MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  saddisjlem Structured version   Visualization version   GIF version

Theorem saddisjlem 16344
Description: Lemma for sadadd 16347. (Contributed by Mario Carneiro, 9-Sep-2016.)
Hypotheses
Ref Expression
saddisj.1 (𝜑𝐴 ⊆ ℕ0)
saddisj.2 (𝜑𝐵 ⊆ ℕ0)
saddisj.3 (𝜑 → (𝐴𝐵) = ∅)
saddisjlem.c 𝐶 = seq0((𝑐 ∈ 2o, 𝑚 ∈ ℕ0 ↦ if(cadd(𝑚𝐴, 𝑚𝐵, ∅ ∈ 𝑐), 1o, ∅)), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1))))
saddisjlem.3 (𝜑𝑁 ∈ ℕ0)
Assertion
Ref Expression
saddisjlem (𝜑 → (𝑁 ∈ (𝐴 sadd 𝐵) ↔ 𝑁 ∈ (𝐴𝐵)))
Distinct variable groups:   𝑚,𝑐,𝑛   𝐴,𝑐,𝑚   𝐵,𝑐,𝑚   𝑛,𝑁
Allowed substitution hints:   𝜑(𝑚,𝑛,𝑐)   𝐴(𝑛)   𝐵(𝑛)   𝐶(𝑚,𝑛,𝑐)   𝑁(𝑚,𝑐)

Proof of Theorem saddisjlem
Dummy variables 𝑘 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 saddisj.1 . . 3 (𝜑𝐴 ⊆ ℕ0)
2 saddisj.2 . . 3 (𝜑𝐵 ⊆ ℕ0)
3 saddisjlem.c . . 3 𝐶 = seq0((𝑐 ∈ 2o, 𝑚 ∈ ℕ0 ↦ if(cadd(𝑚𝐴, 𝑚𝐵, ∅ ∈ 𝑐), 1o, ∅)), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1))))
4 saddisjlem.3 . . 3 (𝜑𝑁 ∈ ℕ0)
51, 2, 3, 4sadval 16336 . 2 (𝜑 → (𝑁 ∈ (𝐴 sadd 𝐵) ↔ hadd(𝑁𝐴, 𝑁𝐵, ∅ ∈ (𝐶𝑁))))
6 fveq2 6842 . . . . . . . 8 (𝑥 = 0 → (𝐶𝑥) = (𝐶‘0))
76eleq2d 2823 . . . . . . 7 (𝑥 = 0 → (∅ ∈ (𝐶𝑥) ↔ ∅ ∈ (𝐶‘0)))
87notbid 317 . . . . . 6 (𝑥 = 0 → (¬ ∅ ∈ (𝐶𝑥) ↔ ¬ ∅ ∈ (𝐶‘0)))
98imbi2d 340 . . . . 5 (𝑥 = 0 → ((𝜑 → ¬ ∅ ∈ (𝐶𝑥)) ↔ (𝜑 → ¬ ∅ ∈ (𝐶‘0))))
10 fveq2 6842 . . . . . . . 8 (𝑥 = 𝑘 → (𝐶𝑥) = (𝐶𝑘))
1110eleq2d 2823 . . . . . . 7 (𝑥 = 𝑘 → (∅ ∈ (𝐶𝑥) ↔ ∅ ∈ (𝐶𝑘)))
1211notbid 317 . . . . . 6 (𝑥 = 𝑘 → (¬ ∅ ∈ (𝐶𝑥) ↔ ¬ ∅ ∈ (𝐶𝑘)))
1312imbi2d 340 . . . . 5 (𝑥 = 𝑘 → ((𝜑 → ¬ ∅ ∈ (𝐶𝑥)) ↔ (𝜑 → ¬ ∅ ∈ (𝐶𝑘))))
14 fveq2 6842 . . . . . . . 8 (𝑥 = (𝑘 + 1) → (𝐶𝑥) = (𝐶‘(𝑘 + 1)))
1514eleq2d 2823 . . . . . . 7 (𝑥 = (𝑘 + 1) → (∅ ∈ (𝐶𝑥) ↔ ∅ ∈ (𝐶‘(𝑘 + 1))))
1615notbid 317 . . . . . 6 (𝑥 = (𝑘 + 1) → (¬ ∅ ∈ (𝐶𝑥) ↔ ¬ ∅ ∈ (𝐶‘(𝑘 + 1))))
