MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sadadd2lem2 Structured version   Visualization version   GIF version

Theorem sadadd2lem2 15387
Description: The core of the proof of sadadd2 15397. The intuitive justification for this is that cadd is true if at least two arguments are true, and hadd is true if an odd number of arguments are true, so altogether the result is 𝑛 · 𝐴 where 𝑛 is the number of true arguments, which is equivalently obtained by adding together one 𝐴 for each true argument, on the right side. (Contributed by Mario Carneiro, 8-Sep-2016.)
Assertion
Ref Expression
sadadd2lem2 (𝐴 ∈ ℂ → (if(hadd(𝜑, 𝜓, 𝜒), 𝐴, 0) + if(cadd(𝜑, 𝜓, 𝜒), (2 · 𝐴), 0)) = ((if(𝜑, 𝐴, 0) + if(𝜓, 𝐴, 0)) + if(𝜒, 𝐴, 0)))

Proof of Theorem sadadd2lem2
StepHypRef Expression
1 0cn 10313 . . . . . . . . 9 0 ∈ ℂ
2 ifcl 4323 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 0 ∈ ℂ) → if(𝜓, 𝐴, 0) ∈ ℂ)
31, 2mpan2 674 . . . . . . . 8 (𝐴 ∈ ℂ → if(𝜓, 𝐴, 0) ∈ ℂ)
43ad2antrr 708 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝜒) ∧ 𝜑) → if(𝜓, 𝐴, 0) ∈ ℂ)
5 simpll 774 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝜒) ∧ 𝜑) → 𝐴 ∈ ℂ)
64, 5, 5add12d 10543 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝜒) ∧ 𝜑) → (if(𝜓, 𝐴, 0) + (𝐴 + 𝐴)) = (𝐴 + (if(𝜓, 𝐴, 0) + 𝐴)))
75, 4, 5addassd 10343 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝜒) ∧ 𝜑) → ((𝐴 + if(𝜓, 𝐴, 0)) + 𝐴) = (𝐴 + (if(𝜓, 𝐴, 0) + 𝐴)))
86, 7eqtr4d 2843 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝜒) ∧ 𝜑) → (if(𝜓, 𝐴, 0) + (𝐴 + 𝐴)) = ((𝐴 + if(𝜓, 𝐴, 0)) + 𝐴))
9 pm5.501 357 . . . . . . . . 9 (𝜑 → (𝜓 ↔ (𝜑𝜓)))
109adantl 469 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝜒) ∧ 𝜑) → (𝜓 ↔ (𝜑𝜓)))
1110bicomd 214 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝜒) ∧ 𝜑) → ((𝜑𝜓) ↔ 𝜓))
1211ifbid 4301 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝜒) ∧ 𝜑) → if((𝜑𝜓), 𝐴, 0) = if(𝜓, 𝐴, 0))
13 simpr 473 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ 𝜒) ∧ 𝜑) → 𝜑)
