MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  had1 Structured version   Visualization version   GIF version

Theorem had1 1606
Description: If the first input is true, then the adder sum is equivalent to the biconditionality of the other two inputs. (Contributed by Mario Carneiro, 4-Sep-2016.) (Proof shortened by Wolf Lammen, 11-Jul-2020.)
Assertion
Ref Expression
had1 (𝜑 → (hadd(𝜑, 𝜓, 𝜒) ↔ (𝜓𝜒)))

Proof of Theorem had1
StepHypRef Expression
1 hadrot 1604 . . . 4 (hadd(𝜑, 𝜓, 𝜒) ↔ hadd(𝜓, 𝜒, 𝜑))
2 hadbi 1600 . . . 4 (hadd(𝜓, 𝜒, 𝜑) ↔ ((𝜓𝜒) ↔ 𝜑))
31, 2bitri 274 . . 3 (hadd(𝜑, 𝜓, 𝜒) ↔ ((𝜓𝜒) ↔ 𝜑))
4 biass 385 . . 3 (((hadd(𝜑, 𝜓, 𝜒) ↔ (𝜓𝜒)) ↔ 𝜑) ↔ (hadd(𝜑, 𝜓, 𝜒) ↔ ((𝜓𝜒) ↔ 𝜑)))
53, 4mpbir 230 . 2 ((hadd(𝜑, 𝜓, 𝜒) ↔ (𝜓𝜒)) ↔ 𝜑)
65biimpri 227 1 (𝜑 → (hadd(𝜑, 𝜓, 𝜒) ↔ (𝜓𝜒)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  haddwhad 1595
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-xor 1504  df-had 1596
This theorem is referenced by:  had0  1607  hadifp  1608  sadadd2lem2  16085
  Copyright terms: Public domain W3C validator