![]() |
Metamath
Proof Explorer Theorem List (p. 36 of 480) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Color key: | ![]() (1-30439) |
![]() (30440-31962) |
![]() (31963-47940) |
Type | Label | Description |
---|---|---|
Statement | ||
Theorem | rmov 3501 | An at-most-one quantifier restricted to the universe is unrestricted. (Contributed by Alexander van der Vekens, 17-Jun-2017.) |
⊢ (∃*𝑥 ∈ V 𝜑 ↔ ∃*𝑥𝜑) | ||
Theorem | rabab 3502 | A class abstraction restricted to the universe is unrestricted. (Contributed by NM, 27-Dec-2004.) (Proof shortened by Andrew Salmon, 8-Jun-2011.) |
⊢ {𝑥 ∈ V ∣ 𝜑} = {𝑥 ∣ 𝜑} | ||
Theorem | rexcom4b 3503* | Specialized existential commutation lemma. (Contributed by Jeff Madsen, 1-Jun-2011.) |
⊢ 𝐵 ∈ V ⇒ ⊢ (∃𝑥∃𝑦 ∈ 𝐴 (𝜑 ∧ 𝑥 = 𝐵) ↔ ∃𝑦 ∈ 𝐴 𝜑) | ||
Theorem | ceqsal1t 3504 | One direction of ceqsalt 3505 is based on fewer assumptions and fewer axioms. It is at the same time the reverse direction of vtoclgft 3540. Extracted from a proof of ceqsalt 3505. (Contributed by Wolf Lammen, 25-Mar-2025.) |
⊢ ((Ⅎ𝑥𝜓 ∧ ∀𝑥(𝑥 = 𝐴 → (𝜑 ↔ 𝜓))) → (𝜓 → ∀𝑥(𝑥 = 𝐴 → 𝜑))) | ||
Theorem | ceqsalt 3505* | Closed theorem version of ceqsalg 3507. (Contributed by NM, 28-Feb-2013.) (Revised by Mario Carneiro, 10-Oct-2016.) |
⊢ ((Ⅎ𝑥𝜓 ∧ ∀𝑥(𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) ∧ 𝐴 ∈ 𝑉) → (∀𝑥(𝑥 = 𝐴 → 𝜑) ↔ 𝜓)) | ||
Theorem | ceqsralt 3506* | Restricted quantifier version of ceqsalt 3505. (Contributed by NM, 28-Feb-2013.) (Revised by Mario Carneiro, 10-Oct-2016.) |
⊢ ((Ⅎ𝑥𝜓 ∧ ∀𝑥(𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) ∧ 𝐴 ∈ 𝐵) → (∀𝑥 ∈ 𝐵 (𝑥 = 𝐴 → 𝜑) ↔ 𝜓)) | ||
Theorem | ceqsalg 3507* | A representation of explicit substitution of a class for a variable, inferred from an implicit substitution hypothesis. For an alternate proof, see ceqsalgALT 3508. (Contributed by NM, 29-Oct-2003.) (Proof shortened by BJ, 29-Sep-2019.) |
⊢ Ⅎ𝑥𝜓 & ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (𝐴 ∈ 𝑉 → (∀𝑥(𝑥 = 𝐴 → 𝜑) ↔ 𝜓)) | ||
Theorem | ceqsalgALT 3508* | Alternate proof of ceqsalg 3507, not using ceqsalt 3505. (Contributed by NM, 29-Oct-2003.) (Proof shortened by Andrew Salmon, 8-Jun-2011.) (Revised by BJ, 29-Sep-2019.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ Ⅎ𝑥𝜓 & ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (𝐴 ∈ 𝑉 → (∀𝑥(𝑥 = 𝐴 → 𝜑) ↔ 𝜓)) | ||
Theorem | ceqsal 3509* | A representation of explicit substitution of a class for a variable, inferred from an implicit substitution hypothesis. (Contributed by NM, 18-Aug-1993.) Avoid df-clab 2709. (Revised by Wolf Lammen, 23-Jan-2025.) |
⊢ Ⅎ𝑥𝜓 & ⊢ 𝐴 ∈ V & ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (∀𝑥(𝑥 = 𝐴 → 𝜑) ↔ 𝜓) | ||
Theorem | ceqsalALT 3510* | A representation of explicit substitution of a class for a variable, inferred from an implicit substitution hypothesis. Shorter proof uses df-clab 2709. (Contributed by NM, 18-Aug-1993.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ Ⅎ𝑥𝜓 & ⊢ 𝐴 ∈ V & ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (∀𝑥(𝑥 = 𝐴 → 𝜑) ↔ 𝜓) | ||
Theorem | ceqsalv 3511* | A representation of explicit substitution of a class for a variable, inferred from an implicit substitution hypothesis. (Contributed by NM, 18-Aug-1993.) Avoid ax-12 2170. (Revised by SN, 8-Sep-2024.) |
⊢ 𝐴 ∈ V & ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (∀𝑥(𝑥 = 𝐴 → 𝜑) ↔ 𝜓) | ||
Theorem | ceqsalvOLD 3512* | Obsolete version of ceqsalv 3511 as of 8-Sep-2024. (Contributed by NM, 18-Aug-1993.) (New usage is discouraged.) (Proof modification is discouraged.) |
⊢ 𝐴 ∈ V & ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (∀𝑥(𝑥 = 𝐴 → 𝜑) ↔ 𝜓) | ||
Theorem | ceqsralv 3513* | Restricted quantifier version of ceqsalv 3511. (Contributed by NM, 21-Jun-2013.) Avoid ax-9 2115, ax-12 2170, ax-ext 2702. (Revised by SN, 8-Sep-2024.) |
⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (𝐴 ∈ 𝐵 → (∀𝑥 ∈ 𝐵 (𝑥 = 𝐴 → 𝜑) ↔ 𝜓)) | ||
Theorem | ceqsralvOLD 3514* | Obsolete version of ceqsalv 3511 as of 8-Sep-2024. (Contributed by NM, 21-Jun-2013.) (New usage is discouraged.) (Proof modification is discouraged.) |
⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (𝐴 ∈ 𝐵 → (∀𝑥 ∈ 𝐵 (𝑥 = 𝐴 → 𝜑) ↔ 𝜓)) | ||
Theorem | gencl 3515* | Implicit substitution for class with embedded variable. (Contributed by NM, 17-May-1996.) |
⊢ (𝜃 ↔ ∃𝑥(𝜒 ∧ 𝐴 = 𝐵)) & ⊢ (𝐴 = 𝐵 → (𝜑 ↔ 𝜓)) & ⊢ (𝜒 → 𝜑) ⇒ ⊢ (𝜃 → 𝜓) | ||
Theorem | 2gencl 3516* | Implicit substitution for class with embedded variable. (Contributed by NM, 17-May-1996.) |
⊢ (𝐶 ∈ 𝑆 ↔ ∃𝑥 ∈ 𝑅 𝐴 = 𝐶) & ⊢ (𝐷 ∈ 𝑆 ↔ ∃𝑦 ∈ 𝑅 𝐵 = 𝐷) & ⊢ (𝐴 = 𝐶 → (𝜑 ↔ 𝜓)) & ⊢ (𝐵 = 𝐷 → (𝜓 ↔ 𝜒)) & ⊢ ((𝑥 ∈ 𝑅 ∧ 𝑦 ∈ 𝑅) → 𝜑) ⇒ ⊢ ((𝐶 ∈ 𝑆 ∧ 𝐷 ∈ 𝑆) → 𝜒) | ||
Theorem | 3gencl 3517* | Implicit substitution for class with embedded variable. (Contributed by NM, 17-May-1996.) |
⊢ (𝐷 ∈ 𝑆 ↔ ∃𝑥 ∈ 𝑅 𝐴 = 𝐷) & ⊢ (𝐹 ∈ 𝑆 ↔ ∃𝑦 ∈ 𝑅 𝐵 = 𝐹) & ⊢ (𝐺 ∈ 𝑆 ↔ ∃𝑧 ∈ 𝑅 𝐶 = 𝐺) & ⊢ (𝐴 = 𝐷 → (𝜑 ↔ 𝜓)) & ⊢ (𝐵 = 𝐹 → (𝜓 ↔ 𝜒)) & ⊢ (𝐶 = 𝐺 → (𝜒 ↔ 𝜃)) & ⊢ ((𝑥 ∈ 𝑅 ∧ 𝑦 ∈ 𝑅 ∧ 𝑧 ∈ 𝑅) → 𝜑) ⇒ ⊢ ((𝐷 ∈ 𝑆 ∧ 𝐹 ∈ 𝑆 ∧ 𝐺 ∈ 𝑆) → 𝜃) | ||
Theorem | cgsexg 3518* | Implicit substitution inference for general classes. (Contributed by NM, 26-Aug-2007.) |
⊢ (𝑥 = 𝐴 → 𝜒) & ⊢ (𝜒 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (𝐴 ∈ 𝑉 → (∃𝑥(𝜒 ∧ 𝜑) ↔ 𝜓)) | ||
Theorem | cgsex2g 3519* | Implicit substitution inference for general classes. (Contributed by NM, 26-Jul-1995.) |
⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → 𝜒) & ⊢ (𝜒 → (𝜑 ↔ 𝜓)) ⇒ ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (∃𝑥∃𝑦(𝜒 ∧ 𝜑) ↔ 𝜓)) | ||
Theorem | cgsex4g 3520* | An implicit substitution inference for 4 general classes. (Contributed by NM, 5-Aug-1995.) Avoid ax-10 2136, ax-11 2153. (Revised by Gino Giotto, 28-Jun-2024.) Avoid ax-9 2115, ax-ext 2702. (Revised by Wolf Lammen, 21-Mar-2025.) |
⊢ (((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) ∧ (𝑧 = 𝐶 ∧ 𝑤 = 𝐷)) → 𝜒) & ⊢ (𝜒 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (((𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑆) ∧ (𝐶 ∈ 𝑅 ∧ 𝐷 ∈ 𝑆)) → (∃𝑥∃𝑦∃𝑧∃𝑤(𝜒 ∧ 𝜑) ↔ 𝜓)) | ||
Theorem | cgsex4gOLD 3521* | Obsolete version of cgsex4g 3520 as of 21-Mar-2025. (Contributed by NM, 5-Aug-1995.) Avoid ax-10 2136, ax-11 2153. (Revised by Gino Giotto, 28-Jun-2024.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ (((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) ∧ (𝑧 = 𝐶 ∧ 𝑤 = 𝐷)) → 𝜒) & ⊢ (𝜒 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (((𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑆) ∧ (𝐶 ∈ 𝑅 ∧ 𝐷 ∈ 𝑆)) → (∃𝑥∃𝑦∃𝑧∃𝑤(𝜒 ∧ 𝜑) ↔ 𝜓)) | ||
Theorem | cgsex4gOLDOLD 3522* | Obsolete version of cgsex4g 3520 as of 28-Jun-2024. (Contributed by NM, 5-Aug-1995.) Avoid ax-10 2136. (Revised by Gino Giotto, 20-Aug-2023.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ (((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) ∧ (𝑧 = 𝐶 ∧ 𝑤 = 𝐷)) → 𝜒) & ⊢ (𝜒 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (((𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑆) ∧ (𝐶 ∈ 𝑅 ∧ 𝐷 ∈ 𝑆)) → (∃𝑥∃𝑦∃𝑧∃𝑤(𝜒 ∧ 𝜑) ↔ 𝜓)) | ||
Theorem | ceqsex 3523* | Elimination of an existential quantifier, using implicit substitution. (Contributed by NM, 2-Mar-1995.) (Revised by Mario Carneiro, 10-Oct-2016.) (Proof shortened by Wolf Lammen, 22-Jan-2025.) |
⊢ Ⅎ𝑥𝜓 & ⊢ 𝐴 ∈ V & ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (∃𝑥(𝑥 = 𝐴 ∧ 𝜑) ↔ 𝜓) | ||
Theorem | ceqsexOLD 3524* | Obsolete version of ceqsex 3523 as of 22-Jan-2025. (Contributed by NM, 2-Mar-1995.) (Revised by Mario Carneiro, 10-Oct-2016.) (New usage is discouraged.) (Proof modification is discouraged.) |
⊢ Ⅎ𝑥𝜓 & ⊢ 𝐴 ∈ V & ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (∃𝑥(𝑥 = 𝐴 ∧ 𝜑) ↔ 𝜓) | ||
