MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hadnot Structured version   Visualization version   GIF version

Theorem hadnot 1604
Description: The adder sum distributes over negation. (Contributed by Mario Carneiro, 4-Sep-2016.) (Proof shortened by Wolf Lammen, 11-Jul-2020.)
Assertion
Ref Expression
hadnot (¬ hadd(𝜑, 𝜓, 𝜒) ↔ hadd(¬ 𝜑, ¬ 𝜓, ¬ 𝜒))

Proof of Theorem hadnot
StepHypRef Expression
1 notbi 319 . . 3 ((𝜑𝜓) ↔ (¬ 𝜑 ↔ ¬ 𝜓))
21bibi1i 339 . 2 (((𝜑𝜓) ↔ ¬ 𝜒) ↔ ((¬ 𝜑 ↔ ¬ 𝜓) ↔ ¬ 𝜒))
3 xor3 384 . . 3 (¬ ((𝜑𝜓) ↔ 𝜒) ↔ ((𝜑𝜓) ↔ ¬ 𝜒))
4 hadbi 1599 . . 3 (hadd(𝜑, 𝜓, 𝜒) ↔ ((𝜑𝜓) ↔ 𝜒))
53, 4xchnxbir 333 . 2 (¬ hadd(𝜑, 𝜓, 𝜒) ↔ ((𝜑𝜓) ↔ ¬ 𝜒))
6 hadbi 1599 . 2 (hadd(¬ 𝜑, ¬ 𝜓, ¬ 𝜒) ↔ ((¬ 𝜑 ↔ ¬ 𝜓) ↔ ¬ 𝜒))
72, 5, 63bitr4i 303 1 (¬ hadd(𝜑, 𝜓, 𝜒) ↔ hadd(¬ 𝜑, ¬ 𝜓, ¬ 𝜒))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 205  haddwhad 1594
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-xor 1507  df-had 1595
This theorem is referenced by:  had0  1606
  Copyright terms: Public domain W3C validator