1716imbi2d 340 . . . . 5 (𝑥 = (𝑘 + 1) → ((𝜑 → ¬ ∅ ∈ (𝐶𝑥)) ↔ (𝜑 → ¬ ∅ ∈ (𝐶‘(𝑘 + 1)))))
18 fveq2 6842 . . . . . . . 8 (𝑥 = 𝑁 → (𝐶𝑥) = (𝐶𝑁))
1918eleq2d 2823 . . . . . . 7 (𝑥 = 𝑁 → (∅ ∈ (𝐶𝑥) ↔ ∅ ∈ (𝐶𝑁)))
2019notbid 317 . . . . . 6 (𝑥 = 𝑁 → (¬ ∅ ∈ (𝐶𝑥) ↔ ¬ ∅ ∈ (𝐶𝑁)))
2120imbi2d 340 . . . . 5 (𝑥 = 𝑁 → ((𝜑 → ¬ ∅ ∈ (𝐶𝑥)) ↔ (𝜑 → ¬ ∅ ∈ (𝐶𝑁))))
221, 2, 3sadc0 16334 . . . . 5 (𝜑 → ¬ ∅ ∈ (𝐶‘0))
23 noel 4290 . . . . . . . . 9 ¬ 𝑘 ∈ ∅
241ad2antrr 724 . . . . . . . . . . 11 (((𝜑𝑘 ∈ ℕ0) ∧ ¬ ∅ ∈ (𝐶𝑘)) → 𝐴 ⊆ ℕ0)
252ad2antrr 724 . . . . . . . . . . 11 (((𝜑𝑘 ∈ ℕ0) ∧ ¬ ∅ ∈ (𝐶𝑘)) → 𝐵 ⊆ ℕ0)
26 simplr 767 . . . . . . . . . . 11 (((𝜑𝑘 ∈ ℕ0) ∧ ¬ ∅ ∈ (𝐶𝑘)) → 𝑘 ∈ ℕ0)
2724, 25, 3, 26sadcp1 16335 . . . . . . . . . 10 (((𝜑𝑘 ∈ ℕ0) ∧ ¬ ∅ ∈ (𝐶𝑘)) → (∅ ∈ (𝐶‘(𝑘 + 1)) ↔ cadd(𝑘𝐴, 𝑘𝐵, ∅ ∈ (𝐶𝑘))))
28 cad0 1619 . . . . . . . . . . 11 (¬ ∅ ∈ (𝐶𝑘) → (cadd(𝑘𝐴, 𝑘𝐵, ∅ ∈ (𝐶𝑘)) ↔ (𝑘𝐴𝑘𝐵)))
2928adantl 482 . . . . . . . . . 10 (((𝜑𝑘 ∈ ℕ0) ∧ ¬ ∅ ∈ (𝐶𝑘)) → (cadd(𝑘𝐴, 𝑘𝐵, ∅ ∈ (𝐶𝑘)) ↔ (𝑘𝐴𝑘𝐵)))
30 elin 3926 . . . . . . . . . . 11 (𝑘 ∈ (𝐴𝐵) ↔ (𝑘𝐴𝑘𝐵))
31 saddisj.3 . . . . . . . . . . . . 13 (𝜑 → (𝐴𝐵) = ∅)
3231ad2antrr 724 . . . . . . . . . . . 12 (((𝜑𝑘 ∈ ℕ0) ∧ ¬ ∅ ∈ (𝐶𝑘)) → (𝐴𝐵) = ∅)
3332eleq2d 2823 . . . . . . . . . . 11 (((𝜑𝑘 ∈ ℕ0) ∧ ¬ ∅ ∈ (𝐶𝑘)) → (𝑘 ∈ (𝐴𝐵) ↔ 𝑘 ∈ ∅))
3430, 33bitr3id 284 . . . . . . . . . 10 (((𝜑𝑘 ∈ ℕ0) ∧ ¬ ∅ ∈ (𝐶𝑘)) → ((𝑘𝐴𝑘𝐵) ↔ 𝑘 ∈ ∅))
3527, 29, 343bitrd 304 . . . . . . . . 9 (((𝜑𝑘 ∈ ℕ0) ∧ ¬ ∅ ∈ (𝐶𝑘)) → (∅ ∈ (𝐶‘(𝑘 + 1)) ↔ 𝑘 ∈ ∅))
3623, 35mtbiri 326 . . . . . . . 8 (((𝜑𝑘 ∈ ℕ0) ∧ ¬ ∅ ∈ (𝐶𝑘)) → ¬ ∅ ∈ (𝐶‘(𝑘 + 1)))
3736ex 413 . . . . . . 7 ((𝜑𝑘 ∈ ℕ0) → (¬ ∅ ∈ (𝐶𝑘) → ¬ ∅ ∈ (𝐶‘(𝑘 + 1))))
3837expcom 414 . . . . . 6 (𝑘 ∈ ℕ0 → (𝜑 → (¬ ∅ ∈ (𝐶𝑘) → ¬ ∅ ∈ (𝐶‘(𝑘 + 1)))))
3938a2d 29 . . . . 5 (𝑘 ∈ ℕ0 → ((𝜑 → ¬ ∅ ∈ (𝐶𝑘)) → (𝜑 → ¬ ∅ ∈ (𝐶‘(𝑘 + 1)))))
409, 13, 17, 21, 22, 39nn0ind 12598 . . . 4 (𝑁 ∈ ℕ0 → (𝜑 → ¬ ∅ ∈ (𝐶𝑁)))
414, 40mpcom 38 . . 3 (𝜑 → ¬ ∅ ∈ (𝐶𝑁))
