, 4-Jan-2017.) |
| ⊢ (𝜑 → 𝐴 ∈ 𝐵) & ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → (𝜓 ↔ 𝜒)) ⇒ ⊢ (𝜑 → (𝜒 → ∃𝑥 ∈ 𝐵 𝜓)) | ||
| Theorem | rspcebdv 3595* | Restricted existential specialization, using implicit substitution in both directions. (Contributed by AV, 8-Jan-2022.) |
| ⊢ (𝜑 → 𝐴 ∈ 𝐵) & ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → (𝜓 ↔ 𝜒)) & ⊢ ((𝜑 ∧ 𝜓) → 𝑥 = 𝐴) ⇒ ⊢ (𝜑 → (∃𝑥 ∈ 𝐵 𝜓 ↔ 𝜒)) | ||
| Theorem | rspcdv2 3596* | Restricted specialization, using implicit substitution. (Contributed by Stanislas Polu, 9-Mar-2020.) |
| ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → (𝜓 ↔ 𝜒)) & ⊢ (𝜑 → 𝐴 ∈ 𝐵) & ⊢ (𝜑 → ∀𝑥 ∈ 𝐵 𝜓) ⇒ ⊢ (𝜑 → 𝜒) | ||
| Theorem | rspcv 3597* | Restricted specialization, using implicit substitution. (Contributed by NM, 26-May-1998.) Drop ax-10 2141, ax-11 2157, ax-12 2177. (Revised by SN, 12-Dec-2023.) |
| ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (𝐴 ∈ 𝐵 → (∀𝑥 ∈ 𝐵 𝜑 → 𝜓)) | ||
| Theorem | rspccv 3598* | Restricted specialization, using implicit substitution. (Contributed by NM, 2-Feb-2006.) |
| ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (∀𝑥 ∈ 𝐵 𝜑 → (𝐴 ∈ 𝐵 → 𝜓)) | ||
| Theorem | rspcva 3599* | Restricted specialization, using implicit substitution. (Contributed by NM, 13-Sep-2005.) |
| ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) ⇒ ⊢ ((𝐴 ∈ 𝐵 ∧ ∀𝑥 ∈ 𝐵 𝜑) → 𝜓) | ||
| Theorem | rspccva 3600* | Restricted specialization, using implicit substitution. (Contributed by NM, 26-Jul-2006.) (Proof shortened by Andrew Salmon, 8-Jun-2011.) |
| ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) ⇒ ⊢ ((∀𝑥 ∈ 𝐵 𝜑 ∧ 𝐴 ∈ 𝐵) → 𝜓) | ||
| < Previous Next > |
| Copyright terms: Public domain | < Previous Next > |