MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  saddisjlem Structured version   Visualization version   GIF version

Theorem saddisjlem 15673
Description: Lemma for sadadd 15676. (Contributed by Mario Carneiro, 9-Sep-2016.)
Hypotheses
Ref Expression
saddisj.1 (𝜑𝐴 ⊆ ℕ0)
saddisj.2 (𝜑𝐵 ⊆ ℕ0)
saddisj.3 (𝜑 → (𝐴𝐵) = ∅)
saddisjlem.c 𝐶 = seq0((𝑐 ∈ 2o, 𝑚 ∈ ℕ0 ↦ if(cadd(𝑚𝐴, 𝑚𝐵, ∅ ∈ 𝑐), 1o, ∅)), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1))))
saddisjlem.3 (𝜑𝑁 ∈ ℕ0)
Assertion
Ref Expression
saddisjlem (𝜑 → (𝑁 ∈ (𝐴 sadd 𝐵) ↔ 𝑁 ∈ (𝐴𝐵)))
Distinct variable groups:   𝑚,𝑐,𝑛   𝐴,𝑐,𝑚   𝐵,𝑐,𝑚   𝑛,𝑁
Allowed substitution hints:   𝜑(𝑚,𝑛,𝑐)   𝐴(𝑛)   𝐵(𝑛)   𝐶(𝑚,𝑛,𝑐)   𝑁(𝑚,𝑐)

Proof of Theorem saddisjlem
Dummy variables 𝑘 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 saddisj.1 . . 3 (𝜑𝐴 ⊆ ℕ0)
2 saddisj.2 . . 3 (𝜑𝐵 ⊆ ℕ0)
3 saddisjlem.c . . 3 𝐶 = seq0((𝑐 ∈ 2o, 𝑚 ∈ ℕ0 ↦ if(cadd(𝑚𝐴, 𝑚𝐵, ∅ ∈ 𝑐), 1o, ∅)), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1))))
4 saddisjlem.3 . . 3 (𝜑𝑁 ∈ ℕ0)
51, 2, 3, 4sadval 15665 . 2 (𝜑 → (𝑁 ∈ (𝐴 sadd 𝐵) ↔ hadd(𝑁𝐴, 𝑁𝐵, ∅ ∈ (𝐶𝑁))))
6 fveq2 6499 . . . . . . . 8 (𝑥 = 0 → (𝐶𝑥) = (𝐶‘0))
76eleq2d 2852 . . . . . . 7 (𝑥 = 0 → (∅ ∈ (𝐶𝑥) ↔ ∅ ∈ (𝐶‘0)))
87notbid 310 . . . . . 6 (𝑥 = 0 → (¬ ∅ ∈ (𝐶𝑥) ↔ ¬ ∅ ∈ (𝐶‘0)))
98imbi2d 333 . . . . 5 (𝑥 = 0 → ((𝜑 → ¬ ∅ ∈ (𝐶𝑥)) ↔ (𝜑 → ¬ ∅ ∈ (𝐶‘0))))
10 fveq2 6499 . . . . . . . 8 (𝑥 = 𝑘 → (𝐶𝑥) = (𝐶𝑘))
1110eleq2d 2852 . . . . . . 7 (𝑥 = 𝑘 → (∅ ∈ (𝐶𝑥) ↔ ∅ ∈ (𝐶𝑘)))
1211notbid 310 . . . . . 6 (𝑥 = 𝑘 → (¬ ∅ ∈ (𝐶𝑥) ↔ ¬ ∅ ∈ (𝐶𝑘)))
1312imbi2d 333 . . . . 5 (𝑥 = 𝑘 → ((𝜑 → ¬ ∅ ∈ (𝐶𝑥)) ↔ (𝜑 → ¬ ∅ ∈ (𝐶𝑘))))
14 fveq2 6499 . . . . . . . 8 (𝑥 = (𝑘 + 1) → (𝐶𝑥) = (𝐶‘(𝑘 + 1)))
1514eleq2d 2852 . . . . . . 7 (𝑥 = (𝑘 + 1) → (∅ ∈ (𝐶𝑥) ↔ ∅ ∈ (𝐶‘(𝑘 + 1))))
