MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hadifp Structured version   Visualization version   GIF version

Theorem hadifp 1608
Description: The value of the adder sum is, if the first input is true, the biconditionality, and if the first input is false, the exclusive disjunction, of the other two inputs. (Contributed by BJ, 11-Aug-2020.)
Assertion
Ref Expression
hadifp (hadd(𝜑, 𝜓, 𝜒) ↔ if-(𝜑, (𝜓𝜒), (𝜓𝜒)))

Proof of Theorem hadifp
StepHypRef Expression
1 had1 1606 . 2 (𝜑 → (hadd(𝜑, 𝜓, 𝜒) ↔ (𝜓𝜒)))
2 had0 1607 . 2 𝜑 → (hadd(𝜑, 𝜓, 𝜒) ↔ (𝜓𝜒)))
31, 2casesifp 1075 1 (hadd(𝜑, 𝜓, 𝜒) ↔ if-(𝜑, (𝜓𝜒), (𝜓𝜒)))
Colors of variables: wff setvar class
Syntax hints:  wb 205  if-wif 1059  wxo 1503  haddwhad 1595
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-ifp 1060  df-xor 1504  df-had 1596
This theorem is referenced by:  wl-df-3xor  35566
  Copyright terms: Public domain W3C validator