Theorem | ceqsexv 3525* | Elimination of an existential quantifier, using implicit substitution. (Contributed by NM, 2-Mar-1995.) Avoid ax-12 2170. (Revised by Gino Giotto, 12-Oct-2024.) (Proof shortened by Wolf Lammen, 22-Jan-2025.) |
⊢ 𝐴 ∈ V & ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (∃𝑥(𝑥 = 𝐴 ∧ 𝜑) ↔ 𝜓) | ||
Theorem | ceqsexvOLD 3526* | Obsolete version of ceqsexv 3525 as of 12-Oct-2024. (Contributed by NM, 2-Mar-1995.) Avoid ax-12 2170. (Revised by Gino Giotto, 12-Oct-2024.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ 𝐴 ∈ V & ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (∃𝑥(𝑥 = 𝐴 ∧ 𝜑) ↔ 𝜓) | ||
Theorem | ceqsexvOLDOLD 3527* | Obsolete version of ceqsexv 3525 as of 12-Oct-2024. (Contributed by NM, 2-Mar-1995.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ 𝐴 ∈ V & ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (∃𝑥(𝑥 = 𝐴 ∧ 𝜑) ↔ 𝜓) | ||
Theorem | ceqsexv2d 3528* | Elimination of an existential quantifier, using implicit substitution. (Contributed by Thierry Arnoux, 10-Sep-2016.) |
⊢ 𝐴 ∈ V & ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) & ⊢ 𝜓 ⇒ ⊢ ∃𝑥𝜑 | ||
Theorem | ceqsex2 3529* | Elimination of two existential quantifiers, using implicit substitution. (Contributed by Scott Fenton, 7-Jun-2006.) |
⊢ Ⅎ𝑥𝜓 & ⊢ Ⅎ𝑦𝜒 & ⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V & ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) & ⊢ (𝑦 = 𝐵 → (𝜓 ↔ 𝜒)) ⇒ ⊢ (∃𝑥∃𝑦(𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ∧ 𝜑) ↔ 𝜒) | ||
Theorem | ceqsex2v 3530* | Elimination of two existential quantifiers, using implicit substitution. (Contributed by Scott Fenton, 7-Jun-2006.) Avoid ax-10 2136 and ax-11 2153. (Revised by Gino Giotto, 20-Aug-2023.) |
⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V & ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) & ⊢ (𝑦 = 𝐵 → (𝜓 ↔ 𝜒)) ⇒ ⊢ (∃𝑥∃𝑦(𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ∧ 𝜑) ↔ 𝜒) | ||
Theorem | ceqsex3v 3531* | Elimination of three existential quantifiers, using implicit substitution. (Contributed by NM, 16-Aug-2011.) |
⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V & ⊢ 𝐶 ∈ V & ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) & ⊢ (𝑦 = 𝐵 → (𝜓 ↔ 𝜒)) & ⊢ (𝑧 = 𝐶 → (𝜒 ↔ 𝜃)) ⇒ ⊢ (∃𝑥∃𝑦∃𝑧((𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ∧ 𝑧 = 𝐶) ∧ 𝜑) ↔ 𝜃) | ||
Theorem | ceqsex4v 3532* | Elimination of four existential quantifiers, using implicit substitution. (Contributed by NM, 23-Sep-2011.) |
⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V & ⊢ 𝐶 ∈ V & ⊢ 𝐷 ∈ V & ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) & ⊢ (𝑦 = 𝐵 → (𝜓 ↔ 𝜒)) & ⊢ (𝑧 = 𝐶 → (𝜒 ↔ 𝜃)) & ⊢ (𝑤 = 𝐷 → (𝜃 ↔ 𝜏)) ⇒ ⊢ (∃𝑥∃𝑦∃𝑧∃𝑤((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) ∧ (𝑧 = 𝐶 ∧ 𝑤 = 𝐷) ∧ 𝜑) ↔ 𝜏) | ||
Theorem | ceqsex6v 3533* | Elimination of six existential quantifiers, using implicit substitution. (Contributed by NM, 21-Sep-2011.) |
⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V & ⊢ 𝐶 ∈ V & ⊢ 𝐷 ∈ V & ⊢ 𝐸 ∈ V & ⊢ 𝐹 ∈ V & ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) & ⊢ (𝑦 = 𝐵 → (𝜓 ↔ 𝜒)) & ⊢ (𝑧 = 𝐶 → (𝜒 ↔ 𝜃)) & ⊢ (𝑤 = 𝐷 → (𝜃 ↔ 𝜏)) & ⊢ (𝑣 = 𝐸 → (𝜏 ↔ 𝜂)) & ⊢ (𝑢 = 𝐹 → (𝜂 ↔ 𝜁)) ⇒ ⊢ (∃𝑥∃𝑦∃𝑧∃𝑤∃𝑣∃𝑢((𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ∧ 𝑧 = 𝐶) ∧ (𝑤 = 𝐷 ∧ 𝑣 = 𝐸 ∧ 𝑢 = 𝐹) ∧ 𝜑) ↔ 𝜁) | ||
Theorem | ceqsex8v 3534* | Elimination of eight existential quantifiers, using implicit substitution. (Contributed by NM, 23-Sep-2011.) |
⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V & ⊢ 𝐶 ∈ V & ⊢ 𝐷 ∈ V & ⊢ 𝐸 ∈ V & ⊢ 𝐹 ∈ V & ⊢ 𝐺 ∈ V & ⊢ 𝐻 ∈ V & ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) & ⊢ (𝑦 = 𝐵 → (𝜓 ↔ 𝜒)) & ⊢ (𝑧 = 𝐶 → (𝜒 ↔ 𝜃)) & ⊢ (𝑤 = 𝐷 → (𝜃 ↔ 𝜏)) & ⊢ (𝑣 = 𝐸 → (𝜏 ↔ 𝜂)) & ⊢ (𝑢 = 𝐹 → (𝜂 ↔ 𝜁)) & ⊢ (𝑡 = 𝐺 → (𝜁 ↔ 𝜎)) & ⊢ (𝑠 = 𝐻 → (𝜎 ↔ 𝜌)) ⇒ ⊢ (∃𝑥∃𝑦∃𝑧∃𝑤∃𝑣∃𝑢∃𝑡∃𝑠(((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) ∧ (𝑧 = 𝐶 ∧ 𝑤 = 𝐷)) ∧ ((𝑣 = 𝐸 ∧ 𝑢 = 𝐹) ∧ (𝑡 = 𝐺 ∧ 𝑠 = 𝐻)) ∧ 𝜑) ↔ 𝜌) | ||
