Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > casesifp | Structured version Visualization version GIF version |
Description: Version of cases 1040 expressed using if-. Case disjunction according to the value of 𝜑. One can see this as a proof that the two hypotheses characterize the conditional operator for propositions. For the converses, see ifptru 1073 and ifpfal 1074. (Contributed by BJ, 20-Sep-2019.) |
Ref | Expression |
---|---|
casesifp.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
casesifp.2 | ⊢ (¬ 𝜑 → (𝜓 ↔ 𝜃)) |
Ref | Expression |
---|---|
casesifp | ⊢ (𝜓 ↔ if-(𝜑, 𝜒, 𝜃)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | casesifp.1 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
2 | casesifp.2 | . . 3 ⊢ (¬ 𝜑 → (𝜓 ↔ 𝜃)) | |
3 | 1, 2 | cases 1040 | . 2 ⊢ (𝜓 ↔ ((𝜑 ∧ 𝜒) ∨ (¬ 𝜑 ∧ 𝜃))) |
4 | df-ifp 1061 | . 2 ⊢ (if-(𝜑, 𝜒, 𝜃) ↔ ((𝜑 ∧ 𝜒) ∨ (¬ 𝜑 ∧ 𝜃))) | |
5 | 3, 4 | bitr4i 277 | 1 ⊢ (𝜓 ↔ if-(𝜑, 𝜒, 𝜃)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 396 ∨ wo 844 if-wif 1060 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-ifp 1061 |
This theorem is referenced by: hadifp 1607 cadifp 1622 wl-1xor 35653 wl-1mintru1 35659 brif1 40198 brif2 40199 brif12 40200 |
Copyright terms: Public domain | W3C validator |