![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > hadifp | Structured version Visualization version GIF version |
Description: The value of the adder sum is, if the first input is true, the biconditionality, and if the first input is false, the exclusive disjunction, of the other two inputs. (Contributed by BJ, 11-Aug-2020.) |
Ref | Expression |
---|---|
hadifp | ⊢ (hadd(𝜑, 𝜓, 𝜒) ↔ if-(𝜑, (𝜓 ↔ 𝜒), (𝜓 ⊻ 𝜒))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | had1 1600 | . 2 ⊢ (𝜑 → (hadd(𝜑, 𝜓, 𝜒) ↔ (𝜓 ↔ 𝜒))) | |
2 | had0 1601 | . 2 ⊢ (¬ 𝜑 → (hadd(𝜑, 𝜓, 𝜒) ↔ (𝜓 ⊻ 𝜒))) | |
3 | 1, 2 | casesifp 1077 | 1 ⊢ (hadd(𝜑, 𝜓, 𝜒) ↔ if-(𝜑, (𝜓 ↔ 𝜒), (𝜓 ⊻ 𝜒))) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 if-wif 1062 ⊻ wxo 1508 haddwhad 1590 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-ifp 1063 df-xor 1509 df-had 1591 |
This theorem is referenced by: wl-df-3xor 37451 |
Copyright terms: Public domain | W3C validator |