MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sadadd2lem2 Structured version   Visualization version   GIF version

Theorem sadadd2lem2 15379
Description: The core of the proof of sadadd2 15389. The intuitive justification for this is that cadd is true if at least two arguments are true, and hadd is true if an odd number of arguments are true, so altogether the result is 𝑛 · 𝐴 where 𝑛 is the number of true arguments, which is equivalently obtained by adding together one 𝐴 for each true argument, on the right side. (Contributed by Mario Carneiro, 8-Sep-2016.)
Assertion
Ref Expression
sadadd2lem2 (𝐴 ∈ ℂ → (if(hadd(𝜑, 𝜓, 𝜒), 𝐴, 0) + if(cadd(𝜑, 𝜓, 𝜒), (2 · 𝐴), 0)) = ((if(𝜑, 𝐴, 0) + if(𝜓, 𝐴, 0)) + if(𝜒, 𝐴, 0)))

Proof of Theorem sadadd2lem2
StepHypRef Expression
1 0cn 10233 . . . . . . . . 9 0 ∈ ℂ
2 ifcl 4267 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 0 ∈ ℂ) → if(𝜓, 𝐴, 0) ∈ ℂ)
31, 2mpan2 663 . . . . . . . 8 (𝐴 ∈ ℂ → if(𝜓, 𝐴, 0) ∈ ℂ)
43ad2antrr 697 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝜒) ∧ 𝜑) → if(𝜓, 𝐴, 0) ∈ ℂ)
5 simpll 742 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝜒) ∧ 𝜑) → 𝐴 ∈ ℂ)
64, 5, 5add12d 10463 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝜒) ∧ 𝜑) → (if(𝜓, 𝐴, 0) + (𝐴 + 𝐴)) = (𝐴 + (if(𝜓, 𝐴, 0) + 𝐴)))
75, 4, 5addassd 10263 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝜒) ∧ 𝜑) → ((𝐴 + if(𝜓, 𝐴, 0)) + 𝐴) = (𝐴 + (if(𝜓, 𝐴, 0) + 𝐴)))
86, 7eqtr4d 2807 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝜒) ∧ 𝜑) → (if(𝜓, 𝐴, 0) + (𝐴 + 𝐴)) = ((𝐴 + if(𝜓, 𝐴, 0)) + 𝐴))
9 pm5.501 355 . . . . . . . . 9 (𝜑 → (𝜓 ↔ (𝜑𝜓)))
109adantl 467 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝜒) ∧ 𝜑) → (𝜓 ↔ (𝜑𝜓)))
1110bicomd 213 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝜒) ∧ 𝜑) → ((𝜑𝜓) ↔ 𝜓))
1211ifbid 4245 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝜒) ∧ 𝜑) → if((𝜑𝜓), 𝐴, 0) = if(𝜓, 𝐴, 0))
