MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  saddisjlem Structured version   Visualization version   GIF version

Theorem saddisjlem 16434
Description: Lemma for sadadd 16437. (Contributed by Mario Carneiro, 9-Sep-2016.)
Hypotheses
Ref Expression
saddisj.1 (𝜑𝐴 ⊆ ℕ0)
saddisj.2 (𝜑𝐵 ⊆ ℕ0)
saddisj.3 (𝜑 → (𝐴𝐵) = ∅)
saddisjlem.c 𝐶 = seq0((𝑐 ∈ 2o, 𝑚 ∈ ℕ0 ↦ if(cadd(𝑚𝐴, 𝑚𝐵, ∅ ∈ 𝑐), 1o, ∅)), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1))))
saddisjlem.3 (𝜑𝑁 ∈ ℕ0)
Assertion
Ref Expression
saddisjlem (𝜑 → (𝑁 ∈ (𝐴 sadd 𝐵) ↔ 𝑁 ∈ (𝐴𝐵)))
Distinct variable groups:   𝑚,𝑐,𝑛   𝐴,𝑐,𝑚   𝐵,𝑐,𝑚   𝑛,𝑁
Allowed substitution hints:   𝜑(𝑚,𝑛,𝑐)   𝐴(𝑛)   𝐵(𝑛)   𝐶(𝑚,𝑛,𝑐)   𝑁(𝑚,𝑐)

Proof of Theorem saddisjlem
Dummy variables 𝑘 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 saddisj.1 . . 3 (𝜑𝐴 ⊆ ℕ0)
2 saddisj.2 . . 3 (𝜑𝐵 ⊆ ℕ0)
3 saddisjlem.c . . 3 𝐶 = seq0((𝑐 ∈ 2o, 𝑚 ∈ ℕ0 ↦ if(cadd(𝑚𝐴, 𝑚𝐵, ∅ ∈ 𝑐), 1o, ∅)), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1))))
4 saddisjlem.3 . . 3 (𝜑𝑁 ∈ ℕ0)
51, 2, 3, 4sadval 16426 . 2 (𝜑 → (𝑁 ∈ (𝐴 sadd 𝐵) ↔ hadd(𝑁𝐴, 𝑁𝐵, ∅ ∈ (𝐶𝑁))))
6 fveq2 6858 . . . . . . . 8 (𝑥 = 0 → (𝐶𝑥) = (𝐶‘0))
76eleq2d 2814 . . . . . . 7 (𝑥 = 0 → (∅ ∈ (𝐶𝑥) ↔ ∅ ∈ (𝐶‘0)))
87notbid 318 . . . . . 6 (𝑥 = 0 → (¬ ∅ ∈ (𝐶𝑥) ↔ ¬ ∅ ∈ (𝐶‘0)))
98imbi2d 340 . . . . 5 (𝑥 = 0 → ((𝜑 → ¬ ∅ ∈ (𝐶𝑥)) ↔ (𝜑 → ¬ ∅ ∈ (𝐶‘0))))
10 fveq2 6858 . . . . . . . 8 (𝑥 = 𝑘 → (𝐶𝑥) = (𝐶𝑘))
1110eleq2d 2814 . . . . . . 7 (𝑥 = 𝑘 → (∅ ∈ (𝐶𝑥) ↔ ∅ ∈ (𝐶𝑘)))
1211notbid 318 . . . . . 6 (𝑥 = 𝑘 → (¬ ∅ ∈ (𝐶𝑥) ↔ ¬ ∅ ∈ (𝐶𝑘)))
1312imbi2d 340 . . . . 5 (𝑥 = 𝑘 → ((𝜑 → ¬ ∅ ∈ (𝐶𝑥)) ↔ (𝜑 → ¬ ∅ ∈ (𝐶𝑘))))
14 fveq2 6858 . . . . . . . 8 (𝑥 = (𝑘 + 1) → (𝐶𝑥) = (𝐶‘(𝑘 + 1)))
1514eleq2d 2814 . . . . . . 7 (𝑥 = (𝑘 + 1) → (∅ ∈ (𝐶𝑥) ↔ ∅ ∈ (𝐶‘(𝑘 + 1))))
1615notbid 318 . . . . . 6 (𝑥 = (𝑘 + 1) → (¬ ∅ ∈ (𝐶𝑥) ↔ ¬ ∅ ∈ (𝐶‘(𝑘 + 1))))