1615notbid 310 . . . . . 6 (𝑥 = (𝑘 + 1) → (¬ ∅ ∈ (𝐶𝑥) ↔ ¬ ∅ ∈ (𝐶‘(𝑘 + 1))))
1716imbi2d 333 . . . . 5 (𝑥 = (𝑘 + 1) → ((𝜑 → ¬ ∅ ∈ (𝐶𝑥)) ↔ (𝜑 → ¬ ∅ ∈ (𝐶‘(𝑘 + 1)))))
18 fveq2 6499 . . . . . . . 8 (𝑥 = 𝑁 → (𝐶𝑥) = (𝐶𝑁))
1918eleq2d 2852 . . . . . . 7 (𝑥 = 𝑁 → (∅ ∈ (𝐶𝑥) ↔ ∅ ∈ (𝐶𝑁)))
2019notbid 310 . . . . . 6 (𝑥 = 𝑁 → (¬ ∅ ∈ (𝐶𝑥) ↔ ¬ ∅ ∈ (𝐶𝑁)))
2120imbi2d 333 . . . . 5 (𝑥 = 𝑁 → ((𝜑 → ¬ ∅ ∈ (𝐶𝑥)) ↔ (𝜑 → ¬ ∅ ∈ (𝐶𝑁))))
221, 2, 3sadc0 15663 . . . . 5 (𝜑 → ¬ ∅ ∈ (𝐶‘0))
23 noel 4184 . . . . . . . . 9 ¬ 𝑘 ∈ ∅
241ad2antrr 713 . . . . . . . . . . 11 (((𝜑𝑘 ∈ ℕ0) ∧ ¬ ∅ ∈ (𝐶𝑘)) → 𝐴 ⊆ ℕ0)
252ad2antrr 713 . . . . . . . . . . 11 (((𝜑𝑘 ∈ ℕ0) ∧ ¬ ∅ ∈ (𝐶𝑘)) → 𝐵 ⊆ ℕ0)
26 simplr 756 . . . . . . . . . . 11 (((𝜑𝑘 ∈ ℕ0) ∧ ¬ ∅ ∈ (𝐶𝑘)) → 𝑘 ∈ ℕ0)
2724, 25, 3, 26sadcp1 15664 . . . . . . . . . 10 (((𝜑𝑘 ∈ ℕ0) ∧ ¬ ∅ ∈ (𝐶𝑘)) → (∅ ∈ (𝐶‘(𝑘 + 1)) ↔ cadd(𝑘𝐴, 𝑘𝐵, ∅ ∈ (𝐶𝑘))))
28 cad0 1580 . . . . . . . . . . 11 (¬ ∅ ∈ (𝐶𝑘) → (cadd(𝑘𝐴, 𝑘𝐵, ∅ ∈ (𝐶𝑘)) ↔ (𝑘𝐴𝑘𝐵)))
2928adantl 474 . . . . . . . . . 10 (((𝜑𝑘 ∈ ℕ0) ∧ ¬ ∅ ∈ (𝐶𝑘)) → (cadd(𝑘𝐴, 𝑘𝐵, ∅ ∈ (𝐶𝑘)) ↔ (𝑘𝐴𝑘𝐵)))
30 elin 4058 . . . . . . . . . . 11 (𝑘 ∈ (𝐴𝐵) ↔ (𝑘𝐴𝑘𝐵))
31 saddisj.3 . . . . . . . . . . . . 13 (𝜑 → (𝐴𝐵) = ∅)
3231ad2antrr 713 . . . . . . . . . . . 12 (((𝜑𝑘 ∈ ℕ0) ∧ ¬ ∅ ∈ (𝐶𝑘)) → (𝐴𝐵) = ∅)
3332eleq2d 2852 . . . . . . . . . . 11 (((𝜑𝑘 ∈ ℕ0) ∧ ¬ ∅ ∈ (𝐶𝑘)) → (𝑘 ∈ (𝐴𝐵) ↔ 𝑘 ∈ ∅))
3430, 33syl5bbr 277 . . . . . . . . . 10 (((𝜑𝑘 ∈ ℕ0) ∧ ¬ ∅ ∈ (𝐶𝑘)) → ((𝑘𝐴𝑘𝐵) ↔ 𝑘 ∈ ∅))
3527, 29, 343bitrd 297 . . . . . . . . 9 (((𝜑𝑘 ∈ ℕ0) ∧ ¬ ∅ ∈ (𝐶𝑘)) → (∅ ∈ (𝐶‘(𝑘 + 1)) ↔ 𝑘 ∈ ∅))
3623, 35mtbiri 319 . . . . . . . 8 (((𝜑𝑘 ∈ ℕ0) ∧ ¬ ∅ ∈ (𝐶𝑘)) → ¬ ∅ ∈ (𝐶‘(𝑘 + 1)))
3736ex 405 . . . . . . 7 ((𝜑𝑘 ∈ ℕ0) → (¬ ∅ ∈ (𝐶𝑘) → ¬ ∅ ∈ (𝐶‘(𝑘 + 1))))
3837expcom 406 . . . . . 6 (𝑘 ∈ ℕ0 → (𝜑 → (¬ ∅ ∈ (𝐶𝑘) → ¬ ∅ ∈ (𝐶‘(𝑘 + 1)))))