13 simpr 471 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ 𝜒) ∧ 𝜑) → 𝜑)
1413orcd 853 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝜒) ∧ 𝜑) → (𝜑𝜓))
15 iftrue 4229 . . . . . . . 8 ((𝜑𝜓) → if((𝜑𝜓), (2 · 𝐴), 0) = (2 · 𝐴))
1614, 15syl 17 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝜒) ∧ 𝜑) → if((𝜑𝜓), (2 · 𝐴), 0) = (2 · 𝐴))
1752timesd 11476 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝜒) ∧ 𝜑) → (2 · 𝐴) = (𝐴 + 𝐴))
1816, 17eqtrd 2804 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝜒) ∧ 𝜑) → if((𝜑𝜓), (2 · 𝐴), 0) = (𝐴 + 𝐴))
1912, 18oveq12d 6810 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝜒) ∧ 𝜑) → (if((𝜑𝜓), 𝐴, 0) + if((𝜑𝜓), (2 · 𝐴), 0)) = (if(𝜓, 𝐴, 0) + (𝐴 + 𝐴)))
20 iftrue 4229 . . . . . . . 8 (𝜑 → if(𝜑, 𝐴, 0) = 𝐴)
2120adantl 467 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝜒) ∧ 𝜑) → if(𝜑, 𝐴, 0) = 𝐴)
2221oveq1d 6807 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝜒) ∧ 𝜑) → (if(𝜑, 𝐴, 0) + if(𝜓, 𝐴, 0)) = (𝐴 + if(𝜓, 𝐴, 0)))
2322oveq1d 6807 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝜒) ∧ 𝜑) → ((if(𝜑, 𝐴, 0) + if(𝜓, 𝐴, 0)) + 𝐴) = ((𝐴 + if(𝜓, 𝐴, 0)) + 𝐴))
248, 19, 233eqtr4d 2814 . . . 4 (((𝐴 ∈ ℂ ∧ 𝜒) ∧ 𝜑) → (if((𝜑𝜓), 𝐴, 0) + if((𝜑𝜓), (2 · 𝐴), 0)) = ((if(𝜑, 𝐴, 0) + if(𝜓, 𝐴, 0)) + 𝐴))
25 iffalse 4232 . . . . . . . . 9 𝜑 → if(𝜑, 𝐴, 0) = 0)
2625adantl 467 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝜒) ∧ ¬ 𝜑) → if(𝜑, 𝐴, 0) = 0)
2726oveq1d 6807 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝜒) ∧ ¬ 𝜑) → (if(𝜑, 𝐴, 0) + if(𝜓, 𝐴, 0)) = (0 + if(𝜓, 𝐴, 0)))
283ad2antrr 697 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝜒) ∧ ¬ 𝜑) → if(𝜓, 𝐴, 0) ∈ ℂ)
2928addid2d 10438 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝜒) ∧ ¬ 𝜑) → (0 + if(𝜓, 𝐴, 0)) = if(𝜓, 𝐴, 0))
3027, 29eqtrd 2804 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝜒) ∧ ¬ 𝜑) → (if(𝜑, 𝐴, 0) + if(𝜓, 𝐴, 0)) = if(𝜓, 𝐴, 0))