1716imbi2d 340 . . . . 5 (𝑥 = (𝑘 + 1) → ((𝜑 → ¬ ∅ ∈ (𝐶𝑥)) ↔ (𝜑 → ¬ ∅ ∈ (𝐶‘(𝑘 + 1)))))
18 fveq2 6858 . . . . . . . 8 (𝑥 = 𝑁 → (𝐶𝑥) = (𝐶𝑁))
1918eleq2d 2814 . . . . . . 7 (𝑥 = 𝑁 → (∅ ∈ (𝐶𝑥) ↔ ∅ ∈ (𝐶𝑁)))
2019notbid 318 . . . . . 6 (𝑥 = 𝑁 → (¬ ∅ ∈ (𝐶𝑥) ↔ ¬ ∅ ∈ (𝐶𝑁)))
2120imbi2d 340 . . . . 5 (𝑥 = 𝑁 → ((𝜑 → ¬ ∅ ∈ (𝐶𝑥)) ↔ (𝜑 → ¬ ∅ ∈ (𝐶𝑁))))
221, 2, 3sadc0 16424 . . . . 5 (𝜑 → ¬ ∅ ∈ (𝐶‘0))
23 noel 4301 . . . . . . . . 9 ¬ 𝑘 ∈ ∅
241ad2antrr 726 . . . . . . . . . . 11 (((𝜑𝑘 ∈ ℕ0) ∧ ¬ ∅ ∈ (𝐶𝑘)) → 𝐴 ⊆ ℕ0)
252ad2antrr 726 . . . . . . . . . . 11 (((𝜑𝑘 ∈ ℕ0) ∧ ¬ ∅ ∈ (𝐶𝑘)) → 𝐵 ⊆ ℕ0)
26 simplr 768 . . . . . . . . . . 11 (((𝜑𝑘 ∈ ℕ0) ∧ ¬ ∅ ∈ (𝐶𝑘)) → 𝑘 ∈ ℕ0)
2724, 25, 3, 26sadcp1 16425 . . . . . . . . . 10 (((𝜑𝑘 ∈ ℕ0) ∧ ¬ ∅ ∈ (𝐶𝑘)) → (∅ ∈ (𝐶‘(𝑘 + 1)) ↔ cadd(𝑘𝐴, 𝑘𝐵, ∅ ∈ (𝐶𝑘))))
28 cad0 1618 . . . . . . . . . . 11 (¬ ∅ ∈ (𝐶𝑘) → (cadd(𝑘𝐴, 𝑘𝐵, ∅ ∈ (𝐶𝑘)) ↔ (𝑘𝐴𝑘𝐵)))
2928adantl 481 . . . . . . . . . 10 (((𝜑𝑘 ∈ ℕ0) ∧ ¬ ∅ ∈ (𝐶𝑘)) → (cadd(𝑘𝐴, 𝑘𝐵, ∅ ∈ (𝐶𝑘)) ↔ (𝑘𝐴𝑘𝐵)))
30 elin 3930 . . . . . . . . . . 11 (𝑘 ∈ (𝐴𝐵) ↔ (𝑘𝐴𝑘𝐵))
31 saddisj.3 . . . . . . . . . . . . 13 (𝜑 → (𝐴𝐵) = ∅)
3231ad2antrr 726 . . . . . . . . . . . 12 (((𝜑𝑘 ∈ ℕ0) ∧ ¬ ∅ ∈ (𝐶𝑘)) → (𝐴𝐵) = ∅)
3332eleq2d 2814 . . . . . . . . . . 11 (((𝜑𝑘 ∈ ℕ0) ∧ ¬ ∅ ∈ (𝐶𝑘)) → (𝑘 ∈ (𝐴𝐵) ↔ 𝑘 ∈ ∅))
3430, 33bitr3id 285 . . . . . . . . . 10 (((𝜑𝑘 ∈ ℕ0) ∧ ¬ ∅ ∈ (𝐶𝑘)) → ((𝑘𝐴𝑘𝐵) ↔ 𝑘 ∈ ∅))
3527, 29, 343bitrd 305 . . . . . . . . 9 (((𝜑𝑘 ∈ ℕ0) ∧ ¬ ∅ ∈ (𝐶𝑘)) → (∅ ∈ (𝐶‘(𝑘 + 1)) ↔ 𝑘 ∈ ∅))
3623, 35mtbiri 327 . . . . . . . 8 (((𝜑𝑘 ∈ ℕ0) ∧ ¬ ∅ ∈ (𝐶𝑘)) → ¬ ∅ ∈ (𝐶‘(𝑘 + 1)))
3736ex 412 . . . . . . 7 ((𝜑𝑘 ∈ ℕ0) → (¬ ∅ ∈ (𝐶𝑘) → ¬ ∅ ∈ (𝐶‘(𝑘 + 1))))
3837expcom 413 . . . . . 6 (𝑘 ∈ ℕ0 → (𝜑 → (¬ ∅ ∈ (𝐶𝑘) → ¬ ∅ ∈ (𝐶‘(𝑘 + 1)))))
3938a2d 29 . . . . 5 (𝑘 ∈ ℕ0 → ((𝜑 → ¬ ∅ ∈ (𝐶𝑘)) → (𝜑 → ¬ ∅ ∈ (𝐶‘(𝑘 + 1)))))