Theorem | gencbvex 3535* | Change of bound variable using implicit substitution. (Contributed by NM, 17-May-1996.) (Proof shortened by Andrew Salmon, 8-Jun-2011.) |
⊢ 𝐴 ∈ V & ⊢ (𝐴 = 𝑦 → (𝜑 ↔ 𝜓)) & ⊢ (𝐴 = 𝑦 → (𝜒 ↔ 𝜃)) & ⊢ (𝜃 ↔ ∃𝑥(𝜒 ∧ 𝐴 = 𝑦)) ⇒ ⊢ (∃𝑥(𝜒 ∧ 𝜑) ↔ ∃𝑦(𝜃 ∧ 𝜓)) | ||
Theorem | gencbvex2 3536* | Restatement of gencbvex 3535 with weaker hypotheses. (Contributed by Jeff Hankins, 6-Dec-2006.) |
⊢ 𝐴 ∈ V & ⊢ (𝐴 = 𝑦 → (𝜑 ↔ 𝜓)) & ⊢ (𝐴 = 𝑦 → (𝜒 ↔ 𝜃)) & ⊢ (𝜃 → ∃𝑥(𝜒 ∧ 𝐴 = 𝑦)) ⇒ ⊢ (∃𝑥(𝜒 ∧ 𝜑) ↔ ∃𝑦(𝜃 ∧ 𝜓)) | ||
Theorem | gencbval 3537* | Change of bound variable using implicit substitution. (Contributed by NM, 17-May-1996.) |
⊢ 𝐴 ∈ V & ⊢ (𝐴 = 𝑦 → (𝜑 ↔ 𝜓)) & ⊢ (𝐴 = 𝑦 → (𝜒 ↔ 𝜃)) & ⊢ (𝜃 ↔ ∃𝑥(𝜒 ∧ 𝐴 = 𝑦)) ⇒ ⊢ (∀𝑥(𝜒 → 𝜑) ↔ ∀𝑦(𝜃 → 𝜓)) | ||
Theorem | sbhypf 3538* | Introduce an explicit substitution into an implicit substitution hypothesis. See also csbhypf 3922. (Contributed by Raph Levien, 10-Apr-2004.) (Proof shortened by Wolf Lammen, 25-Jan-2025.) |
⊢ Ⅎ𝑥𝜓 & ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (𝑦 = 𝐴 → ([𝑦 / 𝑥]𝜑 ↔ 𝜓)) | ||
Theorem | sbhypfOLD 3539* | Obsolete version of sbhypf 3538 as of 25-Jan-2025. (Contributed by Raph Levien, 10-Apr-2004.) (New usage is discouraged.) (Proof modification is discouraged.) |
⊢ Ⅎ𝑥𝜓 & ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (𝑦 = 𝐴 → ([𝑦 / 𝑥]𝜑 ↔ 𝜓)) | ||
Theorem | vtoclgft 3540 | Closed theorem form of vtoclgf 3557. The reverse implication is proven in ceqsal1t 3504. See ceqsalt 3505 for a version with 𝑥 and 𝐴 disjoint. (Contributed by NM, 17-Feb-2013.) (Revised by Mario Carneiro, 12-Oct-2016.) (Proof shortened by JJ, 11-Aug-2021.) Avoid ax-13 2370. (Revised by Gino Giotto, 6-Oct-2023.) |
⊢ (((Ⅎ𝑥𝐴 ∧ Ⅎ𝑥𝜓) ∧ (∀𝑥(𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) ∧ ∀𝑥𝜑) ∧ 𝐴 ∈ 𝑉) → 𝜓) | ||
Theorem | vtocleg 3541* | Implicit substitution of a class for a setvar variable. (Contributed by NM, 21-Jun-1993.) |
⊢ (𝑥 = 𝐴 → 𝜑) ⇒ ⊢ (𝐴 ∈ 𝑉 → 𝜑) | ||
Theorem | vtoclg 3542* | Implicit substitution of a class expression for a setvar variable. (Contributed by NM, 17-Apr-1995.) Avoid ax-12 2170. (Revised by SN, 20-Apr-2024.) (Proof shortened by Wolf Lammen, 26-Jan-2025.) |
⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) & ⊢ 𝜑 ⇒ ⊢ (𝐴 ∈ 𝑉 → 𝜓) | ||
Theorem | vtocle 3543* | Implicit substitution of a class for a setvar variable. (Contributed by NM, 9-Sep-1993.) |
⊢ 𝐴 ∈ V & ⊢ (𝑥 = 𝐴 → 𝜑) ⇒ ⊢ 𝜑 | ||
Theorem | vtoclbg 3544* | Implicit substitution of a class for a setvar variable. (Contributed by NM, 29-Apr-1994.) |
⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜒)) & ⊢ (𝑥 = 𝐴 → (𝜓 ↔ 𝜃)) & ⊢ (𝜑 ↔ 𝜓) ⇒ ⊢ (𝐴 ∈ 𝑉 → (𝜒 ↔ 𝜃)) | ||
Theorem | vtocl 3545* | Implicit substitution of a class for a setvar variable. See also vtoclALT 3553. (Contributed by NM, 30-Aug-1993.) Remove dependency on ax-10 2136. (Revised by BJ, 29-Nov-2020.) (Proof shortened by SN, 20-Apr-2024.) |
⊢ 𝐴 ∈ V & ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) & ⊢ 𝜑 ⇒ ⊢ 𝜓 | ||
Theorem | vtocldf 3546 | Implicit substitution of a class for a setvar variable. (Contributed by Mario Carneiro, 15-Oct-2016.) |
⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → (𝜓 ↔ 𝜒)) & ⊢ (𝜑 → 𝜓) & ⊢ Ⅎ𝑥𝜑 & ⊢ (𝜑 → Ⅎ𝑥𝐴) & ⊢ (𝜑 → Ⅎ𝑥𝜒) ⇒ ⊢ (𝜑 → 𝜒) | ||
Theorem | vtocld 3547* | Implicit substitution of a class for a setvar variable. (Contributed by Mario Carneiro, 15-Oct-2016.) Avoid ax-10 2136, ax-11 2153, ax-12 2170. (Revised by SN, 2-Sep-2024.) |
⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → (𝜓 ↔ 𝜒)) & ⊢ (𝜑 → 𝜓) ⇒ ⊢ (𝜑 → 𝜒) | ||
Theorem | vtocldOLD 3548* | Obsolete version of vtocld 3547 as of 2-Sep-2024. (Contributed by Mario Carneiro, 15-Oct-2016.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → (𝜓 ↔ 𝜒)) & ⊢ (𝜑 → 𝜓) ⇒ ⊢ (𝜑 → 𝜒) | ||
