MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sadadd2lem2 Structured version   Visualization version   GIF version

Theorem sadadd2lem2 16361
Description: The core of the proof of sadadd2 16371. The intuitive justification for this is that cadd is true if at least two arguments are true, and hadd is true if an odd number of arguments are true, so altogether the result is 𝑛 · 𝐴 where 𝑛 is the number of true arguments, which is equivalently obtained by adding together one 𝐴 for each true argument, on the right side. (Contributed by Mario Carneiro, 8-Sep-2016.)
Assertion
Ref Expression
sadadd2lem2 (𝐴 ∈ ℂ → (if(hadd(𝜑, 𝜓, 𝜒), 𝐴, 0) + if(cadd(𝜑, 𝜓, 𝜒), (2 · 𝐴), 0)) = ((if(𝜑, 𝐴, 0) + if(𝜓, 𝐴, 0)) + if(𝜒, 𝐴, 0)))

Proof of Theorem sadadd2lem2
StepHypRef Expression
1 0cn 11107 . . . . . . . . 9 0 ∈ ℂ
2 ifcl 4522 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 0 ∈ ℂ) → if(𝜓, 𝐴, 0) ∈ ℂ)
31, 2mpan2 691 . . . . . . . 8 (𝐴 ∈ ℂ → if(𝜓, 𝐴, 0) ∈ ℂ)
43ad2antrr 726 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝜒) ∧ 𝜑) → if(𝜓, 𝐴, 0) ∈ ℂ)
5 simpll 766 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝜒) ∧ 𝜑) → 𝐴 ∈ ℂ)
64, 5, 5add12d 11343 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝜒) ∧ 𝜑) → (if(𝜓, 𝐴, 0) + (𝐴 + 𝐴)) = (𝐴 + (if(𝜓, 𝐴, 0) + 𝐴)))
75, 4, 5addassd 11137 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝜒) ∧ 𝜑) → ((𝐴 + if(𝜓, 𝐴, 0)) + 𝐴) = (𝐴 + (if(𝜓, 𝐴, 0) + 𝐴)))
86, 7eqtr4d 2767 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝜒) ∧ 𝜑) → (if(𝜓, 𝐴, 0) + (𝐴 + 𝐴)) = ((𝐴 + if(𝜓, 𝐴, 0)) + 𝐴))
9 pm5.501 366 . . . . . . . . 9 (𝜑 → (𝜓 ↔ (𝜑𝜓)))
109adantl 481 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝜒) ∧ 𝜑) → (𝜓 ↔ (𝜑𝜓)))
1110bicomd 223 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝜒) ∧ 𝜑) → ((𝜑𝜓) ↔ 𝜓))
1211ifbid 4500 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝜒) ∧ 𝜑) → if((𝜑𝜓), 𝐴, 0) = if(𝜓, 𝐴, 0))
13 animorrl 982 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝜒) ∧ 𝜑) → (𝜑𝜓))
14 iftrue 4482 . . . . . . . 8 ((𝜑𝜓) → if((𝜑𝜓), (2 · 𝐴), 0) = (2 · 𝐴))
1513, 14syl 17 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝜒) ∧ 𝜑) → if((𝜑𝜓), (2 · 𝐴), 0) = (2 · 𝐴))
1652timesd 12367 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝜒) ∧ 𝜑) → (2 · 𝐴) = (𝐴 + 𝐴))
1715, 16eqtrd 2764 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝜒) ∧ 𝜑) → if((𝜑𝜓), (2 · 𝐴), 0) = (𝐴 + 𝐴))
1812, 17oveq12d 7367 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝜒) ∧ 𝜑) → (if((𝜑𝜓), 𝐴, 0) + if((𝜑𝜓), (2 · 𝐴), 0)) = (if(𝜓, 𝐴, 0) + (𝐴 + 𝐴)))
