MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  casesifp Structured version   Visualization version   GIF version

Theorem casesifp 1078
Description: Version of cases 1042 expressed using if-. Case disjunction according to the value of 𝜑. One can see this as a proof that the two hypotheses characterize the conditional operator for propositions. For the converses, see ifptru 1075 and ifpfal 1076. (Contributed by BJ, 20-Sep-2019.)
Hypotheses
Ref Expression
casesifp.1 (𝜑 → (𝜓𝜒))
casesifp.2 𝜑 → (𝜓𝜃))
Assertion
Ref Expression
casesifp (𝜓 ↔ if-(𝜑, 𝜒, 𝜃))

Proof of Theorem casesifp
StepHypRef Expression
1 casesifp.1 . . 3 (𝜑 → (𝜓𝜒))
2 casesifp.2 . . 3 𝜑 → (𝜓𝜃))
31, 2cases 1042 . 2 (𝜓 ↔ ((𝜑𝜒) ∨ (¬ 𝜑𝜃)))
4 df-ifp 1063 . 2 (if-(𝜑, 𝜒, 𝜃) ↔ ((𝜑𝜒) ∨ (¬ 𝜑𝜃)))
53, 4bitr4i 281 1 (𝜓 ↔ if-(𝜑, 𝜒, 𝜃))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 399  wo 846  if-wif 1062
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 847  df-ifp 1063
This theorem is referenced by:  hadifp  1611  cadifp  1626  wl-1xor  35276  wl-1mintru1  35282  brif1  39780  brif2  39781  brif12  39782
  Copyright terms: Public domain W3C validator