Theorem | vtocl2d 3549* | Implicit substitution of two classes for two setvar variables. (Contributed by Thierry Arnoux, 25-Aug-2020.) (Revised by BTernaryTau, 19-Oct-2023.) |
⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝐵 ∈ 𝑊) & ⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → (𝜓 ↔ 𝜒)) & ⊢ (𝜑 → 𝜓) ⇒ ⊢ (𝜑 → 𝜒) | ||
Theorem | vtoclef 3550* | Implicit substitution of a class for a setvar variable. (Contributed by NM, 18-Aug-1993.) |
⊢ Ⅎ𝑥𝜑 & ⊢ 𝐴 ∈ V & ⊢ (𝑥 = 𝐴 → 𝜑) ⇒ ⊢ 𝜑 | ||
Theorem | vtoclf 3551* | Implicit substitution of a class for a setvar variable. This is a generalization of chvar 2393. (Contributed by NM, 30-Aug-1993.) (Proof shortened by Wolf Lammen, 26-Jan-2025.) |
⊢ Ⅎ𝑥𝜓 & ⊢ 𝐴 ∈ V & ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) & ⊢ 𝜑 ⇒ ⊢ 𝜓 | ||
Theorem | vtoclfOLD 3552* | Obsolete version of vtoclf 3551 as of 26-Jan-2025. (Contributed by NM, 30-Aug-1993.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ Ⅎ𝑥𝜓 & ⊢ 𝐴 ∈ V & ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) & ⊢ 𝜑 ⇒ ⊢ 𝜓 | ||
Theorem | vtoclALT 3553* | Alternate proof of vtocl 3545. Shorter but requires more axioms. (Contributed by NM, 30-Aug-1993.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ 𝐴 ∈ V & ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) & ⊢ 𝜑 ⇒ ⊢ 𝜓 | ||
Theorem | vtocl2 3554* | Implicit substitution of classes for setvar variables. (Contributed by NM, 26-Jul-1995.) (Proof shortened by Andrew Salmon, 8-Jun-2011.) |
⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V & ⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → (𝜑 ↔ 𝜓)) & ⊢ 𝜑 ⇒ ⊢ 𝜓 | ||
Theorem | vtocl3 3555* | Implicit substitution of classes for setvar variables. (Contributed by NM, 3-Jun-1995.) (Proof shortened by Andrew Salmon, 8-Jun-2011.) Avoid ax-10 2136 and ax-11 2153. (Revised by Gino Giotto, 20-Aug-2023.) (Proof shortened by Wolf Lammen, 23-Aug-2023.) |
⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V & ⊢ 𝐶 ∈ V & ⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ∧ 𝑧 = 𝐶) → (𝜑 ↔ 𝜓)) & ⊢ 𝜑 ⇒ ⊢ 𝜓 | ||
Theorem | vtoclb 3556* | Implicit substitution of a class for a setvar variable. (Contributed by NM, 23-Dec-1993.) |
⊢ 𝐴 ∈ V & ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜒)) & ⊢ (𝑥 = 𝐴 → (𝜓 ↔ 𝜃)) & ⊢ (𝜑 ↔ 𝜓) ⇒ ⊢ (𝜒 ↔ 𝜃) | ||
Theorem | vtoclgf 3557 | Implicit substitution of a class for a setvar variable, with bound-variable hypotheses in place of disjoint variable restrictions. (Contributed by NM, 21-Sep-2003.) (Proof shortened by Mario Carneiro, 10-Oct-2016.) |
⊢ Ⅎ𝑥𝐴 & ⊢ Ⅎ𝑥𝜓 & ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) & ⊢ 𝜑 ⇒ ⊢ (𝐴 ∈ 𝑉 → 𝜓) | ||
Theorem | vtoclg1f 3558* | Version of vtoclgf 3557 with one nonfreeness hypothesis replaced with a disjoint variable condition, thus avoiding dependency on ax-10 2136 and ax-11 2153. (Contributed by BJ, 1-May-2019.) |
⊢ Ⅎ𝑥𝜓 & ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) & ⊢ 𝜑 ⇒ ⊢ (𝐴 ∈ 𝑉 → 𝜓) | ||
Theorem | vtoclgOLD 3559* | Obsolete version of vtoclg 3542 as of 26-Jan-2025. (Contributed by NM, 17-Apr-1995.) Avoid ax-12 2170. (Revised by SN, 20-Apr-2024.) (New usage is discouraged.) (Proof modification is discouraged.) |
⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) & ⊢ 𝜑 ⇒ ⊢ (𝐴 ∈ 𝑉 → 𝜓) | ||
Theorem | vtoclgOLDOLD 3560* | Obsolete version of vtoclg 3542 as of 20-Apr-2024. (Contributed by NM, 17-Apr-1995.) (New usage is discouraged.) (Proof modification is discouraged.) |
⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) & ⊢ 𝜑 ⇒ ⊢ (𝐴 ∈ 𝑉 → 𝜓) | ||
Theorem | vtocl2gf 3561 | Implicit substitution of a class for a setvar variable. (Contributed by NM, 25-Apr-1995.) |
⊢ Ⅎ𝑥𝐴 & ⊢ Ⅎ𝑦𝐴 & ⊢ Ⅎ𝑦𝐵 & ⊢ Ⅎ𝑥𝜓 & ⊢ Ⅎ𝑦𝜒 & ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) & ⊢ (𝑦 = 𝐵 → (𝜓 ↔ 𝜒)) & ⊢ 𝜑 ⇒ ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → 𝜒) | ||