3130oveq1d 6807 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝜒) ∧ ¬ 𝜑) → ((if(𝜑, 𝐴, 0) + if(𝜓, 𝐴, 0)) + 𝐴) = (if(𝜓, 𝐴, 0) + 𝐴))
32 2cnd 11294 . . . . . . . . . . . 12 (𝐴 ∈ ℂ → 2 ∈ ℂ)
33 id 22 . . . . . . . . . . . 12 (𝐴 ∈ ℂ → 𝐴 ∈ ℂ)
3432, 33mulcld 10261 . . . . . . . . . . 11 (𝐴 ∈ ℂ → (2 · 𝐴) ∈ ℂ)
3534addid2d 10438 . . . . . . . . . 10 (𝐴 ∈ ℂ → (0 + (2 · 𝐴)) = (2 · 𝐴))
36 2times 11346 . . . . . . . . . 10 (𝐴 ∈ ℂ → (2 · 𝐴) = (𝐴 + 𝐴))
3735, 36eqtrd 2804 . . . . . . . . 9 (𝐴 ∈ ℂ → (0 + (2 · 𝐴)) = (𝐴 + 𝐴))
3837adantr 466 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝜓) → (0 + (2 · 𝐴)) = (𝐴 + 𝐴))
39 iftrue 4229 . . . . . . . . . 10 (𝜓 → if(𝜓, 0, 𝐴) = 0)
4039adantl 467 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝜓) → if(𝜓, 0, 𝐴) = 0)
41 iftrue 4229 . . . . . . . . . 10 (𝜓 → if(𝜓, (2 · 𝐴), 0) = (2 · 𝐴))
4241adantl 467 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝜓) → if(𝜓, (2 · 𝐴), 0) = (2 · 𝐴))
4340, 42oveq12d 6810 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝜓) → (if(𝜓, 0, 𝐴) + if(𝜓, (2 · 𝐴), 0)) = (0 + (2 · 𝐴)))
44 iftrue 4229 . . . . . . . . . 10 (𝜓 → if(𝜓, 𝐴, 0) = 𝐴)
4544adantl 467 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝜓) → if(𝜓, 𝐴, 0) = 𝐴)
4645oveq1d 6807 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝜓) → (if(𝜓, 𝐴, 0) + 𝐴) = (𝐴 + 𝐴))
4738, 43, 463eqtr4d 2814 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝜓) → (if(𝜓, 0, 𝐴) + if(𝜓, (2 · 𝐴), 0)) = (if(𝜓, 𝐴, 0) + 𝐴))
48 simpl 468 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ ¬ 𝜓) → 𝐴 ∈ ℂ)
49 0cnd 10234 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ ¬ 𝜓) → 0 ∈ ℂ)
5048, 49addcomd 10439 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ ¬ 𝜓) → (𝐴 + 0) = (0 + 𝐴))
51 iffalse 4232 . . . . . . . . . 10 𝜓 → if(𝜓, 0, 𝐴) = 𝐴)
5251adantl 467 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ ¬ 𝜓) → if(𝜓, 0, 𝐴) = 𝐴)
53 iffalse 4232 . . . . . . . . . 10 𝜓 → if(𝜓, (2 · 𝐴), 0) = 0)