42 hadrot 1602 . . . 4 (hadd(∅ ∈ (𝐶𝑁), 𝑁𝐴, 𝑁𝐵) ↔ hadd(𝑁𝐴, 𝑁𝐵, ∅ ∈ (𝐶𝑁)))
43 had0 1605 . . . 4 (¬ ∅ ∈ (𝐶𝑁) → (hadd(∅ ∈ (𝐶𝑁), 𝑁𝐴, 𝑁𝐵) ↔ (𝑁𝐴𝑁𝐵)))
4442, 43bitr3id 284 . . 3 (¬ ∅ ∈ (𝐶𝑁) → (hadd(𝑁𝐴, 𝑁𝐵, ∅ ∈ (𝐶𝑁)) ↔ (𝑁𝐴𝑁𝐵)))
4541, 44syl 17 . 2 (𝜑 → (hadd(𝑁𝐴, 𝑁𝐵, ∅ ∈ (𝐶𝑁)) ↔ (𝑁𝐴𝑁𝐵)))
46 noel 4290 . . . . 5 ¬ 𝑁 ∈ ∅
47 elin 3926 . . . . . 6 (𝑁 ∈ (𝐴𝐵) ↔ (𝑁𝐴𝑁𝐵))
4831eleq2d 2823 . . . . . 6 (𝜑 → (𝑁 ∈ (𝐴𝐵) ↔ 𝑁 ∈ ∅))
4947, 48bitr3id 284 . . . . 5 (𝜑 → ((𝑁𝐴𝑁𝐵) ↔ 𝑁 ∈ ∅))
5046, 49mtbiri 326 . . . 4 (𝜑 → ¬ (𝑁𝐴𝑁𝐵))
51 xor2 1516 . . . . 5 ((𝑁𝐴𝑁𝐵) ↔ ((𝑁𝐴𝑁𝐵) ∧ ¬ (𝑁𝐴𝑁𝐵)))
5251rbaib 539 . . . 4 (¬ (𝑁𝐴𝑁𝐵) → ((𝑁𝐴𝑁𝐵) ↔ (𝑁𝐴𝑁𝐵)))
5350, 52syl 17 . . 3 (𝜑 → ((𝑁𝐴𝑁𝐵) ↔ (𝑁𝐴𝑁𝐵)))
54 elun 4108 . . 3 (𝑁 ∈ (𝐴𝐵) ↔ (𝑁𝐴𝑁𝐵))
5553, 54bitr4di 288 . 2 (𝜑 → ((𝑁𝐴𝑁𝐵) ↔ 𝑁 ∈ (𝐴𝐵)))
565, 45, 553bitrd 304 1 (𝜑 → (𝑁 ∈ (𝐴 sadd 𝐵) ↔ 𝑁 ∈ (𝐴𝐵)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  wo 845  wxo 1509   = wceq 1541  haddwhad 1594  caddwcad 1607  wcel 2106  cun 3908  cin 3909  wss 3910  c0 4282  ifcif 4486  cmpt 5188  cfv 6496  (class class class)co 7357  cmpo 7359  1oc1o 8405  2oc2o 8406  0cc0 11051  1c1 11052   + caddc 11054  cmin 11385  0cn0 12413  seqcseq 13906   sadd csad 16300
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-xor 1510  df-tru 1544  df-fal 1554  df-had 1595  df-cad 1608  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-iun 4956  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-om 7803  df-1st 7921  df-2nd 7922  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-1o 8412  df-2o 8413  df-er 8648  df-en 8884  df-dom 8885  df-sdom 8886  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-nn 12154  df-n0 12414  df-z 12500  df-uz 12764  df-fz 13425  df-seq 13907  df-sad 16331
This theorem is referenced by:  saddisj  16345
  Copyright terms: Public domain W3C validator