Theorem | vtocl3gf 3562 | Implicit substitution of a class for a setvar variable. (Contributed by NM, 10-Aug-2013.) (Revised by Mario Carneiro, 10-Oct-2016.) |
⊢ Ⅎ𝑥𝐴 & ⊢ Ⅎ𝑦𝐴 & ⊢ Ⅎ𝑧𝐴 & ⊢ Ⅎ𝑦𝐵 & ⊢ Ⅎ𝑧𝐵 & ⊢ Ⅎ𝑧𝐶 & ⊢ Ⅎ𝑥𝜓 & ⊢ Ⅎ𝑦𝜒 & ⊢ Ⅎ𝑧𝜃 & ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) & ⊢ (𝑦 = 𝐵 → (𝜓 ↔ 𝜒)) & ⊢ (𝑧 = 𝐶 → (𝜒 ↔ 𝜃)) & ⊢ 𝜑 ⇒ ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋) → 𝜃) | ||
Theorem | vtocl2g 3563* | Implicit substitution of 2 classes for 2 setvar variables. (Contributed by NM, 25-Apr-1995.) Remove dependency on ax-10 2136, ax-11 2153, and ax-13 2370. (Revised by Steven Nguyen, 29-Nov-2022.) |
⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) & ⊢ (𝑦 = 𝐵 → (𝜓 ↔ 𝜒)) & ⊢ 𝜑 ⇒ ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → 𝜒) | ||
Theorem | vtocl3g 3564* | Implicit substitution of a class for a setvar variable. Version of vtocl3gf 3562 with disjoint variable conditions instead of nonfreeness hypotheses, requiring fewer axioms. (Contributed by Gino Giotto, 3-Oct-2024.) |
⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) & ⊢ (𝑦 = 𝐵 → (𝜓 ↔ 𝜒)) & ⊢ (𝑧 = 𝐶 → (𝜒 ↔ 𝜃)) & ⊢ 𝜑 ⇒ ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋) → 𝜃) | ||
Theorem | vtoclgaf 3565* | Implicit substitution of a class for a setvar variable. (Contributed by NM, 17-Feb-2006.) (Revised by Mario Carneiro, 10-Oct-2016.) |
⊢ Ⅎ𝑥𝐴 & ⊢ Ⅎ𝑥𝜓 & ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) & ⊢ (𝑥 ∈ 𝐵 → 𝜑) ⇒ ⊢ (𝐴 ∈ 𝐵 → 𝜓) | ||
Theorem | vtoclga 3566* | Implicit substitution of a class for a setvar variable. (Contributed by NM, 20-Aug-1995.) Avoid ax-10 2136 and ax-11 2153. (Revised by Gino Giotto, 20-Aug-2023.) |
⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) & ⊢ (𝑥 ∈ 𝐵 → 𝜑) ⇒ ⊢ (𝐴 ∈ 𝐵 → 𝜓) | ||
Theorem | vtocl2ga 3567* | Implicit substitution of 2 classes for 2 setvar variables. (Contributed by NM, 20-Aug-1995.) Avoid ax-10 2136 and ax-11 2153. (Revised by Gino Giotto, 20-Aug-2023.) (Proof shortened by Wolf Lammen, 23-Aug-2023.) |
⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) & ⊢ (𝑦 = 𝐵 → (𝜓 ↔ 𝜒)) & ⊢ ((𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐷) → 𝜑) ⇒ ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → 𝜒) | ||
Theorem | vtocl2gaf 3568* | Implicit substitution of 2 classes for 2 setvar variables. (Contributed by NM, 10-Aug-2013.) |
⊢ Ⅎ𝑥𝐴 & ⊢ Ⅎ𝑦𝐴 & ⊢ Ⅎ𝑦𝐵 & ⊢ Ⅎ𝑥𝜓 & ⊢ Ⅎ𝑦𝜒 & ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) & ⊢ (𝑦 = 𝐵 → (𝜓 ↔ 𝜒)) & ⊢ ((𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐷) → 𝜑) ⇒ ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → 𝜒) | ||
Theorem | vtocl3gaf 3569* | Implicit substitution of 3 classes for 3 setvar variables. (Contributed by NM, 10-Aug-2013.) (Revised by Mario Carneiro, 11-Oct-2016.) |
⊢ Ⅎ𝑥𝐴 & ⊢ Ⅎ𝑦𝐴 & ⊢ Ⅎ𝑧𝐴 & ⊢ Ⅎ𝑦𝐵 & ⊢ Ⅎ𝑧𝐵 & ⊢ Ⅎ𝑧𝐶 & ⊢ Ⅎ𝑥𝜓 & ⊢ Ⅎ𝑦𝜒 & ⊢ Ⅎ𝑧𝜃 & ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) & ⊢ (𝑦 = 𝐵 → (𝜓 ↔ 𝜒)) & ⊢ (𝑧 = 𝐶 → (𝜒 ↔ 𝜃)) & ⊢ ((𝑥 ∈ 𝑅 ∧ 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑇) → 𝜑) ⇒ ⊢ ((𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑆 ∧ 𝐶 ∈ 𝑇) → 𝜃) | ||
Theorem | vtocl3ga 3570* | Implicit substitution of 3 classes for 3 setvar variables. (Contributed by NM, 20-Aug-1995.) Reduce axiom usage. (Revised by Gino Giotto, 3-Oct-2024.) |
⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) & ⊢ (𝑦 = 𝐵 → (𝜓 ↔ 𝜒)) & ⊢ (𝑧 = 𝐶 → (𝜒 ↔ 𝜃)) & ⊢ ((𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝑅 ∧ 𝑧 ∈ 𝑆) → 𝜑) ⇒ ⊢ ((𝐴 ∈ 𝐷 ∧ 𝐵 ∈ 𝑅 ∧ 𝐶 ∈ 𝑆) → 𝜃) | ||
Theorem | vtocl3gaOLD 3571* | Obsolete version of vtocl3ga 3570 as of 3-Oct-2024. (Contributed by NM, 20-Aug-1995.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) & ⊢ (𝑦 = 𝐵 → (𝜓 ↔ 𝜒)) & ⊢ (𝑧 = 𝐶 → (𝜒 ↔ 𝜃)) & ⊢ ((𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝑅 ∧ 𝑧 ∈ 𝑆) → 𝜑) ⇒ ⊢ ((𝐴 ∈ 𝐷 ∧ 𝐵 ∈ 𝑅 ∧ 𝐶 ∈ 𝑆) → 𝜃) | ||
