Step | Hyp | Ref
| Expression |
1 | | hadcoma 1600 |
. . . 4
⊢
(hadd(𝑘 ∈ 𝐴, 𝑘 ∈ 𝐵, ∅ ∈ (seq0((𝑐 ∈ 2o, 𝑚 ∈ ℕ0 ↦
if(cadd(𝑚 ∈ 𝐴, 𝑚 ∈ 𝐵, ∅ ∈ 𝑐), 1o, ∅)), (𝑛 ∈ ℕ0
↦ if(𝑛 = 0, ∅,
(𝑛 −
1))))‘𝑘)) ↔
hadd(𝑘 ∈ 𝐵, 𝑘 ∈ 𝐴, ∅ ∈ (seq0((𝑐 ∈ 2o, 𝑚 ∈ ℕ0 ↦
if(cadd(𝑚 ∈ 𝐴, 𝑚 ∈ 𝐵, ∅ ∈ 𝑐), 1o, ∅)), (𝑛 ∈ ℕ0
↦ if(𝑛 = 0, ∅,
(𝑛 −
1))))‘𝑘))) |
2 | 1 | a1i 11 |
. . 3
⊢ ((𝐴 ⊆ ℕ0
∧ 𝐵 ⊆
ℕ0) → (hadd(𝑘 ∈ 𝐴, 𝑘 ∈ 𝐵, ∅ ∈ (seq0((𝑐 ∈ 2o, 𝑚 ∈ ℕ0 ↦
if(cadd(𝑚 ∈ 𝐴, 𝑚 ∈ 𝐵, ∅ ∈ 𝑐), 1o, ∅)), (𝑛 ∈ ℕ0
↦ if(𝑛 = 0, ∅,
(𝑛 −
1))))‘𝑘)) ↔
hadd(𝑘 ∈ 𝐵, 𝑘 ∈ 𝐴, ∅ ∈ (seq0((𝑐 ∈ 2o, 𝑚 ∈ ℕ0 ↦
if(cadd(𝑚 ∈ 𝐴, 𝑚 ∈ 𝐵, ∅ ∈ 𝑐), 1o, ∅)), (𝑛 ∈ ℕ0
↦ if(𝑛 = 0, ∅,
(𝑛 −
1))))‘𝑘)))) |
3 | 2 | rabbidv 3414 |
. 2
⊢ ((𝐴 ⊆ ℕ0
∧ 𝐵 ⊆
ℕ0) → {𝑘 ∈ ℕ0 ∣
hadd(𝑘 ∈ 𝐴, 𝑘 ∈ 𝐵, ∅ ∈ (seq0((𝑐 ∈ 2o, 𝑚 ∈ ℕ0 ↦
if(cadd(𝑚 ∈ 𝐴, 𝑚 ∈ 𝐵, ∅ ∈ 𝑐), 1o, ∅)), (𝑛 ∈ ℕ0
↦ if(𝑛 = 0, ∅,
(𝑛 −
1))))‘𝑘))} = {𝑘 ∈ ℕ0
∣ hadd(𝑘 ∈ 𝐵, 𝑘 ∈ 𝐴, ∅ ∈ (seq0((𝑐 ∈ 2o, 𝑚 ∈ ℕ0 ↦
if(cadd(𝑚 ∈ 𝐴, 𝑚 ∈ 𝐵, ∅ ∈ 𝑐), 1o, ∅)), (𝑛 ∈ ℕ0
↦ if(𝑛 = 0, ∅,
(𝑛 −
1))))‘𝑘))}) |
4 | | simpl 483 |
. . 3
⊢ ((𝐴 ⊆ ℕ0
∧ 𝐵 ⊆
ℕ0) → 𝐴 ⊆
ℕ0) |
5 | | simpr 485 |
. . 3
⊢ ((𝐴 ⊆ ℕ0
∧ 𝐵 ⊆
ℕ0) → 𝐵 ⊆
ℕ0) |
6 | | eqid 2738 |
. . 3
⊢
seq0((𝑐 ∈
2o, 𝑚 ∈
ℕ0 ↦ if(cadd(𝑚 ∈ 𝐴, 𝑚 ∈ 𝐵, ∅ ∈ 𝑐), 1o, ∅)), (𝑛 ∈ ℕ0
↦ if(𝑛 = 0, ∅,
(𝑛 − 1)))) =
seq0((𝑐 ∈
2o, 𝑚 ∈
ℕ0 ↦ if(cadd(𝑚 ∈ 𝐴, 𝑚 ∈ 𝐵, ∅ ∈ 𝑐), 1o, ∅)), (𝑛 ∈ ℕ0
↦ if(𝑛 = 0, ∅,
(𝑛 −
1)))) |
7 | 4, 5, 6 | sadfval 16159 |
. 2
⊢ ((𝐴 ⊆ ℕ0
∧ 𝐵 ⊆
ℕ0) → (𝐴 sadd 𝐵) = {𝑘 ∈ ℕ0 ∣
hadd(𝑘 ∈ 𝐴, 𝑘 ∈ 𝐵, ∅ ∈ (seq0((𝑐 ∈ 2o, 𝑚 ∈ ℕ0 ↦