5453adantl 467 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ ¬ 𝜓) → if(𝜓, (2 · 𝐴), 0) = 0)
5552, 54oveq12d 6810 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ ¬ 𝜓) → (if(𝜓, 0, 𝐴) + if(𝜓, (2 · 𝐴), 0)) = (𝐴 + 0))
56 iffalse 4232 . . . . . . . . . 10 𝜓 → if(𝜓, 𝐴, 0) = 0)
5756adantl 467 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ ¬ 𝜓) → if(𝜓, 𝐴, 0) = 0)
5857oveq1d 6807 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ ¬ 𝜓) → (if(𝜓, 𝐴, 0) + 𝐴) = (0 + 𝐴))
5950, 55, 583eqtr4d 2814 . . . . . . 7 ((𝐴 ∈ ℂ ∧ ¬ 𝜓) → (if(𝜓, 0, 𝐴) + if(𝜓, (2 · 𝐴), 0)) = (if(𝜓, 𝐴, 0) + 𝐴))
6047, 59pm2.61dan 796 . . . . . 6 (𝐴 ∈ ℂ → (if(𝜓, 0, 𝐴) + if(𝜓, (2 · 𝐴), 0)) = (if(𝜓, 𝐴, 0) + 𝐴))
6160ad2antrr 697 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝜒) ∧ ¬ 𝜑) → (if(𝜓, 0, 𝐴) + if(𝜓, (2 · 𝐴), 0)) = (if(𝜓, 𝐴, 0) + 𝐴))
62 ifnot 4270 . . . . . . 7 if(¬ 𝜓, 𝐴, 0) = if(𝜓, 0, 𝐴)
63 nbn2 359 . . . . . . . . 9 𝜑 → (¬ 𝜓 ↔ (𝜑𝜓)))
6463adantl 467 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝜒) ∧ ¬ 𝜑) → (¬ 𝜓 ↔ (𝜑𝜓)))
6564ifbid 4245 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝜒) ∧ ¬ 𝜑) → if(¬ 𝜓, 𝐴, 0) = if((𝜑𝜓), 𝐴, 0))
6662, 65syl5eqr 2818 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝜒) ∧ ¬ 𝜑) → if(𝜓, 0, 𝐴) = if((𝜑𝜓), 𝐴, 0))
67 biorf 896 . . . . . . . 8 𝜑 → (𝜓 ↔ (𝜑𝜓)))
6867adantl 467 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝜒) ∧ ¬ 𝜑) → (𝜓 ↔ (𝜑𝜓)))
6968ifbid 4245 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝜒) ∧ ¬ 𝜑) → if(𝜓, (2 · 𝐴), 0) = if((𝜑𝜓), (2 · 𝐴), 0))
7066, 69oveq12d 6810 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝜒) ∧ ¬ 𝜑) → (if(𝜓, 0, 𝐴) + if(𝜓, (2 · 𝐴), 0)) = (if((𝜑𝜓), 𝐴, 0) + if((𝜑𝜓), (2 · 𝐴), 0)))
7131, 61, 703eqtr2rd 2811 . . . 4 (((𝐴 ∈ ℂ ∧ 𝜒) ∧ ¬ 𝜑) → (if((𝜑𝜓), 𝐴, 0) + if((𝜑𝜓), (2 · 𝐴), 0)) = ((if(𝜑, 𝐴, 0) + if(𝜓, 𝐴, 0)) + 𝐴))
7224, 71pm2.61dan 796 . . 3 ((𝐴 ∈ ℂ ∧ 𝜒) → (if((𝜑𝜓), 𝐴, 0) + if((𝜑𝜓), (2 · 𝐴), 0)) = ((if(𝜑, 𝐴, 0) + if(𝜓, 𝐴, 0)) + 𝐴))
73 hadrot 1687 . . . . . . 7 (hadd(𝜒, 𝜑, 𝜓) ↔ hadd(𝜑, 𝜓, 𝜒))
74 had1 1689 . . . . . . 7 (𝜒 → (hadd(𝜒, 𝜑, 𝜓) ↔ (𝜑𝜓)))
7573, 74syl5bbr 274 . . . . . 6 (𝜒 → (hadd(𝜑, 𝜓, 𝜒) ↔ (𝜑𝜓)))
7675adantl 467 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝜒) → (hadd(𝜑, 𝜓, 𝜒) ↔ (𝜑𝜓)))
7776ifbid 4245 . . . 4 ((𝐴 ∈ ℂ ∧ 𝜒) → if(hadd(𝜑, 𝜓, 𝜒), 𝐴, 0) = if((𝜑𝜓), 𝐴, 0))
78 cad1 1702 . . . . . 6 (𝜒 → (cadd(𝜑, 𝜓, 𝜒) ↔ (𝜑𝜓)))
7978adantl 467 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝜒) → (cadd(𝜑, 𝜓, 𝜒) ↔ (𝜑𝜓)))
8079ifbid 4245 . . . 4 ((𝐴 ∈ ℂ ∧ 𝜒) → if(cadd(𝜑, 𝜓, 𝜒), (2 · 𝐴), 0) = if((𝜑𝜓), (2 · 𝐴), 0))
8177, 80oveq12d 6810 . . 3 ((𝐴 ∈ ℂ ∧ 𝜒) → (if(hadd(𝜑, 𝜓, 𝜒), 𝐴, 0) + if(cadd(𝜑, 𝜓, 𝜒), (2 · 𝐴), 0)) = (if((𝜑𝜓), 𝐴, 0) + if((𝜑𝜓), (2 · 𝐴), 0)))
82 iftrue 4229 . . . . 5 (𝜒 → if(𝜒, 𝐴, 0) = 𝐴)
8382adantl 467 . . . 4 ((𝐴 ∈ ℂ ∧ 𝜒) → if(𝜒, 𝐴, 0) = 𝐴)
8483oveq2d 6808 . . 3 ((𝐴 ∈ ℂ ∧ 𝜒) → ((if(𝜑, 𝐴, 0) + if(𝜓, 𝐴, 0)) + if(𝜒, 𝐴, 0)) = ((if(𝜑, 𝐴, 0) + if(𝜓, 𝐴, 0)) + 𝐴))
8572, 81, 843eqtr4d 2814 . 2 ((𝐴 ∈ ℂ ∧ 𝜒) → (if(hadd(𝜑, 𝜓, 𝜒), 𝐴, 0) + if(cadd(𝜑, 𝜓, 𝜒), (2 · 𝐴), 0)) = ((if(𝜑, 𝐴, 0) + if(𝜓, 𝐴, 0)) + if(𝜒, 𝐴, 0)))
8620adantl 467 . . . . . 6 (((𝐴 ∈ ℂ ∧ ¬ 𝜒) ∧ 𝜑) → if(𝜑, 𝐴, 0) = 𝐴)
8786oveq1d 6807 . . . . 5 (((𝐴 ∈ ℂ ∧ ¬ 𝜒) ∧ 𝜑) → (if(𝜑, 𝐴, 0) + if(𝜓, 𝐴, 0)) = (𝐴 + if(𝜓, 𝐴, 0)))
8845oveq2d 6808 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝜓) → (𝐴 + if(𝜓, 𝐴, 0)) = (𝐴 + 𝐴))
8938, 43, 883eqtr4d 2814 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝜓) → (if(𝜓, 0, 𝐴) + if(𝜓, (2 · 𝐴), 0)) = (𝐴 + if(𝜓, 𝐴, 0)))
9054, 57eqtr4d 2807 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ ¬ 𝜓) → if(𝜓, (2 · 𝐴), 0) = if(𝜓, 𝐴, 0))
9152, 90oveq12d 6810 . . . . . . 7 ((𝐴 ∈ ℂ ∧ ¬ 𝜓) → (if(𝜓, 0, 𝐴) + if(𝜓, (2 · 𝐴), 0)) = (𝐴 + if(𝜓, 𝐴, 0)))
9289, 91pm2.61dan 796 . . . . . 6 (𝐴 ∈ ℂ → (if(𝜓, 0, 𝐴) + if(𝜓, (2 · 𝐴), 0)) = (𝐴 + if(𝜓, 𝐴, 0)))
9392ad2antrr 697 . . . . 5 (((𝐴 ∈ ℂ ∧ ¬ 𝜒) ∧ 𝜑) → (if(𝜓, 0, 𝐴) + if(𝜓, (2 · 𝐴), 0)) = (𝐴 + if(𝜓, 𝐴, 0)))
949adantl 467 . . . . . . . . . 10 (((𝐴 ∈ ℂ ∧ ¬ 𝜒) ∧ 𝜑) → (𝜓 ↔ (𝜑𝜓)))
9594notbid 307 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ ¬ 𝜒) ∧ 𝜑) → (¬ 𝜓 ↔ ¬ (𝜑𝜓)))
96 df-xor 1612 . . . . . . . . 9 ((𝜑𝜓) ↔ ¬ (𝜑𝜓))
9795, 96syl6bbr 278 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ ¬ 𝜒) ∧ 𝜑) → (¬ 𝜓 ↔ (𝜑𝜓)))
9897ifbid 4245 . . . . . . 7 (((𝐴 ∈ ℂ ∧ ¬ 𝜒) ∧ 𝜑) → if(¬ 𝜓, 𝐴, 0) = if((𝜑𝜓), 𝐴, 0))
9962, 98syl5eqr 2818 . . . . . 6 (((𝐴 ∈ ℂ ∧ ¬ 𝜒) ∧ 𝜑) → if(𝜓, 0, 𝐴) = if((𝜑𝜓), 𝐴, 0))
100 ibar 512 . . . . . . . 8 (𝜑 → (𝜓 ↔ (𝜑𝜓)))
101100adantl 467 . . . . . . 7 (((𝐴 ∈ ℂ ∧ ¬ 𝜒) ∧ 𝜑) → (𝜓 ↔ (𝜑𝜓)))
102101ifbid 4245 . . . . . 6 (((𝐴 ∈ ℂ ∧ ¬ 𝜒) ∧ 𝜑) → if(𝜓, (2 · 𝐴), 0) = if((𝜑𝜓), (2 · 𝐴), 0))
10399, 102oveq12d 6810 . . . . 5 (((𝐴 ∈ ℂ ∧ ¬ 𝜒) ∧ 𝜑) → (if(𝜓, 0, 𝐴) + if(𝜓, (2 · 𝐴), 0)) = (if((𝜑𝜓), 𝐴, 0) + if((𝜑𝜓), (2 · 𝐴), 0)))
10487, 93, 1033eqtr2rd 2811 . . . 4 (((𝐴 ∈ ℂ ∧ ¬ 𝜒) ∧ 𝜑) → (if((𝜑𝜓), 𝐴, 0) + if((𝜑𝜓), (2 · 𝐴), 0)) = (if(𝜑, 𝐴, 0) + if(𝜓, 𝐴, 0)))
105 simplll 750 . . . . . . 7 ((((𝐴 ∈ ℂ ∧ ¬ 𝜒) ∧ ¬ 𝜑) ∧ 𝜓) → 𝐴 ∈ ℂ)
106 0cnd 10234 . . . . . . 7 ((((𝐴 ∈ ℂ ∧ ¬ 𝜒) ∧ ¬ 𝜑) ∧ ¬ 𝜓) → 0 ∈ ℂ)
107105, 106ifclda 4257 . . . . . 6 (((𝐴 ∈ ℂ ∧ ¬ 𝜒) ∧ ¬ 𝜑) → if(𝜓, 𝐴, 0) ∈ ℂ)
108 0cnd 10234 . . . . . 6 (((𝐴 ∈ ℂ ∧ ¬ 𝜒) ∧ ¬ 𝜑) → 0 ∈ ℂ)
109107, 108addcomd 10439 . . . . 5 (((𝐴 ∈ ℂ ∧ ¬ 𝜒) ∧ ¬ 𝜑) → (if(𝜓, 𝐴, 0) + 0) = (0 + if(𝜓, 𝐴, 0)))
11063adantl 467 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ ¬ 𝜒) ∧ ¬ 𝜑) → (¬ 𝜓 ↔ (𝜑𝜓)))
111110con1bid 344 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ ¬ 𝜒) ∧ ¬ 𝜑) → (¬ (𝜑𝜓) ↔ 𝜓))
11296, 111syl5bb 272 . . . . . . 7 (((𝐴 ∈ ℂ ∧ ¬ 𝜒) ∧ ¬ 𝜑) → ((𝜑𝜓) ↔ 𝜓))
113112ifbid 4245 . . . . . 6 (((𝐴 ∈ ℂ ∧ ¬ 𝜒) ∧ ¬ 𝜑) → if((𝜑𝜓), 𝐴, 0) = if(𝜓, 𝐴, 0))
114 simpr 471 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ ¬ 𝜒) ∧ ¬ 𝜑) → ¬ 𝜑)
115114intnanrd 999 . . . . . . 7 (((𝐴 ∈ ℂ ∧ ¬ 𝜒) ∧ ¬ 𝜑) → ¬ (𝜑𝜓))
116 iffalse 4232 . . . . . . 7 (¬ (𝜑𝜓) → if((𝜑𝜓), (2 · 𝐴), 0) = 0)
117115, 116syl 17 . . . . . 6 (((𝐴 ∈ ℂ ∧ ¬ 𝜒) ∧ ¬ 𝜑) → if((𝜑𝜓), (2 · 𝐴), 0) = 0)
118113, 117oveq12d 6810 . . . . 5 (((𝐴 ∈ ℂ ∧ ¬ 𝜒) ∧ ¬ 𝜑) → (if((𝜑𝜓), 𝐴, 0) + if((𝜑𝜓), (2 · 𝐴), 0)) = (if(𝜓, 𝐴, 0) + 0))
11925adantl 467 . . . . . 6 (((𝐴 ∈ ℂ ∧ ¬ 𝜒) ∧ ¬ 𝜑) → if(𝜑, 𝐴, 0) = 0)
120119oveq1d 6807 . . . . 5 (((𝐴 ∈ ℂ ∧ ¬ 𝜒) ∧ ¬ 𝜑) → (if(𝜑, 𝐴, 0) + if(𝜓, 𝐴, 0)) = (0 + if(𝜓, 𝐴, 0)))
121109, 118, 1203eqtr4d 2814 . . . 4 (((𝐴 ∈ ℂ ∧ ¬ 𝜒) ∧ ¬ 𝜑) → (if((𝜑𝜓), 𝐴, 0) + if((𝜑𝜓), (2 · 𝐴), 0)) = (if(𝜑, 𝐴, 0) + if(𝜓, 𝐴, 0)))
122104, 121pm2.61dan 796 . . 3 ((𝐴 ∈ ℂ ∧ ¬ 𝜒) → (if((𝜑𝜓), 𝐴, 0) + if((𝜑𝜓), (2 · 𝐴), 0)) = (if(𝜑, 𝐴, 0) + if(𝜓, 𝐴, 0)))
123 had0 1690 . . . . . . 7 𝜒 → (hadd(𝜒, 𝜑, 𝜓) ↔ (𝜑𝜓)))
12473, 123syl5bbr 274 . . . . . 6 𝜒 → (hadd(𝜑, 𝜓, 𝜒) ↔ (𝜑𝜓)))
125124adantl 467 . . . . 5 ((𝐴 ∈ ℂ ∧ ¬ 𝜒) → (hadd(𝜑, 𝜓, 𝜒) ↔ (𝜑𝜓)))
126125ifbid 4245 . . . 4 ((𝐴 ∈ ℂ ∧ ¬ 𝜒) → if(hadd(𝜑, 𝜓, 𝜒), 𝐴, 0) = if((𝜑𝜓), 𝐴, 0))
127 cad0 1703 . . . . . 6 𝜒 → (cadd(𝜑, 𝜓, 𝜒) ↔ (𝜑𝜓)))
128127adantl 467 . . . . 5 ((𝐴 ∈ ℂ ∧ ¬ 𝜒) → (cadd(𝜑, 𝜓, 𝜒) ↔ (𝜑𝜓)))
129128ifbid 4245 . . . 4 ((𝐴 ∈ ℂ ∧ ¬ 𝜒) → if(cadd(𝜑, 𝜓, 𝜒), (2 · 𝐴), 0) = if((𝜑𝜓), (2 · 𝐴), 0))
130126, 129oveq12d 6810 . . 3 ((𝐴 ∈ ℂ ∧ ¬ 𝜒) → (if(hadd(𝜑, 𝜓, 𝜒), 𝐴, 0) + if(cadd(𝜑, 𝜓, 𝜒), (2 · 𝐴), 0)) = (if((𝜑𝜓), 𝐴, 0) + if((𝜑𝜓), (2 · 𝐴), 0)))
131 iffalse 4232 . . . . 5 𝜒 → if(𝜒, 𝐴, 0) = 0)
132131oveq2d 6808 . . . 4 𝜒 → ((if(𝜑, 𝐴, 0) + if(𝜓, 𝐴, 0)) + if(𝜒, 𝐴, 0)) = ((if(𝜑, 𝐴, 0) + if(𝜓, 𝐴, 0)) + 0))
133 ifcl 4267 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 0 ∈ ℂ) → if(𝜑, 𝐴, 0) ∈ ℂ)
1341, 133mpan2 663 . . . . . 6 (𝐴 ∈ ℂ → if(𝜑, 𝐴, 0) ∈ ℂ)
135134, 3addcld 10260 . . . . 5 (𝐴 ∈ ℂ → (if(𝜑, 𝐴, 0) + if(𝜓, 𝐴, 0)) ∈ ℂ)
136135addid1d 10437 . . . 4 (𝐴 ∈ ℂ → ((if(𝜑, 𝐴, 0) + if(𝜓, 𝐴, 0)) + 0) = (if(𝜑, 𝐴, 0) + if(𝜓, 𝐴, 0)))
137132, 136sylan9eqr 2826 . . 3 ((𝐴 ∈ ℂ ∧ ¬ 𝜒) → ((if(𝜑, 𝐴, 0) + if(𝜓, 𝐴, 0)) + if(𝜒, 𝐴, 0)) = (if(𝜑, 𝐴, 0) + if(𝜓, 𝐴, 0)))
138122, 130, 1373eqtr4d 2814 . 2 ((𝐴 ∈ ℂ ∧ ¬ 𝜒) → (if(hadd(𝜑, 𝜓, 𝜒), 𝐴, 0) + if(cadd(𝜑, 𝜓, 𝜒), (2 · 𝐴), 0)) = ((if(𝜑, 𝐴, 0) + if(𝜓, 𝐴, 0)) + if(𝜒, 𝐴, 0)))
13985, 138pm2.61dan 796 1 (𝐴 ∈ ℂ → (if(hadd(𝜑, 𝜓, 𝜒), 𝐴, 0) + if(cadd(𝜑, 𝜓, 𝜒), (2 · 𝐴), 0)) = ((if(𝜑, 𝐴, 0) + if(𝜓, 𝐴, 0)) + if(𝜒, 𝐴, 0)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 382  wo 826  wxo 1611   = wceq 1630  haddwhad 1679  caddwcad 1692  wcel 2144  ifcif 4223  (class class class)co 6792  cc 10135  0cc0 10137   + caddc 10140   · cmul 10142  2c2 11271
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1869  ax-4 1884  ax-5 1990  ax-6 2056  ax-7 2092  ax-8 2146  ax-9 2153  ax-10 2173  ax-11 2189  ax-12 2202  ax-13 2407  ax-ext 2750  ax-sep 4912  ax-nul 4920  ax-pow 4971  ax-pr 5034  ax-un 7095  ax-resscn 10194  ax-1cn 10195  ax-icn 10196  ax-addcl 10197  ax-addrcl 10198  ax-mulcl 10199  ax-mulrcl 10200  ax-mulcom 10201  ax-addass 10202  ax-mulass 10203  ax-distr 10204  ax-i2m1 10205  ax-1ne0 10206  ax-1rid 10207  ax-rnegex 10208  ax-rrecex 10209  ax-cnre 10210  ax-pre-lttri 10211  ax-pre-lttrn 10212  ax-pre-ltadd 10213
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 827  df-3or 1071  df-3an 1072  df-xor 1612  df-tru 1633  df-had 1680  df-cad 1693  df-ex 1852  df-nf 1857  df-sb 2049  df-eu 2621  df-mo 2622  df-clab 2757  df-cleq 2763  df-clel 2766  df-nfc 2901  df-ne 2943  df-nel 3046  df-ral 3065  df-rex 3066  df-rab 3069  df-v 3351  df-sbc 3586  df-csb 3681  df-dif 3724  df-un 3726  df-in 3728  df-ss 3735  df-nul 4062  df-if 4224  df-pw 4297  df-sn 4315  df-pr 4317  df-op 4321  df-uni 4573  df-br 4785  df-opab 4845  df-mpt 4862  df-id 5157  df-po 5170  df-so 5171  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-iota 5994  df-fun 6033  df-fn 6034  df-f 6035  df-f1 6036  df-fo 6037  df-f1o 6038  df-fv 6039  df-ov 6795  df-er 7895  df-en 8109  df-dom 8110  df-sdom 8111  df-pnf 10277  df-mnf 10278  df-ltxr 10280  df-2 11280
This theorem is referenced by:  sadadd2lem  15388
  Copyright terms: Public domain W3C validator