3938a2d 29 . . . . 5 (𝑘 ∈ ℕ0 → ((𝜑 → ¬ ∅ ∈ (𝐶𝑘)) → (𝜑 → ¬ ∅ ∈ (𝐶‘(𝑘 + 1)))))
409, 13, 17, 21, 22, 39nn0ind 11890 . . . 4 (𝑁 ∈ ℕ0 → (𝜑 → ¬ ∅ ∈ (𝐶𝑁)))
414, 40mpcom 38 . . 3 (𝜑 → ¬ ∅ ∈ (𝐶𝑁))
42 hadrot 1564 . . . 4 (hadd(∅ ∈ (𝐶𝑁), 𝑁𝐴, 𝑁𝐵) ↔ hadd(𝑁𝐴, 𝑁𝐵, ∅ ∈ (𝐶𝑁)))
43 had0 1567 . . . 4 (¬ ∅ ∈ (𝐶𝑁) → (hadd(∅ ∈ (𝐶𝑁), 𝑁𝐴, 𝑁𝐵) ↔ (𝑁𝐴𝑁𝐵)))
4442, 43syl5bbr 277 . . 3 (¬ ∅ ∈ (𝐶𝑁) → (hadd(𝑁𝐴, 𝑁𝐵, ∅ ∈ (𝐶𝑁)) ↔ (𝑁𝐴𝑁𝐵)))
4541, 44syl 17 . 2 (𝜑 → (hadd(𝑁𝐴, 𝑁𝐵, ∅ ∈ (𝐶𝑁)) ↔ (𝑁𝐴𝑁𝐵)))
46 noel 4184 . . . . 5 ¬ 𝑁 ∈ ∅
47 elin 4058 . . . . . 6 (𝑁 ∈ (𝐴𝐵) ↔ (𝑁𝐴𝑁𝐵))
4831eleq2d 2852 . . . . . 6 (𝜑 → (𝑁 ∈ (𝐴𝐵) ↔ 𝑁 ∈ ∅))
4947, 48syl5bbr 277 . . . . 5 (𝜑 → ((𝑁𝐴𝑁𝐵) ↔ 𝑁 ∈ ∅))
5046, 49mtbiri 319 . . . 4 (𝜑 → ¬ (𝑁𝐴𝑁𝐵))
51 xor2 1494 . . . . 5 ((𝑁𝐴𝑁𝐵) ↔ ((𝑁𝐴𝑁𝐵) ∧ ¬ (𝑁𝐴𝑁𝐵)))
5251rbaib 531 . . . 4 (¬ (𝑁𝐴𝑁𝐵) → ((𝑁𝐴𝑁𝐵) ↔ (𝑁𝐴𝑁𝐵)))
5350, 52syl 17 . . 3 (𝜑 → ((𝑁𝐴𝑁𝐵) ↔ (𝑁𝐴𝑁𝐵)))
54 elun 4015 . . 3 (𝑁 ∈ (𝐴𝐵) ↔ (𝑁𝐴𝑁𝐵))
5553, 54syl6bbr 281 . 2 (𝜑 → ((𝑁𝐴𝑁𝐵) ↔ 𝑁 ∈ (𝐴𝐵)))
565, 45, 553bitrd 297 1 (𝜑 → (𝑁 ∈ (𝐴 sadd 𝐵) ↔ 𝑁 ∈ (𝐴𝐵)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 198  wa 387  wo 833  wxo 1488   = wceq 1507  haddwhad 1556  caddwcad 1569  wcel 2050  cun 3828  cin 3829  wss 3830  c0 4179  ifcif 4350  cmpt 5008  cfv 6188  (class class class)co 6976  cmpo 6978  1oc1o 7898  2oc2o 7899  0cc0 10335  1c1 10336   + caddc 10338  cmin 10670  0cn0 11707  seqcseq 13184   sadd csad 15629
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1758  ax-4 1772  ax-5 1869  ax-6 1928  ax-7 1965  ax-8 2052  ax-9 2059  ax-10 2079  ax-11 2093  ax-12 2106  ax-13 2301  ax-ext 2751  ax-sep 5060  ax-nul 5067  ax-pow 5119  ax-pr 5186  ax-un 7279  ax-cnex 10391  ax-resscn 10392  ax-1cn 10393  ax-icn 10394  ax-addcl 10395  ax-addrcl 10396  