| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > casesifp | Structured version Visualization version GIF version | ||
| Description: Version of cases 1042 expressed using if-. Case disjunction according to the value of 𝜑. One can see this as a proof that the two hypotheses characterize the conditional operator for propositions. For the converses, see ifptru 1074 and ifpfal 1075. (Contributed by BJ, 20-Sep-2019.) |
| Ref | Expression |
|---|---|
| casesifp.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
| casesifp.2 | ⊢ (¬ 𝜑 → (𝜓 ↔ 𝜃)) |
| Ref | Expression |
|---|---|
| casesifp | ⊢ (𝜓 ↔ if-(𝜑, 𝜒, 𝜃)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | casesifp.1 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
| 2 | casesifp.2 | . . 3 ⊢ (¬ 𝜑 → (𝜓 ↔ 𝜃)) | |
| 3 | 1, 2 | cases 1042 | . 2 ⊢ (𝜓 ↔ ((𝜑 ∧ 𝜒) ∨ (¬ 𝜑 ∧ 𝜃))) |
| 4 | df-ifp 1063 | . 2 ⊢ (if-(𝜑, 𝜒, 𝜃) ↔ ((𝜑 ∧ 𝜒) ∨ (¬ 𝜑 ∧ 𝜃))) | |
| 5 | 3, 4 | bitr4i 278 | 1 ⊢ (𝜓 ↔ if-(𝜑, 𝜒, 𝜃)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∨ wo 847 if-wif 1062 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-ifp 1063 |
| This theorem is referenced by: hadifp 1605 cadifp 1619 brif1 7509 wl-1xor 37505 wl-1mintru1 37511 brif2 42242 brif12 42243 |
| Copyright terms: Public domain | W3C validator |