409, 13, 17, 21, 22, 39nn0ind 12629 . . . 4 (𝑁 ∈ ℕ0 → (𝜑 → ¬ ∅ ∈ (𝐶𝑁)))
414, 40mpcom 38 . . 3 (𝜑 → ¬ ∅ ∈ (𝐶𝑁))
42 hadrot 1601 . . . 4 (hadd(∅ ∈ (𝐶𝑁), 𝑁𝐴, 𝑁𝐵) ↔ hadd(𝑁𝐴, 𝑁𝐵, ∅ ∈ (𝐶𝑁)))
43 had0 1604 . . . 4 (¬ ∅ ∈ (𝐶𝑁) → (hadd(∅ ∈ (𝐶𝑁), 𝑁𝐴, 𝑁𝐵) ↔ (𝑁𝐴𝑁𝐵)))
4442, 43bitr3id 285 . . 3 (¬ ∅ ∈ (𝐶𝑁) → (hadd(𝑁𝐴, 𝑁𝐵, ∅ ∈ (𝐶𝑁)) ↔ (𝑁𝐴𝑁𝐵)))
4541, 44syl 17 . 2 (𝜑 → (hadd(𝑁𝐴, 𝑁𝐵, ∅ ∈ (𝐶𝑁)) ↔ (𝑁𝐴𝑁𝐵)))
46 noel 4301 . . . . 5 ¬ 𝑁 ∈ ∅
47 elin 3930 . . . . . 6 (𝑁 ∈ (𝐴𝐵) ↔ (𝑁𝐴𝑁𝐵))
4831eleq2d 2814 . . . . . 6 (𝜑 → (𝑁 ∈ (𝐴𝐵) ↔ 𝑁 ∈ ∅))
4947, 48bitr3id 285 . . . . 5 (𝜑 → ((𝑁𝐴𝑁𝐵) ↔ 𝑁 ∈ ∅))
5046, 49mtbiri 327 . . . 4 (𝜑 → ¬ (𝑁𝐴𝑁𝐵))
51 xor2 1517 . . . . 5 ((𝑁𝐴𝑁𝐵) ↔ ((𝑁𝐴𝑁𝐵) ∧ ¬ (𝑁𝐴𝑁𝐵)))
5251rbaib 538 . . . 4 (¬ (𝑁𝐴𝑁𝐵) → ((𝑁𝐴𝑁𝐵) ↔ (𝑁𝐴𝑁𝐵)))
5350, 52syl 17 . . 3 (𝜑 → ((𝑁𝐴𝑁𝐵) ↔ (𝑁𝐴𝑁𝐵)))
54 elun 4116 . . 3 (𝑁 ∈ (𝐴𝐵) ↔ (𝑁𝐴𝑁𝐵))
5553, 54bitr4di 289 . 2 (𝜑 → ((𝑁𝐴𝑁𝐵) ↔ 𝑁 ∈ (𝐴𝐵)))
565, 45, 553bitrd 305 1 (𝜑 → (𝑁 ∈ (𝐴 sadd 𝐵) ↔ 𝑁 ∈ (𝐴𝐵)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847  wxo 1511   = wceq 1540  haddwhad 1593  caddwcad 1606  wcel 2109  cun 3912  cin 3913  wss 3914  c0 4296  ifcif 4488  cmpt 5188  cfv 6511  (class class class)co 7387  cmpo 7389  1oc1o 8427  2oc2o 8428  0cc0 11068  1c1 11069   + caddc 11071  cmin 11405  0cn0 12442  seqcseq 13966   sadd csad 16390
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-xor 1512  df-tru 1543  df-fal 1553  df-had 1594  df-cad 1607  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-1st 7968  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-2o 8435  df-er 8671  df-en 8919  df-dom 8920  df-sdom 8921  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-nn 12187  df-n0 12443  df-z 12530  df-uz 12794  df-fz 13469  df-seq 13967  df-sad 16421
This theorem is referenced by:  saddisj  16435
  Copyright terms: Public domain W3C validator