1413orcd 891 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝜒) ∧ 𝜑) → (𝜑𝜓))
15 iftrue 4285 . . . . . . . 8 ((𝜑𝜓) → if((𝜑𝜓), (2 · 𝐴), 0) = (2 · 𝐴))
1614, 15syl 17 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝜒) ∧ 𝜑) → if((𝜑𝜓), (2 · 𝐴), 0) = (2 · 𝐴))
1752timesd 11538 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝜒) ∧ 𝜑) → (2 · 𝐴) = (𝐴 + 𝐴))
1816, 17eqtrd 2840 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝜒) ∧ 𝜑) → if((𝜑𝜓), (2 · 𝐴), 0) = (𝐴 + 𝐴))
1912, 18oveq12d 6888 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝜒) ∧ 𝜑) → (if((𝜑𝜓), 𝐴, 0) + if((𝜑𝜓), (2 · 𝐴), 0)) = (if(𝜓, 𝐴, 0) + (𝐴 + 𝐴)))
20 iftrue 4285 . . . . . . . 8 (𝜑 → if(𝜑, 𝐴, 0) = 𝐴)
2120adantl 469 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝜒) ∧ 𝜑) → if(𝜑, 𝐴, 0) = 𝐴)
2221oveq1d 6885 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝜒) ∧ 𝜑) → (if(𝜑, 𝐴, 0) + if(𝜓, 𝐴, 0)) = (𝐴 + if(𝜓, 𝐴, 0)))
2322oveq1d 6885 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝜒) ∧ 𝜑) → ((if(𝜑, 𝐴, 0) + if(𝜓, 𝐴, 0)) + 𝐴) = ((𝐴 + if(𝜓, 𝐴, 0)) + 𝐴))
248, 19, 233eqtr4d 2850 . . . 4 (((𝐴 ∈ ℂ ∧ 𝜒) ∧ 𝜑) → (if((𝜑𝜓), 𝐴, 0) + if((𝜑𝜓), (2 · 𝐴), 0)) = ((if(𝜑, 𝐴, 0) + if(𝜓, 𝐴, 0)) + 𝐴))
25 iffalse 4288 . . . . . . . . 9 𝜑 → if(𝜑, 𝐴, 0) = 0)
2625adantl 469 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝜒) ∧ ¬ 𝜑) → if(𝜑, 𝐴, 0) = 0)
2726oveq1d 6885 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝜒) ∧ ¬ 𝜑) → (if(𝜑, 𝐴, 0) + if(𝜓, 𝐴, 0)) = (0 + if(𝜓, 𝐴, 0)))
283ad2antrr 708 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝜒) ∧ ¬ 𝜑) → if(𝜓, 𝐴, 0) ∈ ℂ)
2928addid2d 10518 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝜒) ∧ ¬ 𝜑) → (0 + if(𝜓, 𝐴, 0)) = if(𝜓, 𝐴, 0))
3027, 29eqtrd 2840 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝜒) ∧ ¬ 𝜑) → (if(𝜑, 𝐴, 0) + if(𝜓, 𝐴, 0)) = if(𝜓, 𝐴, 0))
3130oveq1d 6885 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝜒) ∧ ¬ 𝜑) → ((if(𝜑, 𝐴, 0) + if(𝜓, 𝐴, 0)) + 𝐴) = (if(𝜓, 𝐴, 0) + 𝐴))
32 2cnd 11373 . . . . . . . . . . . 12 (𝐴 ∈ ℂ → 2 ∈ ℂ)
33 id 22 . . . . . . . . . . . 12 (𝐴 ∈ ℂ → 𝐴 ∈ ℂ)
3432, 33mulcld 10341 . . . . . . . . . . 11 (𝐴 ∈ ℂ → (2 · 𝐴) ∈ ℂ)
3534addid2d 10518 . . . . . . . . . 10 (𝐴 ∈ ℂ → (0 + (2 · 𝐴)) = (2 · 𝐴))
36 2times 11424 . . . . . . . . . 10 (𝐴 ∈ ℂ → (2 · 𝐴) = (𝐴 + 𝐴))
3735, 36eqtrd 2840 . . . . . . . . 9 (𝐴 ∈ ℂ → (0 + (2 · 𝐴)) = (𝐴 + 𝐴))
3837adantr 468 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝜓) → (0 + (2 · 𝐴)) = (𝐴 + 𝐴))
39 iftrue 4285 . . . . . . . . . 10 (𝜓 → if(𝜓, 0, 𝐴) = 0)
4039adantl 469 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝜓) → if(𝜓, 0, 𝐴) = 0)
41 iftrue 4285 . . . . . . . . . 10 (𝜓 → if(𝜓, (2 · 𝐴), 0) = (2 · 𝐴))
4241adantl 469 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝜓) → if(𝜓, (2 · 𝐴), 0) = (2 · 𝐴))
4340, 42oveq12d 6888 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝜓) → (if(𝜓, 0, 𝐴) + if(𝜓, (2 · 𝐴), 0)) = (0 + (2 · 𝐴)))
44 iftrue 4285 . . . . . . . . . 10 (𝜓 → if(𝜓, 𝐴, 0) = 𝐴)
4544adantl 469 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝜓) → if(𝜓, 𝐴, 0) = 𝐴)
4645oveq1d 6885 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝜓) → (if(𝜓, 𝐴, 0) + 𝐴) = (𝐴 + 𝐴))
4738, 43, 463eqtr4d 2850 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝜓) → (if(𝜓, 0, 𝐴) + if(𝜓, (2 · 𝐴), 0)) = (if(𝜓, 𝐴, 0) + 𝐴))
48 simpl 470 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ ¬ 𝜓) → 𝐴 ∈ ℂ)
49 0cnd 10314 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ ¬ 𝜓) → 0 ∈ ℂ)
5048, 49addcomd 10519 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ ¬ 𝜓) → (𝐴 + 0) = (0 + 𝐴))
51 iffalse 4288 . . . . . . . . . 10 𝜓 → if(𝜓, 0, 𝐴) = 𝐴)
5251adantl 469 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ ¬ 𝜓) → if(𝜓, 0, 𝐴) = 𝐴)
53 iffalse 4288 . . . . . . . . . 10 𝜓 → if(𝜓, (2 · 𝐴), 0) = 0)
5453adantl 469 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ ¬ 𝜓) → if(𝜓, (2 · 𝐴), 0) = 0)
5552, 54oveq12d 6888 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ ¬ 𝜓) → (if(𝜓, 0, 𝐴) + if(𝜓, (2 · 𝐴), 0)) = (𝐴 + 0))
56 iffalse 4288 . . . . . . . . . 10 𝜓 → if(𝜓, 𝐴, 0) = 0)
5756adantl 469 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ ¬ 𝜓) → if(𝜓, 𝐴, 0) = 0)
5857oveq1d 6885 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ ¬ 𝜓) → (if(𝜓, 𝐴, 0) + 𝐴) = (0 + 𝐴))
5950, 55, 583eqtr4d 2850 . . . . . . 7 ((𝐴 ∈ ℂ ∧ ¬ 𝜓) → (if(𝜓, 0, 𝐴) + if(𝜓, (2 · 𝐴), 0)) = (if(𝜓, 𝐴, 0) + 𝐴))
6047, 59pm2.61dan 838 . . . . . 6 (𝐴 ∈ ℂ → (if(𝜓, 0, 𝐴) + if(𝜓, (2 · 𝐴), 0)) = (if(𝜓, 𝐴, 0) + 𝐴))
6160ad2antrr 708 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝜒) ∧ ¬ 𝜑) → (if(𝜓, 0, 𝐴) + if(𝜓, (2 · 𝐴), 0)) = (if(𝜓, 𝐴, 0) + 𝐴))
62 ifnot 4329 . . . . . . 7 if(¬ 𝜓, 𝐴, 0) = if(𝜓, 0, 𝐴)
63 nbn2 361 . . . . . . . . 9 𝜑 → (¬ 𝜓 ↔ (𝜑𝜓)))
6463adantl 469 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝜒) ∧ ¬ 𝜑) → (¬ 𝜓 ↔ (𝜑𝜓)))
6564ifbid 4301 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝜒) ∧ ¬ 𝜑) → if(¬ 𝜓, 𝐴, 0) = if((𝜑𝜓), 𝐴, 0))
6662, 65syl5eqr 2854 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝜒) ∧ ¬ 𝜑) → if(𝜓, 0, 𝐴) = if((𝜑𝜓), 𝐴, 0))
67 biorf 951 . . . . . . . 8 𝜑 → (𝜓 ↔ (𝜑𝜓)))
6867adantl 469 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝜒) ∧ ¬ 𝜑) → (𝜓 ↔ (𝜑𝜓)))
6968ifbid 4301 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝜒) ∧ ¬ 𝜑) → if(𝜓, (2 · 𝐴), 0) = if((𝜑𝜓), (2 · 𝐴), 0))
7066, 69oveq12d 6888 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝜒) ∧ ¬ 𝜑) → (if(𝜓, 0, 𝐴) + if(𝜓, (2 · 𝐴), 0)) = (if((𝜑𝜓), 𝐴, 0) + if((𝜑𝜓), (2 · 𝐴), 0)))
7131, 61, 703eqtr2rd 2847 . . . 4 (((𝐴 ∈ ℂ ∧ 𝜒) ∧ ¬ 𝜑) → (if((𝜑𝜓), 𝐴, 0) + if((𝜑𝜓), (2 · 𝐴), 0)) = ((if(𝜑, 𝐴, 0) + if(𝜓, 𝐴, 0)) + 𝐴))
7224, 71pm2.61dan 838 . . 3 ((𝐴 ∈ ℂ ∧ 𝜒) → (if((𝜑𝜓), 𝐴, 0) + if((𝜑𝜓), (2 · 𝐴), 0)) = ((if(𝜑, 𝐴, 0) + if(𝜓, 𝐴, 0)) + 𝐴))
73 hadrot 1695 . . . . . . 7 (hadd(𝜒, 𝜑, 𝜓) ↔ hadd(𝜑, 𝜓, 𝜒))
74 had1 1697 . . . . . . 7 (𝜒 → (hadd(𝜒, 𝜑, 𝜓) ↔ (𝜑𝜓)))
7573, 74syl5bbr 276 . . . . . 6 (𝜒 → (hadd(𝜑, 𝜓, 𝜒) ↔ (𝜑𝜓)))
7675adantl 469 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝜒) → (hadd(𝜑, 𝜓, 𝜒) ↔ (𝜑𝜓)))
7776ifbid 4301 . . . 4 ((𝐴 ∈ ℂ ∧ 𝜒) → if(hadd(𝜑, 𝜓, 𝜒), 𝐴, 0) = if((𝜑𝜓), 𝐴, 0))
78 cad1 1710 . . . . . 6 (𝜒 → (cadd(𝜑, 𝜓, 𝜒) ↔ (𝜑𝜓)))
7978adantl 469 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝜒) → (cadd(𝜑, 𝜓, 𝜒) ↔ (𝜑𝜓)))
8079ifbid 4301 . . . 4 ((𝐴 ∈ ℂ ∧ 𝜒) → if(cadd(𝜑, 𝜓, 𝜒), (2 · 𝐴), 0) = if((𝜑𝜓), (2 · 𝐴), 0))
8177, 80oveq12d 6888 . . 3 ((𝐴 ∈ ℂ ∧ 𝜒) → (if(hadd(𝜑, 𝜓, 𝜒), 𝐴, 0) + if(cadd(𝜑, 𝜓, 𝜒), (2 · 𝐴), 0)) = (if((𝜑𝜓), 𝐴, 0) + if((𝜑𝜓), (2 · 𝐴), 0)))
82 iftrue 4285 . . . . 5 (𝜒 → if(𝜒, 𝐴, 0) = 𝐴)
8382adantl 469 . . . 4 ((𝐴 ∈ ℂ ∧ 𝜒) → if(𝜒, 𝐴, 0) = 𝐴)
8483oveq2d 6886 . . 3 ((𝐴 ∈ ℂ ∧ 𝜒) → ((if(𝜑, 𝐴, 0) + if(𝜓, 𝐴, 0)) + if(𝜒, 𝐴, 0)) = ((if(𝜑, 𝐴, 0) + if(𝜓, 𝐴, 0)) + 𝐴))
8572, 81, 843eqtr4d 2850 . 2 ((𝐴 ∈ ℂ ∧ 𝜒) → (if(hadd(𝜑, 𝜓, 𝜒), 𝐴, 0) + if(cadd(𝜑, 𝜓, 𝜒), (2 · 𝐴), 0)) = ((if(𝜑, 𝐴, 0) + if(𝜓, 𝐴, 0)) + if(𝜒, 𝐴, 0)))
8620adantl 469 . . . . . 6 (((𝐴 ∈ ℂ ∧ ¬ 𝜒) ∧ 𝜑) → if(𝜑, 𝐴, 0) = 𝐴)
8786oveq1d 6885 . . . . 5 (((𝐴 ∈ ℂ ∧ ¬ 𝜒) ∧ 𝜑) → (if(𝜑, 𝐴, 0) + if(𝜓, 𝐴, 0)) = (𝐴 + if(𝜓, 𝐴, 0)))
8845oveq2d 6886 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝜓) → (𝐴 + if(𝜓, 𝐴, 0)) = (𝐴 + 𝐴))
8938, 43, 883eqtr4d 2850 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝜓) → (if(𝜓, 0, 𝐴) + if(𝜓, (2 · 𝐴), 0)) = (𝐴 + if(𝜓, 𝐴, 0)))
9054, 57eqtr4d 2843 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ ¬ 𝜓) → if(𝜓, (2 · 𝐴), 0) = if(𝜓, 𝐴, 0))
9152, 90oveq12d 6888 . . . . . . 7 ((𝐴 ∈ ℂ ∧ ¬ 𝜓) → (if(𝜓, 0, 𝐴) + if(𝜓, (2 · 𝐴), 0)) = (𝐴 + if(𝜓, 𝐴, 0)))
9289, 91pm2.61dan 838 . . . . . 6 (𝐴 ∈ ℂ → (if(𝜓, 0, 𝐴) + if(𝜓, (2 · 𝐴), 0)) = (𝐴 + if(𝜓, 𝐴, 0)))
9392ad2antrr 708 . . . . 5 (((𝐴 ∈ ℂ ∧ ¬ 𝜒) ∧ 𝜑) → (if(𝜓, 0, 𝐴) + if(𝜓, (2 · 𝐴), 0)) = (𝐴 + if(𝜓, 𝐴, 0)))
949adantl 469 . . . . . . . . . 10 (((𝐴 ∈ ℂ ∧ ¬ 𝜒) ∧ 𝜑) → (𝜓 ↔ (𝜑𝜓)))
9594notbid 309 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ ¬ 𝜒) ∧ 𝜑) → (¬ 𝜓 ↔ ¬ (𝜑𝜓)))
96 df-xor 1619 . . . . . . . . 9 ((𝜑𝜓) ↔ ¬ (𝜑𝜓))
9795, 96syl6bbr 280 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ ¬ 𝜒) ∧ 𝜑) → (¬ 𝜓 ↔ (𝜑𝜓)))
9897ifbid 4301 . . . . . . 7 (((𝐴 ∈ ℂ ∧ ¬ 𝜒) ∧ 𝜑) → if(¬ 𝜓, 𝐴, 0) = if((𝜑𝜓), 𝐴, 0))
9962, 98syl5eqr 2854 . . . . . 6 (((𝐴 ∈ ℂ ∧ ¬ 𝜒) ∧ 𝜑) → if(𝜓, 0, 𝐴) = if((𝜑𝜓), 𝐴, 0))
100 ibar 520 . . . . . . . 8 (𝜑 → (𝜓 ↔ (𝜑𝜓)))
101100adantl 469 . . . . . . 7 (((𝐴 ∈ ℂ ∧ ¬ 𝜒) ∧ 𝜑) → (𝜓 ↔ (𝜑𝜓)))
102101ifbid 4301 . . . . . 6 (((𝐴 ∈ ℂ ∧ ¬ 𝜒) ∧ 𝜑) → if(𝜓, (2 · 𝐴), 0) = if((𝜑𝜓), (2 · 𝐴), 0))
10399, 102oveq12d 6888 . . . . 5 (((𝐴 ∈ ℂ ∧ ¬ 𝜒) ∧ 𝜑) → (if(𝜓, 0, 𝐴) + if(𝜓, (2 · 𝐴), 0)) = (if((𝜑𝜓), 𝐴, 0) + if((𝜑𝜓), (2 · 𝐴), 0)))
10487, 93, 1033eqtr2rd 2847 . . . 4 (((𝐴 ∈ ℂ ∧ ¬ 𝜒) ∧ 𝜑) → (if((𝜑𝜓), 𝐴, 0) + if((𝜑𝜓), (2 · 𝐴), 0)) = (if(𝜑, 𝐴, 0) + if(𝜓, 𝐴, 0)))
105 simplll 782 . . . . . . 7 ((((𝐴 ∈ ℂ ∧ ¬ 𝜒) ∧ ¬ 𝜑) ∧ 𝜓) → 𝐴 ∈ ℂ)
106 0cnd 10314 . . . . . . 7 ((((𝐴 ∈ ℂ ∧ ¬ 𝜒) ∧ ¬ 𝜑) ∧ ¬ 𝜓) → 0 ∈ ℂ)
107105, 106ifclda 4313 . . . . . 6 (((𝐴 ∈ ℂ ∧ ¬ 𝜒) ∧ ¬ 𝜑) → if(𝜓, 𝐴, 0) ∈ ℂ)
108 0cnd 10314 . . . . . 6 (((𝐴 ∈ ℂ ∧ ¬ 𝜒) ∧ ¬ 𝜑) → 0 ∈ ℂ)
109107, 108addcomd 10519 . . . . 5 (((𝐴 ∈ ℂ ∧ ¬ 𝜒) ∧ ¬ 𝜑) → (if(𝜓, 𝐴, 0) + 0) = (0 + if(𝜓, 𝐴, 0)))
11063adantl 469 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ ¬ 𝜒) ∧ ¬ 𝜑) → (¬ 𝜓 ↔ (𝜑𝜓)))
111110con1bid 346 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ ¬ 𝜒) ∧ ¬ 𝜑) → (¬ (𝜑𝜓) ↔ 𝜓))
11296, 111syl5bb 274 . . . . . . 7 (((𝐴 ∈ ℂ ∧ ¬ 𝜒) ∧ ¬ 𝜑) → ((𝜑𝜓) ↔ 𝜓))
113112ifbid 4301 . . . . . 6 (((𝐴 ∈ ℂ ∧ ¬ 𝜒) ∧ ¬ 𝜑) → if((𝜑𝜓), 𝐴, 0) = if(𝜓, 𝐴, 0))
114 simpr 473 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ ¬ 𝜒) ∧ ¬ 𝜑) → ¬ 𝜑)
115114intnanrd 479 . . . . . . 7 (((𝐴 ∈ ℂ ∧ ¬ 𝜒) ∧ ¬ 𝜑) → ¬ (𝜑𝜓))
116 iffalse 4288 . . . . . . 7 (¬ (𝜑𝜓) → if((𝜑𝜓), (2 · 𝐴), 0) = 0)
117115, 116syl 17 . . . . . 6 (((𝐴 ∈ ℂ ∧ ¬ 𝜒) ∧ ¬ 𝜑) → if((𝜑𝜓), (2 · 𝐴), 0) = 0)