ax-mulcl 10397  ax-mulrcl 10398  ax-mulcom 10399  ax-addass 10400  ax-mulass 10401  ax-distr 10402  ax-i2m1 10403  ax-1ne0 10404  ax-1rid 10405  ax-rnegex 10406  ax-rrecex 10407  ax-cnre 10408  ax-pre-lttri 10409  ax-pre-lttrn 10410  ax-pre-ltadd 10411  ax-pre-mulgt0 10412
This theorem depends on definitions:  df-bi 199  df-an 388  df-or 834  df-3or 1069  df-3an 1070  df-xor 1489  df-tru 1510  df-had 1557  df-cad 1570  df-ex 1743  df-nf 1747  df-sb 2016  df-mo 2547  df-eu 2584  df-clab 2760  df-cleq 2772  df-clel 2847  df-nfc 2919  df-ne 2969  df-nel 3075  df-ral 3094  df-rex 3095  df-reu 3096  df-rab 3098  df-v 3418  df-sbc 3683  df-csb 3788  df-dif 3833  df-un 3835  df-in 3837  df-ss 3844  df-pss 3846  df-nul 4180  df-if 4351  df-pw 4424  df-sn 4442  df-pr 4444  df-tp 4446  df-op 4448  df-uni 4713  df-iun 4794  df-br 4930  df-opab 4992  df-mpt 5009  df-tr 5031  df-id 5312  df-eprel 5317  df-po 5326  df-so 5327  df-fr 5366  df-we 5368  df-xp 5413  df-rel 5414  df-cnv 5415  df-co 5416  df-dm 5417  df-rn 5418  df-res 5419  df-ima 5420  df-pred 5986  df-ord 6032  df-on 6033  df-lim 6034  df-suc 6035  df-iota 6152  df-fun 6190  df-fn 6191  df-f 6192  df-f1 6193  df-fo 6194  df-f1o 6195  df-fv 6196  df-riota 6937  df-ov 6979  df-oprab 6980  df-mpo 6981  df-om 7397  df-1st 7501  df-2nd 7502  df-wrecs 7750  df-recs 7812  df-rdg 7850  df-1o 7905  df-2o 7906  df-er 8089  df-en 8307  df-dom 8308  df-sdom 8309  df-pnf 10476  df-mnf 10477  df-xr 10478  df-ltxr 10479  df-le 10480  df-sub 10672  df-neg 10673  df-nn 11440  df-n0 11708  df-z 11794  df-uz 12059  df-fz 12709  df-seq 13185  df-sad 15660
This theorem is referenced by:  saddisj  15674
  Copyright terms: Public domain W3C validator