19 iftrue 4482 . . . . . . . 8 (𝜑 → if(𝜑, 𝐴, 0) = 𝐴)
2019adantl 481 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝜒) ∧ 𝜑) → if(𝜑, 𝐴, 0) = 𝐴)
2120oveq1d 7364 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝜒) ∧ 𝜑) → (if(𝜑, 𝐴, 0) + if(𝜓, 𝐴, 0)) = (𝐴 + if(𝜓, 𝐴, 0)))
2221oveq1d 7364 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝜒) ∧ 𝜑) → ((if(𝜑, 𝐴, 0) + if(𝜓, 𝐴, 0)) + 𝐴) = ((𝐴 + if(𝜓, 𝐴, 0)) + 𝐴))
238, 18, 223eqtr4d 2774 . . . 4 (((𝐴 ∈ ℂ ∧ 𝜒) ∧ 𝜑) → (if((𝜑𝜓), 𝐴, 0) + if((𝜑𝜓), (2 · 𝐴), 0)) = ((if(𝜑, 𝐴, 0) + if(𝜓, 𝐴, 0)) + 𝐴))
24 iffalse 4485 . . . . . . . . 9 𝜑 → if(𝜑, 𝐴, 0) = 0)
2524adantl 481 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝜒) ∧ ¬ 𝜑) → if(𝜑, 𝐴, 0) = 0)
2625oveq1d 7364 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝜒) ∧ ¬ 𝜑) → (if(𝜑, 𝐴, 0) + if(𝜓, 𝐴, 0)) = (0 + if(𝜓, 𝐴, 0)))
273ad2antrr 726 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝜒) ∧ ¬ 𝜑) → if(𝜓, 𝐴, 0) ∈ ℂ)
2827addlidd 11317 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝜒) ∧ ¬ 𝜑) → (0 + if(𝜓, 𝐴, 0)) = if(𝜓, 𝐴, 0))
2926, 28eqtrd 2764 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝜒) ∧ ¬ 𝜑) → (if(𝜑, 𝐴, 0) + if(𝜓, 𝐴, 0)) = if(𝜓, 𝐴, 0))
3029oveq1d 7364 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝜒) ∧ ¬ 𝜑) → ((if(𝜑, 𝐴, 0) + if(𝜓, 𝐴, 0)) + 𝐴) = (if(𝜓, 𝐴, 0) + 𝐴))
31 2cnd 12206 . . . . . . . . . . . 12 (𝐴 ∈ ℂ → 2 ∈ ℂ)
32 id 22 . . . . . . . . . . . 12 (𝐴 ∈ ℂ → 𝐴 ∈ ℂ)
3331, 32mulcld 11135 . . . . . . . . . . 11 (𝐴 ∈ ℂ → (2 · 𝐴) ∈ ℂ)
3433addlidd 11317 . . . . . . . . . 10 (𝐴 ∈ ℂ → (0 + (2 · 𝐴)) = (2 · 𝐴))
35 2times 12259 . . . . . . . . . 10 (𝐴 ∈ ℂ → (2 · 𝐴) = (𝐴 + 𝐴))
3634, 35eqtrd 2764 . . . . . . . . 9 (𝐴 ∈ ℂ → (0 + (2 · 𝐴)) = (𝐴 + 𝐴))
3736adantr 480 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝜓) → (0 + (2 · 𝐴)) = (𝐴 + 𝐴))
38 iftrue 4482 . . . . . . . . . 10 (𝜓 → if(𝜓, 0, 𝐴) = 0)
3938adantl 481 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝜓) → if(𝜓, 0, 𝐴) = 0)
40 iftrue 4482 . . . . . . . . . 10 (𝜓 → if(𝜓, (2 · 𝐴), 0) = (2 · 𝐴))
4140adantl 481 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝜓) → if(𝜓, (2 · 𝐴), 0) = (2 · 𝐴))
4239, 41oveq12d 7367 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝜓) → (if(𝜓, 0, 𝐴) + if(𝜓, (2 · 𝐴), 0)) = (0 + (2 · 𝐴)))
43 iftrue 4482 . . . . . . . . . 10 (𝜓 → if(𝜓, 𝐴, 0) = 𝐴)
4443adantl 481 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝜓) → if(𝜓, 𝐴, 0) = 𝐴)
