Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > hadifp | Structured version Visualization version GIF version |
Description: The value of the adder sum is, if the first input is true, the biconditionality, and if the first input is false, the exclusive disjunction, of the other two inputs. (Contributed by BJ, 11-Aug-2020.) |
Ref | Expression |
---|---|
hadifp | ⊢ (hadd(𝜑, 𝜓, 𝜒) ↔ if-(𝜑, (𝜓 ↔ 𝜒), (𝜓 ⊻ 𝜒))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | had1 1605 | . 2 ⊢ (𝜑 → (hadd(𝜑, 𝜓, 𝜒) ↔ (𝜓 ↔ 𝜒))) | |
2 | had0 1606 | . 2 ⊢ (¬ 𝜑 → (hadd(𝜑, 𝜓, 𝜒) ↔ (𝜓 ⊻ 𝜒))) | |
3 | 1, 2 | casesifp 1076 | 1 ⊢ (hadd(𝜑, 𝜓, 𝜒) ↔ if-(𝜑, (𝜓 ↔ 𝜒), (𝜓 ⊻ 𝜒))) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 if-wif 1060 ⊻ wxo 1506 haddwhad 1594 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-ifp 1061 df-xor 1507 df-had 1595 |
This theorem is referenced by: wl-df-3xor 35639 |
Copyright terms: Public domain | W3C validator |