Theorem | vtocl4g 3572* | Implicit substitution of 4 classes for 4 setvar variables. (Contributed by AV, 22-Jan-2019.) |
⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) & ⊢ (𝑦 = 𝐵 → (𝜓 ↔ 𝜒)) & ⊢ (𝑧 = 𝐶 → (𝜒 ↔ 𝜌)) & ⊢ (𝑤 = 𝐷 → (𝜌 ↔ 𝜃)) & ⊢ 𝜑 ⇒ ⊢ (((𝐴 ∈ 𝑄 ∧ 𝐵 ∈ 𝑅) ∧ (𝐶 ∈ 𝑆 ∧ 𝐷 ∈ 𝑇)) → 𝜃) | ||
Theorem | vtocl4ga 3573* | Implicit substitution of 4 classes for 4 setvar variables. (Contributed by AV, 22-Jan-2019.) |
⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) & ⊢ (𝑦 = 𝐵 → (𝜓 ↔ 𝜒)) & ⊢ (𝑧 = 𝐶 → (𝜒 ↔ 𝜌)) & ⊢ (𝑤 = 𝐷 → (𝜌 ↔ 𝜃)) & ⊢ (((𝑥 ∈ 𝑄 ∧ 𝑦 ∈ 𝑅) ∧ (𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑇)) → 𝜑) ⇒ ⊢ (((𝐴 ∈ 𝑄 ∧ 𝐵 ∈ 𝑅) ∧ (𝐶 ∈ 𝑆 ∧ 𝐷 ∈ 𝑇)) → 𝜃) | ||
Theorem | vtoclegft 3574* | Implicit substitution of a class for a setvar variable. (Closed theorem version of vtoclef 3550.) (Contributed by NM, 7-Nov-2005.) (Revised by Mario Carneiro, 11-Oct-2016.) (Proof shortened by Wolf Lammen, 26-Jan-2025.) |
⊢ ((𝐴 ∈ 𝐵 ∧ Ⅎ𝑥𝜑 ∧ ∀𝑥(𝑥 = 𝐴 → 𝜑)) → 𝜑) | ||
Theorem | vtoclegftOLD 3575* | Obsolete version of vtoclegft 3574 as of 26-Jan-2025. (Contributed by NM, 7-Nov-2005.) (Revised by Mario Carneiro, 11-Oct-2016.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ ((𝐴 ∈ 𝐵 ∧ Ⅎ𝑥𝜑 ∧ ∀𝑥(𝑥 = 𝐴 → 𝜑)) → 𝜑) | ||
Theorem | vtoclri 3576* | Implicit substitution of a class for a setvar variable. (Contributed by NM, 21-Nov-1994.) |
⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) & ⊢ ∀𝑥 ∈ 𝐵 𝜑 ⇒ ⊢ (𝐴 ∈ 𝐵 → 𝜓) | ||
Theorem | spcimgft 3577 | A closed version of spcimgf 3579. (Contributed by Mario Carneiro, 4-Jan-2017.) |
⊢ Ⅎ𝑥𝜓 & ⊢ Ⅎ𝑥𝐴 ⇒ ⊢ (∀𝑥(𝑥 = 𝐴 → (𝜑 → 𝜓)) → (𝐴 ∈ 𝐵 → (∀𝑥𝜑 → 𝜓))) | ||
Theorem | spcgft 3578 | A closed version of spcgf 3581. (Contributed by Andrew Salmon, 6-Jun-2011.) (Revised by Mario Carneiro, 4-Jan-2017.) |
⊢ Ⅎ𝑥𝜓 & ⊢ Ⅎ𝑥𝐴 ⇒ ⊢ (∀𝑥(𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) → (𝐴 ∈ 𝐵 → (∀𝑥𝜑 → 𝜓))) | ||
Theorem | spcimgf 3579 | Rule of specialization, using implicit substitution. Compare Theorem 7.3 of [Quine] p. 44. (Contributed by Mario Carneiro, 4-Jan-2017.) |
⊢ Ⅎ𝑥𝐴 & ⊢ Ⅎ𝑥𝜓 & ⊢ (𝑥 = 𝐴 → (𝜑 → 𝜓)) ⇒ ⊢ (𝐴 ∈ 𝑉 → (∀𝑥𝜑 → 𝜓)) | ||
Theorem | spcimegf 3580 | Existential specialization, using implicit substitution. (Contributed by Mario Carneiro, 4-Jan-2017.) |
⊢ Ⅎ𝑥𝐴 & ⊢ Ⅎ𝑥𝜓 & ⊢ (𝑥 = 𝐴 → (𝜓 → 𝜑)) ⇒ ⊢ (𝐴 ∈ 𝑉 → (𝜓 → ∃𝑥𝜑)) | ||
Theorem | spcgf 3581 | Rule of specialization, using implicit substitution. Compare Theorem 7.3 of [Quine] p. 44. (Contributed by NM, 2-Feb-1997.) (Revised by Andrew Salmon, 12-Aug-2011.) |
⊢ Ⅎ𝑥𝐴 & ⊢ Ⅎ𝑥𝜓 & ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (𝐴 ∈ 𝑉 → (∀𝑥𝜑 → 𝜓)) | ||
Theorem | spcegf 3582 | Existential specialization, using implicit substitution. (Contributed by NM, 2-Feb-1997.) |
⊢ Ⅎ𝑥𝐴 & ⊢ Ⅎ𝑥𝜓 & ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (𝐴 ∈ 𝑉 → (𝜓 → ∃𝑥𝜑)) | ||
Theorem | spcimdv 3583* | Restricted specialization, using implicit substitution. (Contributed by Mario Carneiro, 4-Jan-2017.) Avoid ax-10 2136 and ax-11 2153. (Revised by Gino Giotto, 20-Aug-2023.) |
⊢ (𝜑 → 𝐴 ∈ 𝐵) & ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → (𝜓 → 𝜒)) ⇒ ⊢ (𝜑 → (∀𝑥𝜓 → 𝜒)) | ||
Theorem | spcdv 3584* | Rule of specialization, using implicit substitution. Analogous to rspcdv 3604. (Contributed by David Moews, 1-May-2017.) |
⊢ (𝜑 → 𝐴 ∈ 𝐵) & ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → (𝜓 ↔ 𝜒)) ⇒ ⊢ (𝜑 → (∀𝑥𝜓 → 𝜒)) | ||
Theorem | spcimedv 3585* | Restricted existential specialization, using implicit substitution. (Contributed by Mario Carneiro, 4-Jan-2017.) |
⊢ (𝜑 → 𝐴 ∈ 𝐵) & ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → (𝜒 → 𝜓)) ⇒ ⊢ (𝜑 → (𝜒 → ∃𝑥𝜓)) | ||
Theorem | spcgv 3586* | Rule of specialization, using implicit substitution. Compare Theorem 7.3 of [Quine] p. 44. (Contributed by NM, 22-Jun-1994.) Avoid ax-10 2136, ax-11 2153. (Revised by Wolf Lammen, 25-Aug-2023.) |
⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (𝐴 ∈ 𝑉 → (∀𝑥𝜑 → 𝜓)) | ||
Theorem | spcegv 3587* | Existential specialization, using implicit substitution. (Contributed by NM, 14-Aug-1994.) Avoid ax-10 2136, ax-11 2153. (Revised by Wolf Lammen, 25-Aug-2023.) |
⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (𝐴 ∈ 𝑉 → (𝜓 → ∃𝑥𝜑)) | ||
Theorem | spcedv 3588* | Existential specialization, using implicit substitution, deduction version. (Contributed by RP, 12-Aug-2020.) (Revised by AV, 16-Aug-2024.) |
⊢ (𝜑 → 𝑋 ∈ 𝑉) & ⊢ (𝜑 → 𝜒) & ⊢ (𝑥 = 𝑋 → (𝜓 ↔ 𝜒)) ⇒ ⊢ (𝜑 → ∃𝑥𝜓) | ||
Theorem | spc2egv 3589* | Existential specialization with two quantifiers, using implicit substitution. (Contributed by NM, 3-Aug-1995.) |
⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → (𝜑 ↔ 𝜓)) ⇒ ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝜓 → ∃𝑥∃𝑦𝜑)) | ||
Theorem | spc2gv 3590* | Specialization with two quantifiers, using implicit substitution. (Contributed by NM, 27-Apr-2004.) |
⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → (𝜑 ↔ 𝜓)) ⇒ ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (∀𝑥∀𝑦𝜑 → 𝜓)) | ||
Theorem | spc2ed 3591* | Existential specialization with 2 quantifiers, using implicit substitution. (Contributed by Thierry Arnoux, 23-Aug-2017.) |
⊢ Ⅎ𝑥𝜒 & ⊢ Ⅎ𝑦𝜒 & ⊢ ((𝜑 ∧ (𝑥 = 𝐴 ∧ 𝑦 = 𝐵)) → (𝜓 ↔ 𝜒)) ⇒ ⊢ ((𝜑 ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊)) → (𝜒 → ∃𝑥∃𝑦𝜓)) | ||
Theorem | spc2d 3592* | Specialization with 2 quantifiers, using implicit substitution. (Contributed by Thierry Arnoux, 23-Aug-2017.) |
⊢ Ⅎ𝑥𝜒 & ⊢ Ⅎ𝑦𝜒 & ⊢ ((𝜑 ∧ (𝑥 = 𝐴 ∧ 𝑦 = 𝐵)) → (𝜓 ↔ 𝜒)) ⇒ ⊢ ((𝜑 ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊)) → (∀𝑥∀𝑦𝜓 → 𝜒)) | ||
Theorem | spc3egv 3593* | Existential specialization with three quantifiers, using implicit substitution. (Contributed by NM, 12-May-2008.) Avoid ax-10 2136 and ax-11 2153. (Revised by Gino Giotto, 20-Aug-2023.) (Proof shortened by Wolf Lammen, 25-Aug-2023.) |
⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ∧ 𝑧 = 𝐶) → (𝜑 ↔ 𝜓)) ⇒ ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋) → (𝜓 → ∃𝑥∃𝑦∃𝑧𝜑)) | ||
Theorem | spc3gv 3594* | Specialization with three quantifiers, using implicit substitution. (Contributed by NM, 12-May-2008.) |
⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ∧ 𝑧 = 𝐶) → (𝜑 ↔ 𝜓)) ⇒ ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋) → (∀𝑥∀𝑦∀𝑧𝜑 → 𝜓)) | ||
Theorem | spcv 3595* | Rule of specialization, using implicit substitution. (Contributed by NM, 22-Jun-1994.) |
⊢ 𝐴 ∈ V & ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (∀𝑥𝜑 → 𝜓) | ||
Theorem | spcev 3596* | Existential specialization, using implicit substitution. (Contributed by NM, 31-Dec-1993.) (Proof shortened by Eric Schmidt, 22-Dec-2006.) |
⊢ 𝐴 ∈ V & ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (𝜓 → ∃𝑥𝜑) | ||
Theorem | spc2ev 3597* | Existential specialization, using implicit substitution. (Contributed by NM, 3-Aug-1995.) |
⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V & ⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → (𝜑 ↔ 𝜓)) ⇒ ⊢ (𝜓 → ∃𝑥∃𝑦𝜑) | ||
Theorem | rspct 3598* | A closed version of rspc 3600. (Contributed by Andrew Salmon, 6-Jun-2011.) |
⊢ Ⅎ𝑥𝜓 ⇒ ⊢ (∀𝑥(𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) → (𝐴 ∈ 𝐵 → (∀𝑥 ∈ 𝐵 𝜑 → 𝜓))) | ||
Theorem | rspcdf 3599* | Restricted specialization, using implicit substitution. (Contributed by Emmett Weisz, 16-Jan-2020.) |
⊢ Ⅎ𝑥𝜑 & ⊢ Ⅎ𝑥𝜒 & ⊢ (𝜑 → 𝐴 ∈ 𝐵) & ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → (𝜓 ↔ 𝜒)) ⇒ ⊢ (𝜑 → (∀𝑥 ∈ 𝐵 𝜓 → 𝜒)) | ||
Theorem | rspc 3600* | Restricted specialization, using implicit substitution. (Contributed by NM, 19-Apr-2005.) (Revised by Mario Carneiro, 11-Oct-2016.) |
⊢ Ⅎ𝑥𝜓 & ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (𝐴 ∈ 𝐵 → (∀𝑥 ∈ 𝐵 𝜑 → 𝜓)) |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |