MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sadadd2lem2 Structured version   Visualization version   GIF version

Theorem sadadd2lem2 15893
Description: The core of the proof of sadadd2 15903. The intuitive justification for this is that cadd is true if at least two arguments are true, and hadd is true if an odd number of arguments are true, so altogether the result is 𝑛 · 𝐴 where 𝑛 is the number of true arguments, which is equivalently obtained by adding together one 𝐴 for each true argument, on the right side. (Contributed by Mario Carneiro, 8-Sep-2016.)
Assertion
Ref Expression
sadadd2lem2 (𝐴 ∈ ℂ → (if(hadd(𝜑, 𝜓, 𝜒), 𝐴, 0) + if(cadd(𝜑, 𝜓, 𝜒), (2 · 𝐴), 0)) = ((if(𝜑, 𝐴, 0) + if(𝜓, 𝐴, 0)) + if(𝜒, 𝐴, 0)))

Proof of Theorem sadadd2lem2
StepHypRef Expression
1 0cn 10711 . . . . . . . . 9 0 ∈ ℂ
2 ifcl 4459 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 0 ∈ ℂ) → if(𝜓, 𝐴, 0) ∈ ℂ)
31, 2mpan2 691 . . . . . . . 8 (𝐴 ∈ ℂ → if(𝜓, 𝐴, 0) ∈ ℂ)
43ad2antrr 726 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝜒) ∧ 𝜑) → if(𝜓, 𝐴, 0) ∈ ℂ)
5 simpll 767 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝜒) ∧ 𝜑) → 𝐴 ∈ ℂ)
64, 5, 5add12d 10944 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝜒) ∧ 𝜑) → (if(𝜓, 𝐴, 0) + (𝐴 + 𝐴)) = (𝐴 + (if(𝜓, 𝐴, 0) + 𝐴)))
75, 4, 5addassd 10741 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝜒) ∧ 𝜑) → ((𝐴 + if(𝜓, 𝐴, 0)) + 𝐴) = (𝐴 + (if(𝜓, 𝐴, 0) + 𝐴)))
86, 7eqtr4d 2776 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝜒) ∧ 𝜑) → (if(𝜓, 𝐴, 0) + (𝐴 + 𝐴)) = ((𝐴 + if(𝜓, 𝐴, 0)) + 𝐴))
9 pm5.501 370 . . . . . . . . 9 (𝜑 → (𝜓 ↔ (𝜑𝜓)))
109adantl 485 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝜒) ∧ 𝜑) → (𝜓 ↔ (𝜑𝜓)))
1110bicomd 226 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝜒) ∧ 𝜑) → ((𝜑𝜓) ↔ 𝜓))
1211ifbid 4437 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝜒) ∧ 𝜑) → if((𝜑𝜓), 𝐴, 0) = if(𝜓, 𝐴, 0))
13 animorrl 980 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝜒) ∧ 𝜑) → (𝜑𝜓))
14 iftrue 4420 . . . . . . . 8 ((𝜑𝜓) → if((𝜑𝜓), (2 · 𝐴), 0) = (2 · 𝐴))
1513, 14syl 17 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝜒) ∧ 𝜑) → if((𝜑𝜓), (2 · 𝐴), 0) = (2 · 𝐴))
1652timesd 11959 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝜒) ∧ 𝜑) → (2 · 𝐴) = (𝐴 + 𝐴))
1715, 16eqtrd 2773 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝜒) ∧ 𝜑) → if((𝜑𝜓), (2 · 𝐴), 0) = (𝐴 + 𝐴))
1812, 17oveq12d 7188 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝜒) ∧ 𝜑) → (if((𝜑𝜓), 𝐴, 0) + if((𝜑𝜓), (2 · 𝐴), 0)) = (if(𝜓, 𝐴, 0) + (𝐴 + 𝐴)))
19 iftrue 4420 . . . . . . . 8 (𝜑 → if(𝜑, 𝐴, 0) = 𝐴)
2019adantl 485 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝜒) ∧ 𝜑) → if(𝜑, 𝐴, 0) = 𝐴)
2120oveq1d 7185 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝜒) ∧ 𝜑) → (if(𝜑, 𝐴, 0) + if(𝜓, 𝐴, 0)) = (𝐴 + if(𝜓, 𝐴, 0)))
2221oveq1d 7185 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝜒) ∧ 𝜑) → ((if(𝜑, 𝐴, 0) + if(𝜓, 𝐴, 0)) + 𝐴) = ((𝐴 + if(𝜓, 𝐴, 0)) + 𝐴))
238, 18, 223eqtr4d 2783 . . . 4 (((𝐴 ∈ ℂ ∧ 𝜒) ∧ 𝜑) → (if((𝜑𝜓), 𝐴, 0) + if((𝜑𝜓), (2 · 𝐴), 0)) = ((if(𝜑, 𝐴, 0) + if(𝜓, 𝐴, 0)) + 𝐴))
24 iffalse 4423 . . . . . . . . 9 𝜑 → if(𝜑, 𝐴, 0) = 0)
2524adantl 485 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝜒) ∧ ¬ 𝜑) → if(𝜑, 𝐴, 0) = 0)
2625oveq1d 7185 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝜒) ∧ ¬ 𝜑) → (if(𝜑, 𝐴, 0) + if(𝜓, 𝐴, 0)) = (0 + if(𝜓, 𝐴, 0)))
273ad2antrr 726 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝜒) ∧ ¬ 𝜑) → if(𝜓, 𝐴, 0) ∈ ℂ)
2827addid2d 10919 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝜒) ∧ ¬ 𝜑) → (0 + if(𝜓, 𝐴, 0)) = if(𝜓, 𝐴, 0))
2926, 28eqtrd 2773 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝜒) ∧ ¬ 𝜑) → (if(𝜑, 𝐴, 0) + if(𝜓, 𝐴, 0)) = if(𝜓, 𝐴, 0))
3029oveq1d 7185 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝜒) ∧ ¬ 𝜑) → ((if(𝜑, 𝐴, 0) + if(𝜓, 𝐴, 0)) + 𝐴) = (if(𝜓, 𝐴, 0) + 𝐴))
31 2cnd 11794 . . . . . . . . . . . 12 (𝐴 ∈ ℂ → 2 ∈ ℂ)
32 id 22 . . . . . . . . . . . 12 (𝐴 ∈ ℂ → 𝐴 ∈ ℂ)
3331, 32mulcld 10739 . . . . . . . . . . 11 (𝐴 ∈ ℂ → (2 · 𝐴) ∈ ℂ)
3433addid2d 10919 . . . . . . . . . 10 (𝐴 ∈ ℂ → (0 + (2 · 𝐴)) = (2 · 𝐴))
35 2times 11852 . . . . . . . . . 10 (𝐴 ∈ ℂ → (2 · 𝐴) = (𝐴 + 𝐴))
3634, 35eqtrd 2773 . . . . . . . . 9 (𝐴 ∈ ℂ → (0 + (2 · 𝐴)) = (𝐴 + 𝐴))
3736adantr 484 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝜓) → (0 + (2 · 𝐴)) = (𝐴 + 𝐴))
38 iftrue 4420 . . . . . . . . . 10 (𝜓 → if(𝜓, 0, 𝐴) = 0)
3938adantl 485 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝜓) → if(𝜓, 0, 𝐴) = 0)
40 iftrue 4420 . . . . . . . . . 10 (𝜓 → if(𝜓, (2 · 𝐴), 0) = (2 · 𝐴))
4140adantl 485 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝜓) → if(𝜓, (2 · 𝐴), 0) = (2 · 𝐴))
4239, 41oveq12d 7188 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝜓) → (if(𝜓, 0, 𝐴) + if(𝜓, (2 · 𝐴), 0)) = (0 + (2 · 𝐴)))
43 iftrue 4420 . . . . . . . . . 10 (𝜓 → if(𝜓, 𝐴, 0) = 𝐴)
4443adantl 485 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝜓) → if(𝜓, 𝐴, 0) = 𝐴)
4544oveq1d 7185 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝜓) → (if(𝜓, 𝐴, 0) + 𝐴) = (𝐴 + 𝐴))
4637, 42, 453eqtr4d 2783 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝜓) → (if(𝜓, 0, 𝐴) + if(𝜓, (2 · 𝐴), 0)) = (if(𝜓, 𝐴, 0) + 𝐴))
47 simpl 486 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ ¬ 𝜓) → 𝐴 ∈ ℂ)
48 0cnd 10712 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ ¬ 𝜓) → 0 ∈ ℂ)
4947, 48addcomd 10920 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ ¬ 𝜓) → (𝐴 + 0) = (0 + 𝐴))
50 iffalse 4423 . . . . . . . . . 10 𝜓 → if(𝜓, 0, 𝐴) = 𝐴)
5150adantl 485 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ ¬ 𝜓) → if(𝜓, 0, 𝐴) = 𝐴)
52 iffalse 4423 . . . . . . . . . 10 𝜓 → if(𝜓, (2 · 𝐴), 0) = 0)
5352adantl 485 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ ¬ 𝜓) → if(𝜓, (2 · 𝐴), 0) = 0)
5451, 53oveq12d 7188 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ ¬ 𝜓) → (if(𝜓, 0, 𝐴) + if(𝜓, (2 · 𝐴), 0)) = (𝐴 + 0))
55 iffalse 4423 . . . . . . . . . 10 𝜓 → if(𝜓, 𝐴, 0) = 0)
5655adantl 485 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ ¬ 𝜓) → if(𝜓, 𝐴, 0) = 0)
5756oveq1d 7185 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ ¬ 𝜓) → (if(𝜓, 𝐴, 0) + 𝐴) = (0 + 𝐴))
5849, 54, 573eqtr4d 2783 . . . . . . 7 ((𝐴 ∈ ℂ ∧ ¬ 𝜓) → (if(𝜓, 0, 𝐴) + if(𝜓, (2 · 𝐴), 0)) = (if(𝜓, 𝐴, 0) + 𝐴))
5946, 58pm2.61dan 813 . . . . . 6 (𝐴 ∈ ℂ → (if(𝜓, 0, 𝐴) + if(𝜓, (2 · 𝐴), 0)) = (if(𝜓, 𝐴, 0) + 𝐴))
6059ad2antrr 726 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝜒) ∧ ¬ 𝜑) → (if(𝜓, 0, 𝐴) + if(𝜓, (2 · 𝐴), 0)) = (if(𝜓, 𝐴, 0) + 𝐴))
61 ifnot 4466 . . . . . . 7 if(¬ 𝜓, 𝐴, 0) = if(𝜓, 0, 𝐴)
62 nbn2 374 . . . . . . . . 9 𝜑 → (¬ 𝜓 ↔ (𝜑𝜓)))
6362adantl 485 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝜒) ∧ ¬ 𝜑) → (¬ 𝜓 ↔ (𝜑𝜓)))
6463ifbid 4437 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝜒) ∧ ¬ 𝜑) → if(¬ 𝜓, 𝐴, 0) = if((𝜑𝜓), 𝐴, 0))
6561, 64eqtr3id 2787 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝜒) ∧ ¬ 𝜑) → if(𝜓, 0, 𝐴) = if((𝜑𝜓), 𝐴, 0))
66 biorf 936 . . . . . . . 8 𝜑 → (𝜓 ↔ (𝜑𝜓)))
6766adantl 485 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝜒) ∧ ¬ 𝜑) → (𝜓 ↔ (𝜑𝜓)))
6867ifbid 4437 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝜒) ∧ ¬ 𝜑) → if(𝜓, (2 · 𝐴), 0) = if((𝜑𝜓), (2 · 𝐴), 0))
6965, 68oveq12d 7188 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝜒) ∧ ¬ 𝜑) → (if(𝜓, 0, 𝐴) + if(𝜓, (2 · 𝐴), 0)) = (if((𝜑𝜓), 𝐴, 0) + if((𝜑𝜓), (2 · 𝐴), 0)))
7030, 60, 693eqtr2rd 2780 . . . 4 (((𝐴 ∈ ℂ ∧ 𝜒) ∧ ¬ 𝜑) → (if((𝜑𝜓), 𝐴, 0) + if((𝜑𝜓), (2 · 𝐴), 0)) = ((if(𝜑, 𝐴, 0) + if(𝜓, 𝐴, 0)) + 𝐴))
7123, 70pm2.61dan 813 . . 3 ((𝐴 ∈ ℂ ∧ 𝜒) → (if((𝜑𝜓), 𝐴, 0) + if((𝜑𝜓), (2 · 𝐴), 0)) = ((if(𝜑, 𝐴, 0) + if(𝜓, 𝐴, 0)) + 𝐴))
72 hadrot 1607 . . . . . . 7 (hadd(𝜒, 𝜑, 𝜓) ↔ hadd(𝜑, 𝜓, 𝜒))
73 had1 1609 . . . . . . 7 (𝜒 → (hadd(𝜒, 𝜑, 𝜓) ↔ (𝜑𝜓)))
7472, 73bitr3id 288 . . . . . 6 (𝜒 → (hadd(𝜑, 𝜓, 𝜒) ↔ (𝜑𝜓)))
7574adantl 485 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝜒) → (hadd(𝜑, 𝜓, 𝜒) ↔ (𝜑𝜓)))
7675ifbid 4437 . . . 4 ((𝐴 ∈ ℂ ∧ 𝜒) → if(hadd(𝜑, 𝜓, 𝜒), 𝐴, 0) = if((𝜑𝜓), 𝐴, 0))
77 cad1 1623 . . . . . 6 (𝜒 → (cadd(𝜑, 𝜓, 𝜒) ↔ (𝜑𝜓)))
7877adantl 485 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝜒) → (cadd(𝜑, 𝜓, 𝜒) ↔ (𝜑𝜓)))
7978ifbid 4437 . . . 4 ((𝐴 ∈ ℂ ∧ 𝜒) → if(cadd(𝜑, 𝜓, 𝜒), (2 · 𝐴), 0) = if((𝜑𝜓), (2 · 𝐴), 0))
8076, 79oveq12d 7188 . . 3 ((𝐴 ∈ ℂ ∧ 𝜒) → (if(hadd(𝜑, 𝜓, 𝜒), 𝐴, 0) + if(cadd(𝜑, 𝜓, 𝜒), (2 · 𝐴), 0)) = (if((𝜑𝜓), 𝐴, 0) + if((𝜑𝜓), (2 · 𝐴), 0)))
81 iftrue 4420 . . . . 5 (𝜒 → if(𝜒, 𝐴, 0) = 𝐴)
8281adantl 485 . . . 4 ((𝐴 ∈ ℂ ∧ 𝜒) → if(𝜒, 𝐴, 0) = 𝐴)
8382oveq2d 7186 . . 3 ((𝐴 ∈ ℂ ∧ 𝜒) → ((if(𝜑, 𝐴, 0) + if(𝜓, 𝐴, 0)) + if(𝜒, 𝐴, 0)) = ((if(𝜑, 𝐴, 0) + if(𝜓, 𝐴, 0)) + 𝐴))
8471, 80, 833eqtr4d 2783 . 2 ((𝐴 ∈ ℂ ∧ 𝜒) → (if(hadd(𝜑, 𝜓, 𝜒), 𝐴, 0) + if(cadd(𝜑, 𝜓, 𝜒), (2 · 𝐴), 0)) = ((if(𝜑, 𝐴, 0) + if(𝜓, 𝐴, 0)) + if(𝜒, 𝐴, 0)))
8519adantl 485 . . . . . 6 (((𝐴 ∈ ℂ ∧ ¬ 𝜒) ∧ 𝜑) → if(𝜑, 𝐴, 0) = 𝐴)
8685oveq1d 7185 . . . . 5 (((𝐴 ∈ ℂ ∧ ¬ 𝜒) ∧ 𝜑) → (if(𝜑, 𝐴, 0) + if(𝜓, 𝐴, 0)) = (𝐴 + if(𝜓, 𝐴, 0)))
8744oveq2d 7186 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝜓) → (𝐴 + if(𝜓, 𝐴, 0)) = (𝐴 + 𝐴))
8837, 42, 873eqtr4d 2783 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝜓) → (if(𝜓, 0, 𝐴) + if(𝜓, (2 · 𝐴), 0)) = (𝐴 + if(𝜓, 𝐴, 0)))
8953, 56eqtr4d 2776 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ ¬ 𝜓) → if(𝜓, (2 · 𝐴), 0) = if(𝜓, 𝐴, 0))
9051, 89oveq12d 7188 . . . . . . 7 ((𝐴 ∈ ℂ ∧ ¬ 𝜓) → (if(𝜓, 0, 𝐴) + if(𝜓, (2 · 𝐴), 0)) = (𝐴 + if(𝜓, 𝐴, 0)))
9188, 90pm2.61dan 813 . . . . . 6 (𝐴 ∈ ℂ → (if(𝜓, 0, 𝐴) + if(𝜓, (2 · 𝐴), 0)) = (𝐴 + if(𝜓, 𝐴, 0)))
9291ad2antrr 726 . . . . 5 (((𝐴 ∈ ℂ ∧ ¬ 𝜒) ∧ 𝜑) → (if(𝜓, 0, 𝐴) + if(𝜓, (2 · 𝐴), 0)) = (𝐴 + if(𝜓, 𝐴, 0)))
939adantl 485 . . . . . . . . . 10 (((𝐴 ∈ ℂ ∧ ¬ 𝜒) ∧ 𝜑) → (𝜓 ↔ (𝜑𝜓)))
9493notbid 321 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ ¬ 𝜒) ∧ 𝜑) → (¬ 𝜓 ↔ ¬ (𝜑𝜓)))
95 df-xor 1507 . . . . . . . . 9 ((𝜑𝜓) ↔ ¬ (𝜑𝜓))
9694, 95bitr4di 292 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ ¬ 𝜒) ∧ 𝜑) → (¬ 𝜓 ↔ (𝜑𝜓)))
9796ifbid 4437 . . . . . . 7 (((𝐴 ∈ ℂ ∧ ¬ 𝜒) ∧ 𝜑) → if(¬ 𝜓, 𝐴, 0) = if((𝜑𝜓), 𝐴, 0))
9861, 97eqtr3id 2787 . . . . . 6 (((𝐴 ∈ ℂ ∧ ¬ 𝜒) ∧ 𝜑) → if(𝜓, 0, 𝐴) = if((𝜑𝜓), 𝐴, 0))
99 ibar 532 . . . . . . . 8 (𝜑 → (𝜓 ↔ (𝜑𝜓)))
10099adantl 485 . . . . . . 7 (((𝐴 ∈ ℂ ∧ ¬ 𝜒) ∧ 𝜑) → (𝜓 ↔ (𝜑𝜓)))
101100ifbid 4437 . . . . . 6 (((𝐴 ∈ ℂ ∧ ¬ 𝜒) ∧ 𝜑) → if(𝜓, (2 · 𝐴), 0) = if((𝜑𝜓), (2 · 𝐴), 0))
10298, 101oveq12d 7188 . . . . 5 (((𝐴 ∈ ℂ ∧ ¬ 𝜒) ∧ 𝜑) → (if(𝜓, 0, 𝐴) + if(𝜓, (2 · 𝐴), 0)) = (if((𝜑𝜓), 𝐴, 0) + if((𝜑𝜓), (2 · 𝐴), 0)))
10386, 92, 1023eqtr2rd 2780 . . . 4 (((𝐴 ∈ ℂ ∧ ¬ 𝜒) ∧ 𝜑) → (if((𝜑𝜓), 𝐴, 0) + if((𝜑𝜓), (2 · 𝐴), 0)) = (if(𝜑, 𝐴, 0) + if(𝜓, 𝐴, 0)))
104 simplll 775 . . . . . . 7 ((((𝐴 ∈ ℂ ∧ ¬ 𝜒) ∧ ¬ 𝜑) ∧ 𝜓) → 𝐴 ∈ ℂ)
105 0cnd 10712 . . . . . . 7 ((((𝐴 ∈ ℂ ∧ ¬ 𝜒) ∧ ¬ 𝜑) ∧ ¬ 𝜓) → 0 ∈ ℂ)
106104, 105ifclda 4449 . . . . . 6 (((𝐴 ∈ ℂ ∧ ¬ 𝜒) ∧ ¬ 𝜑) → if(𝜓, 𝐴, 0) ∈ ℂ)
107 0cnd 10712 . . . . . 6 (((𝐴 ∈ ℂ ∧ ¬ 𝜒) ∧ ¬ 𝜑) → 0 ∈ ℂ)
108106, 107addcomd 10920 . . . . 5 (((𝐴 ∈ ℂ ∧ ¬ 𝜒) ∧ ¬ 𝜑) → (if(𝜓, 𝐴, 0) + 0) = (0 + if(𝜓, 𝐴, 0)))
10962adantl 485 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ ¬ 𝜒) ∧ ¬ 𝜑) → (¬ 𝜓 ↔ (𝜑𝜓)))
110109con1bid 359 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ ¬ 𝜒) ∧ ¬ 𝜑) → (¬ (𝜑𝜓) ↔ 𝜓))
11195, 110syl5bb 286 . . . . . . 7 (((𝐴 ∈ ℂ ∧ ¬ 𝜒) ∧ ¬ 𝜑) → ((𝜑𝜓) ↔ 𝜓))
112111ifbid 4437 . . . . . 6 (((𝐴 ∈ ℂ ∧ ¬ 𝜒) ∧ ¬ 𝜑) → if((𝜑𝜓), 𝐴, 0) = if(𝜓, 𝐴, 0))
113 simpr 488 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ ¬ 𝜒) ∧ ¬ 𝜑) → ¬ 𝜑)
114113intnanrd 493 . . . . . . 7 (((𝐴 ∈ ℂ ∧ ¬ 𝜒) ∧ ¬ 𝜑) → ¬ (𝜑𝜓))
115 iffalse 4423 . . . . . . 7 (¬ (𝜑𝜓) → if((𝜑𝜓), (2 · 𝐴), 0) = 0)
116114, 115syl 17 . . . . . 6 (((𝐴 ∈ ℂ ∧ ¬ 𝜒) ∧ ¬ 𝜑) → if((𝜑𝜓), (2 · 𝐴), 0) = 0)
117112, 116oveq12d 7188 . . . . 5 (((𝐴 ∈ ℂ ∧ ¬ 𝜒) ∧ ¬ 𝜑) → (if((𝜑𝜓), 𝐴, 0) + if((𝜑𝜓), (2 · 𝐴), 0)) = (if(𝜓, 𝐴, 0) + 0))
11824adantl 485 . . . . . 6 (((𝐴 ∈ ℂ ∧ ¬ 𝜒) ∧ ¬ 𝜑) → if(𝜑, 𝐴, 0) = 0)
119118oveq1d 7185 . . . . 5 (((𝐴 ∈ ℂ ∧ ¬ 𝜒) ∧ ¬ 𝜑) → (if(𝜑, 𝐴, 0) + if(𝜓, 𝐴, 0)) = (0 + if(𝜓, 𝐴, 0)))
120108, 117, 1193eqtr4d 2783 . . . 4 (((𝐴 ∈ ℂ ∧ ¬ 𝜒) ∧ ¬ 𝜑) → (if((𝜑𝜓), 𝐴, 0) + if((𝜑𝜓), (2 · 𝐴), 0)) = (if(𝜑, 𝐴, 0) + if(𝜓, 𝐴, 0)))
121103, 120pm2.61dan 813 . . 3 ((𝐴 ∈ ℂ ∧ ¬ 𝜒) → (if((𝜑𝜓), 𝐴, 0) + if((𝜑𝜓), (2 · 𝐴), 0)) = (if(𝜑, 𝐴, 0) + if(𝜓, 𝐴, 0)))
122 had0 1610 . . . . . . 7 𝜒 → (hadd(𝜒, 𝜑, 𝜓) ↔ (𝜑𝜓)))
12372, 122bitr3id 288 . . . . . 6 𝜒 → (hadd(𝜑, 𝜓, 𝜒) ↔ (𝜑𝜓)))
124123adantl 485 . . . . 5 ((𝐴 ∈ ℂ ∧ ¬ 𝜒) → (hadd(𝜑, 𝜓, 𝜒) ↔ (𝜑𝜓)))
125124ifbid 4437 . . . 4 ((𝐴 ∈ ℂ ∧ ¬ 𝜒) → if(hadd(𝜑, 𝜓, 𝜒), 𝐴, 0) = if((𝜑𝜓), 𝐴, 0))
126 cad0 1624 . . . . . 6 𝜒 → (cadd(𝜑, 𝜓, 𝜒) ↔ (𝜑𝜓)))
127126adantl 485 . . . . 5 ((𝐴 ∈ ℂ ∧ ¬ 𝜒) → (cadd(𝜑, 𝜓, 𝜒) ↔ (𝜑𝜓)))
128127ifbid 4437 . . . 4 ((𝐴 ∈ ℂ ∧ ¬ 𝜒) → if(cadd(𝜑, 𝜓, 𝜒), (2 · 𝐴), 0) = if((𝜑𝜓), (2 · 𝐴), 0))
129125, 128oveq12d 7188 . . 3 ((𝐴 ∈ ℂ ∧ ¬ 𝜒) → (if(hadd(𝜑, 𝜓, 𝜒), 𝐴, 0) + if(cadd(𝜑, 𝜓, 𝜒), (2 · 𝐴), 0)) = (if((𝜑𝜓), 𝐴, 0) + if((𝜑𝜓), (2 · 𝐴), 0)))
130 iffalse 4423 . . . . 5 𝜒 → if(𝜒, 𝐴, 0) = 0)
131130oveq2d 7186 . . . 4 𝜒 → ((if(𝜑, 𝐴, 0) + if(𝜓, 𝐴, 0)) + if(𝜒, 𝐴, 0)) = ((if(𝜑, 𝐴, 0) + if(𝜓, 𝐴, 0)) + 0))
132 ifcl 4459 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 0 ∈ ℂ) → if(𝜑, 𝐴, 0) ∈ ℂ)
1331, 132mpan2 691 . . . . . 6 (𝐴 ∈ ℂ → if(𝜑, 𝐴, 0) ∈ ℂ)
134133, 3addcld 10738 . . . . 5 (𝐴 ∈ ℂ → (if(𝜑, 𝐴, 0) + if(𝜓, 𝐴, 0)) ∈ ℂ)
135134addid1d 10918 . . . 4 (𝐴 ∈ ℂ → ((if(𝜑, 𝐴, 0) + if(𝜓, 𝐴, 0)) + 0) = (if(𝜑, 𝐴, 0) + if(𝜓, 𝐴, 0)))
136131, 135sylan9eqr 2795 . . 3 ((𝐴 ∈ ℂ ∧ ¬ 𝜒) → ((if(𝜑, 𝐴, 0) + if(𝜓, 𝐴, 0)) + if(𝜒, 𝐴, 0)) = (if(𝜑, 𝐴, 0) + if(𝜓, 𝐴, 0)))
137121, 129, 1363eqtr4d 2783 . 2 ((𝐴 ∈ ℂ ∧ ¬ 𝜒) → (if(hadd(𝜑, 𝜓, 𝜒), 𝐴, 0) + if(cadd(𝜑, 𝜓, 𝜒), (2 · 𝐴), 0)) = ((if(𝜑, 𝐴, 0) + if(𝜓, 𝐴, 0)) + if(𝜒, 𝐴, 0)))
13884, 137pm2.61dan 813 1 (𝐴 ∈ ℂ → (if(hadd(𝜑, 𝜓, 𝜒), 𝐴, 0) + if(cadd(𝜑, 𝜓, 𝜒), (2 · 𝐴), 0)) = ((if(𝜑, 𝐴, 0) + if(𝜓, 𝐴, 0)) + if(𝜒, 𝐴, 0)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 399  wo 846  wxo 1506   = wceq 1542  haddwhad 1598  caddwcad 1612  wcel 2114  ifcif 4414  (class class class)co 7170  cc 10613  0cc0 10615   + caddc 10618   · cmul 10620  2c2 11771
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2020  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2162  ax-12 2179  ax-ext 2710  ax-sep 5167  ax-nul 5174  ax-pow 5232  ax-pr 5296  ax-un 7479  ax-resscn 10672  ax-1cn 10673  ax-icn 10674  ax-addcl 10675  ax-addrcl 10676  ax-mulcl 10677  ax-mulrcl 10678  ax-mulcom 10679  ax-addass 10680  ax-mulass 10681  ax-distr 10682  ax-i2m1 10683  ax-1ne0 10684  ax-1rid 10685  ax-rnegex 10686  ax-rrecex 10687  ax-cnre 10688  ax-pre-lttri 10689  ax-pre-lttrn 10690  ax-pre-ltadd 10691
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 847  df-3or 1089  df-3an 1090  df-xor 1507  df-tru 1545  df-fal 1555  df-had 1599  df-cad 1613  df-ex 1787  df-nf 1791  df-sb 2075  df-mo 2540  df-eu 2570  df-clab 2717  df-cleq 2730  df-clel 2811  df-nfc 2881  df-ne 2935  df-nel 3039  df-ral 3058  df-rex 3059  df-rab 3062  df-v 3400  df-sbc 3681  df-csb 3791  df-dif 3846  df-un 3848  df-in 3850  df-ss 3860  df-nul 4212  df-if 4415  df-pw 4490  df-sn 4517  df-pr 4519  df-op 4523  df-uni 4797  df-br 5031  df-opab 5093  df-mpt 5111  df-id 5429  df-po 5442  df-so 5443  df-xp 5531  df-rel 5532  df-cnv 5533  df-co 5534  df-dm 5535  df-rn 5536  df-res 5537  df-ima 5538  df-iota 6297  df-fun 6341  df-fn 6342  df-f 6343  df-f1 6344  df-fo 6345  df-f1o 6346  df-fv 6347  df-ov 7173  df-er 8320  df-en 8556  df-dom 8557  df-sdom 8558  df-pnf 10755  df-mnf 10756  df-ltxr 10758  df-2 11779
This theorem is referenced by:  sadadd2lem  15902
  Copyright terms: Public domain W3C validator