118113, 117oveq12d 6888 . . . . 5 (((𝐴 ∈ ℂ ∧ ¬ 𝜒) ∧ ¬ 𝜑) → (if((𝜑𝜓), 𝐴, 0) + if((𝜑𝜓), (2 · 𝐴), 0)) = (if(𝜓, 𝐴, 0) + 0))
11925adantl 469 . . . . . 6 (((𝐴 ∈ ℂ ∧ ¬ 𝜒) ∧ ¬ 𝜑) → if(𝜑, 𝐴, 0) = 0)
120119oveq1d 6885 . . . . 5 (((𝐴 ∈ ℂ ∧ ¬ 𝜒) ∧ ¬ 𝜑) → (if(𝜑, 𝐴, 0) + if(𝜓, 𝐴, 0)) = (0 + if(𝜓, 𝐴, 0)))
121109, 118, 1203eqtr4d 2850 . . . 4 (((𝐴 ∈ ℂ ∧ ¬ 𝜒) ∧ ¬ 𝜑) → (if((𝜑𝜓), 𝐴, 0) + if((𝜑𝜓), (2 · 𝐴), 0)) = (if(𝜑, 𝐴, 0) + if(𝜓, 𝐴, 0)))
122104, 121pm2.61dan 838 . . 3 ((𝐴 ∈ ℂ ∧ ¬ 𝜒) → (if((𝜑𝜓), 𝐴, 0) + if((𝜑𝜓), (2 · 𝐴), 0)) = (if(𝜑, 𝐴, 0) + if(𝜓, 𝐴, 0)))
123 had0 1698 . . . . . . 7 𝜒 → (hadd(𝜒, 𝜑, 𝜓) ↔ (𝜑𝜓)))
12473, 123syl5bbr 276 . . . . . 6 𝜒 → (hadd(𝜑, 𝜓, 𝜒) ↔ (𝜑𝜓)))
125124adantl 469 . . . . 5 ((𝐴 ∈ ℂ ∧ ¬ 𝜒) → (hadd(𝜑, 𝜓, 𝜒) ↔ (𝜑𝜓)))
126125ifbid 4301 . . . 4 ((𝐴 ∈ ℂ ∧ ¬ 𝜒) → if(hadd(𝜑, 𝜓, 𝜒), 𝐴, 0) = if((𝜑𝜓), 𝐴, 0))
127 cad0 1711 . . . . . 6 𝜒 → (cadd(𝜑, 𝜓, 𝜒) ↔ (𝜑𝜓)))
128127adantl 469 . . . . 5 ((𝐴 ∈ ℂ ∧ ¬ 𝜒) → (cadd(𝜑, 𝜓, 𝜒) ↔ (𝜑𝜓)))
129128ifbid 4301 . . . 4 ((𝐴 ∈ ℂ ∧ ¬ 𝜒) → if(cadd(𝜑, 𝜓, 𝜒), (2 · 𝐴), 0) = if((𝜑𝜓), (2 · 𝐴), 0))
130126, 129oveq12d 6888 . . 3 ((𝐴 ∈ ℂ ∧ ¬ 𝜒) → (if(hadd(𝜑, 𝜓, 𝜒), 𝐴, 0) + if(cadd(𝜑, 𝜓, 𝜒), (2 · 𝐴), 0)) = (if((𝜑𝜓), 𝐴, 0) + if((𝜑𝜓), (2 · 𝐴), 0)))
131 iffalse 4288 . . . . 5 𝜒 → if(𝜒, 𝐴, 0) = 0)
132131oveq2d 6886 . . . 4 𝜒 → ((if(𝜑, 𝐴, 0) + if(𝜓, 𝐴, 0)) + if(𝜒, 𝐴, 0)) = ((if(𝜑, 𝐴, 0) + if(𝜓, 𝐴, 0)) + 0))
133 ifcl 4323 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 0 ∈ ℂ) → if(𝜑, 𝐴, 0) ∈ ℂ)
1341, 133mpan2 674 . . . . . 6 (𝐴 ∈ ℂ → if(𝜑, 𝐴, 0) ∈ ℂ)
135134, 3addcld 10340 . . . . 5 (𝐴 ∈ ℂ → (if(𝜑, 𝐴, 0) + if(𝜓, 𝐴, 0)) ∈ ℂ)
136135addid1d 10517 . . . 4 (𝐴 ∈ ℂ → ((if(𝜑, 𝐴, 0) + if(𝜓, 𝐴, 0)) + 0) = (if(𝜑, 𝐴, 0) + if(𝜓, 𝐴, 0)))
137132, 136sylan9eqr 2862 . . 3 ((𝐴 ∈ ℂ ∧ ¬ 𝜒) → ((if(𝜑, 𝐴, 0) + if(𝜓, 𝐴, 0)) + if(𝜒, 𝐴, 0)) = (if(𝜑, 𝐴, 0) + if(𝜓, 𝐴, 0)))
138122, 130, 1373eqtr4d 2850 . 2 ((𝐴 ∈ ℂ ∧ ¬ 𝜒) → (if(hadd(𝜑, 𝜓, 𝜒), 𝐴, 0) + if(cadd(𝜑, 𝜓, 𝜒), (2 · 𝐴), 0)) = ((if(𝜑, 𝐴, 0) + if(𝜓, 𝐴, 0)) + if(𝜒, 𝐴, 0)))
13985, 138pm2.61dan 838 1 (𝐴 ∈ ℂ → (if(hadd(𝜑, 𝜓, 𝜒), 𝐴, 0) + if(cadd(𝜑, 𝜓, 𝜒), (2 · 𝐴), 0)) = ((if(𝜑, 𝐴, 0) + if(𝜓, 𝐴, 0)) + if(𝜒, 𝐴, 0)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 197  wa 384  wo 865  wxo 1618   = wceq 1637  haddwhad 1687  caddwcad 1700  wcel 2156  ifcif 4279  (class class class)co 6870  cc 10215  0cc0 10217   + caddc 10220   · cmul 10222  2c2 11352
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1877  ax-4 1894  ax-5 2001  ax-6 2068  ax-7 2104  ax-8 2158  ax-9 2165  ax-10 2185  ax-11 2201  ax-12 2214  ax-13 2420  ax-ext 2784  ax-sep 4975  ax-nul 4983  ax-pow 5035  ax-pr 5096  ax-un 7175  ax-resscn 10274  ax-1cn 10275  ax-icn 10276  ax-addcl 10277  ax-addrcl 10278  ax-mulcl 10279  ax-mulrcl 10280  ax-mulcom 10281  ax-addass 10282  ax-mulass 10283  ax-distr 10284  ax-i2m1 10285  ax-1ne0 10286  ax-1rid 10287  ax-rnegex 10288  ax-rrecex 10289  ax-cnre 10290  ax-pre-lttri 10291  ax-pre-lttrn 10292  ax-pre-ltadd 10293
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 866  df-3or 1101  df-3an 1102  df-xor 1619  df-tru 1641  df-had 1688  df-cad 1701  df-ex 1860  df-nf 1864  df-sb 2061  df-eu 2634  df-mo 2635  df-clab 2793  df-cleq 2799  df-clel 2802  df-nfc 2937  df-ne 2979  df-nel 3082  df-ral 3101  df-rex 3102  df-rab 3105  df-v 3393  df-sbc 3634  df-csb 3729  df-dif 3772  df-un 3774  df-in 3776  df-ss 3783  df-nul 4117  df-if 4280  df-pw 4353  df-sn 4371  df-pr 4373  df-op 4377  df-uni 4631  df-br 4845  df-opab 4907  df-mpt 4924  df-id 5219  df-po 5232  df-so 5233  df-xp 5317  df-rel 5318  df-cnv 5319  df-co 5320  df-dm 5321  df-rn 5322  df-res 5323  df-ima 5324  df-iota 6060  df-fun 6099  df-fn 6100  df-f 6101  df-f1 6102  df-fo 6103  df-f1o 6104  df-fv 6105  df-ov 6873  df-er 7975  df-en 8189  df-dom 8190  df-sdom 8191  df-pnf 10357  df-mnf 10358  df-ltxr 10360  df-2 11360
This theorem is referenced by:  sadadd2lem  15396
  Copyright terms: Public domain W3C validator