if(cadd(𝑚 ∈ 𝐴, 𝑚 ∈ 𝐵, ∅ ∈ 𝑐), 1o, ∅)), (𝑛 ∈ ℕ0
↦ if(𝑛 = 0, ∅,
(𝑛 −
1))))‘𝑘))}) |
8 | | cadcoma 1614 |
. . . . . . 7
⊢
(cadd(𝑚 ∈ 𝐴, 𝑚 ∈ 𝐵, ∅ ∈ 𝑐) ↔ cadd(𝑚 ∈ 𝐵, 𝑚 ∈ 𝐴, ∅ ∈ 𝑐)) |
9 | 8 | a1i 11 |
. . . . . 6
⊢ ((𝑐 ∈ 2o ∧
𝑚 ∈
ℕ0) → (cadd(𝑚 ∈ 𝐴, 𝑚 ∈ 𝐵, ∅ ∈ 𝑐) ↔ cadd(𝑚 ∈ 𝐵, 𝑚 ∈ 𝐴, ∅ ∈ 𝑐))) |
10 | 9 | ifbid 4482 |
. . . . 5
⊢ ((𝑐 ∈ 2o ∧
𝑚 ∈
ℕ0) → if(cadd(𝑚 ∈ 𝐴, 𝑚 ∈ 𝐵, ∅ ∈ 𝑐), 1o, ∅) = if(cadd(𝑚 ∈ 𝐵, 𝑚 ∈ 𝐴, ∅ ∈ 𝑐), 1o, ∅)) |
11 | 10 | mpoeq3ia 7353 |
. . . 4
⊢ (𝑐 ∈ 2o, 𝑚 ∈ ℕ0
↦ if(cadd(𝑚 ∈
𝐴, 𝑚 ∈ 𝐵, ∅ ∈ 𝑐), 1o, ∅)) = (𝑐 ∈ 2o, 𝑚 ∈ ℕ0
↦ if(cadd(𝑚 ∈
𝐵, 𝑚 ∈ 𝐴, ∅ ∈ 𝑐), 1o, ∅)) |
12 | | seqeq2 13725 |
. . . 4
⊢ ((𝑐 ∈ 2o, 𝑚 ∈ ℕ0
↦ if(cadd(𝑚 ∈
𝐴, 𝑚 ∈ 𝐵, ∅ ∈ 𝑐), 1o, ∅)) = (𝑐 ∈ 2o, 𝑚 ∈ ℕ0
↦ if(cadd(𝑚 ∈
𝐵, 𝑚 ∈ 𝐴, ∅ ∈ 𝑐), 1o, ∅)) →
seq0((𝑐 ∈
2o, 𝑚 ∈
ℕ0 ↦ if(cadd(𝑚 ∈ 𝐴, 𝑚 ∈ 𝐵, ∅ ∈ 𝑐), 1o, ∅)), (𝑛 ∈ ℕ0
↦ if(𝑛 = 0, ∅,
(𝑛 − 1)))) =
seq0((𝑐 ∈
2o, 𝑚 ∈
ℕ0 ↦ if(cadd(𝑚 ∈ 𝐵, 𝑚 ∈ 𝐴, ∅ ∈ 𝑐), 1o, ∅)), (𝑛 ∈ ℕ0
↦ if(𝑛 = 0, ∅,
(𝑛 −
1))))) |
13 | 11, 12 | ax-mp 5 |
. . 3
⊢
seq0((𝑐 ∈
2o, 𝑚 ∈
ℕ0 ↦ if(cadd(𝑚 ∈ 𝐴, 𝑚 ∈ 𝐵, ∅ ∈ 𝑐), 1o, ∅)), (𝑛 ∈ ℕ0
↦ if(𝑛 = 0, ∅,
(𝑛 − 1)))) =
seq0((𝑐 ∈
2o, 𝑚 ∈
ℕ0 ↦ if(cadd(𝑚 ∈ 𝐵, 𝑚 ∈ 𝐴, ∅ ∈ 𝑐), 1o, ∅)), (𝑛 ∈ ℕ0
↦ if(𝑛 = 0, ∅,
(𝑛 −
1)))) |
14 | 5, 4, 13 | sadfval 16159 |
. 2
⊢ ((𝐴 ⊆ ℕ0
∧ 𝐵 ⊆
ℕ0) → (𝐵 sadd 𝐴) = {𝑘 ∈ ℕ0 ∣
hadd(𝑘 ∈ 𝐵, 𝑘 ∈ 𝐴, ∅ ∈ (seq0((𝑐 ∈ 2o, 𝑚 ∈ ℕ0 ↦
if(cadd(𝑚 ∈ 𝐴, 𝑚 ∈ 𝐵, ∅ ∈ 𝑐), 1o, ∅)), (𝑛 ∈ ℕ0
↦ if(𝑛 = 0, ∅,
(𝑛 −
1))))‘𝑘))}) |
15 | 3, 7, 14 | 3eqtr4d 2788 |
1
⊢ ((𝐴 ⊆ ℕ0
∧ 𝐵 ⊆
ℕ0) → (𝐴 sadd 𝐵) = (𝐵 sadd 𝐴)) |