| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > had0 | Structured version Visualization version GIF version | ||
| Description: If the first input is false, then the adder sum is equivalent to the exclusive disjunction of the other two inputs. (Contributed by Mario Carneiro, 4-Sep-2016.) (Proof shortened by Wolf Lammen, 12-Jul-2020.) |
| Ref | Expression |
|---|---|
| had0 | ⊢ (¬ 𝜑 → (hadd(𝜑, 𝜓, 𝜒) ↔ (𝜓 ⊻ 𝜒))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | had1 1603 | . . 3 ⊢ (¬ 𝜑 → (hadd(¬ 𝜑, ¬ 𝜓, ¬ 𝜒) ↔ (¬ 𝜓 ↔ ¬ 𝜒))) | |
| 2 | hadnot 1602 | . . 3 ⊢ (¬ hadd(𝜑, 𝜓, 𝜒) ↔ hadd(¬ 𝜑, ¬ 𝜓, ¬ 𝜒)) | |
| 3 | xnor 1513 | . . . 4 ⊢ ((𝜓 ↔ 𝜒) ↔ ¬ (𝜓 ⊻ 𝜒)) | |
| 4 | notbi 319 | . . . 4 ⊢ ((𝜓 ↔ 𝜒) ↔ (¬ 𝜓 ↔ ¬ 𝜒)) | |
| 5 | 3, 4 | bitr3i 277 | . . 3 ⊢ (¬ (𝜓 ⊻ 𝜒) ↔ (¬ 𝜓 ↔ ¬ 𝜒)) |
| 6 | 1, 2, 5 | 3bitr4g 314 | . 2 ⊢ (¬ 𝜑 → (¬ hadd(𝜑, 𝜓, 𝜒) ↔ ¬ (𝜓 ⊻ 𝜒))) |
| 7 | 6 | con4bid 317 | 1 ⊢ (¬ 𝜑 → (hadd(𝜑, 𝜓, 𝜒) ↔ (𝜓 ⊻ 𝜒))) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ⊻ wxo 1511 haddwhad 1593 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-xor 1512 df-had 1594 |
| This theorem is referenced by: hadifp 1605 sadadd2lem2 16487 saddisjlem 16501 |
| Copyright terms: Public domain | W3C validator |