| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > hadnot | Structured version Visualization version GIF version | ||
| Description: The adder sum distributes over negation. (Contributed by Mario Carneiro, 4-Sep-2016.) (Proof shortened by Wolf Lammen, 11-Jul-2020.) |
| Ref | Expression |
|---|---|
| hadnot | ⊢ (¬ hadd(𝜑, 𝜓, 𝜒) ↔ hadd(¬ 𝜑, ¬ 𝜓, ¬ 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | notbi 319 | . . 3 ⊢ ((𝜑 ↔ 𝜓) ↔ (¬ 𝜑 ↔ ¬ 𝜓)) | |
| 2 | 1 | bibi1i 338 | . 2 ⊢ (((𝜑 ↔ 𝜓) ↔ ¬ 𝜒) ↔ ((¬ 𝜑 ↔ ¬ 𝜓) ↔ ¬ 𝜒)) |
| 3 | xor3 382 | . . 3 ⊢ (¬ ((𝜑 ↔ 𝜓) ↔ 𝜒) ↔ ((𝜑 ↔ 𝜓) ↔ ¬ 𝜒)) | |
| 4 | hadbi 1598 | . . 3 ⊢ (hadd(𝜑, 𝜓, 𝜒) ↔ ((𝜑 ↔ 𝜓) ↔ 𝜒)) | |
| 5 | 3, 4 | xchnxbir 333 | . 2 ⊢ (¬ hadd(𝜑, 𝜓, 𝜒) ↔ ((𝜑 ↔ 𝜓) ↔ ¬ 𝜒)) |
| 6 | hadbi 1598 | . 2 ⊢ (hadd(¬ 𝜑, ¬ 𝜓, ¬ 𝜒) ↔ ((¬ 𝜑 ↔ ¬ 𝜓) ↔ ¬ 𝜒)) | |
| 7 | 2, 5, 6 | 3bitr4i 303 | 1 ⊢ (¬ hadd(𝜑, 𝜓, 𝜒) ↔ hadd(¬ 𝜑, ¬ 𝜓, ¬ 𝜒)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ↔ wb 206 haddwhad 1593 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-xor 1512 df-had 1594 |
| This theorem is referenced by: had0 1604 |
| Copyright terms: Public domain | W3C validator |