4544oveq1d 7364 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝜓) → (if(𝜓, 𝐴, 0) + 𝐴) = (𝐴 + 𝐴))
4637, 42, 453eqtr4d 2774 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝜓) → (if(𝜓, 0, 𝐴) + if(𝜓, (2 · 𝐴), 0)) = (if(𝜓, 𝐴, 0) + 𝐴))
47 simpl 482 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ ¬ 𝜓) → 𝐴 ∈ ℂ)
48 0cnd 11108 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ ¬ 𝜓) → 0 ∈ ℂ)
4947, 48addcomd 11318 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ ¬ 𝜓) → (𝐴 + 0) = (0 + 𝐴))
50 iffalse 4485 . . . . . . . . . 10 𝜓 → if(𝜓, 0, 𝐴) = 𝐴)
5150adantl 481 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ ¬ 𝜓) → if(𝜓, 0, 𝐴) = 𝐴)
52 iffalse 4485 . . . . . . . . . 10 𝜓 → if(𝜓, (2 · 𝐴), 0) = 0)
5352adantl 481 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ ¬ 𝜓) → if(𝜓, (2 · 𝐴), 0) = 0)
5451, 53oveq12d 7367 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ ¬ 𝜓) → (if(𝜓, 0, 𝐴) + if(𝜓, (2 · 𝐴), 0)) = (𝐴 + 0))
55 iffalse 4485 . . . . . . . . . 10 𝜓 → if(𝜓, 𝐴, 0) = 0)
5655adantl 481 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ ¬ 𝜓) → if(𝜓, 𝐴, 0) = 0)
5756oveq1d 7364 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ ¬ 𝜓) → (if(𝜓, 𝐴, 0) + 𝐴) = (0 + 𝐴))
5849, 54, 573eqtr4d 2774 . . . . . . 7 ((𝐴 ∈ ℂ ∧ ¬ 𝜓) → (if(𝜓, 0, 𝐴) + if(𝜓, (2 · 𝐴), 0)) = (if(𝜓, 𝐴, 0) + 𝐴))
5946, 58pm2.61dan 812 . . . . . 6 (𝐴 ∈ ℂ → (if(𝜓, 0, 𝐴) + if(𝜓, (2 · 𝐴), 0)) = (if(𝜓, 𝐴, 0) + 𝐴))
6059ad2antrr 726 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝜒) ∧ ¬ 𝜑) → (if(𝜓, 0, 𝐴) + if(𝜓, (2 · 𝐴), 0)) = (if(𝜓, 𝐴, 0) + 𝐴))
61 ifnot 4529 . . . . . . 7 if(¬ 𝜓, 𝐴, 0) = if(𝜓, 0, 𝐴)
62 nbn2 370 . . . . . . . . 9 𝜑 → (¬ 𝜓 ↔ (𝜑𝜓)))
6362adantl 481 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝜒) ∧ ¬ 𝜑) → (¬ 𝜓 ↔ (𝜑𝜓)))
6463ifbid 4500 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝜒) ∧ ¬ 𝜑) → if(¬ 𝜓, 𝐴, 0) = if((𝜑𝜓), 𝐴, 0))
6561, 64eqtr3id 2778 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝜒) ∧ ¬ 𝜑) → if(𝜓, 0, 𝐴) = if((𝜑𝜓), 𝐴, 0))
66 biorf 936 . . . . . . . 8 𝜑 → (𝜓 ↔ (𝜑𝜓)))
6766adantl 481 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝜒) ∧ ¬ 𝜑) → (𝜓 ↔ (𝜑𝜓)))
6867ifbid 4500 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝜒) ∧ ¬ 𝜑) → if(𝜓, (2 · 𝐴), 0) = if((𝜑𝜓), (2 · 𝐴), 0))
6965, 68oveq12d 7367 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝜒) ∧ ¬ 𝜑) → (if(𝜓, 0, 𝐴) + if(𝜓, (2 · 𝐴), 0)) = (if((𝜑𝜓), 𝐴, 0) + if((𝜑𝜓), (2 · 𝐴), 0)))
7030, 60, 693eqtr2rd 2771 . . . 4 (((𝐴 ∈ ℂ ∧ 𝜒) ∧ ¬ 𝜑) → (if((𝜑𝜓), 𝐴, 0) + if((𝜑𝜓), (2 · 𝐴), 0)) = ((if(𝜑, 𝐴, 0) + if(𝜓, 𝐴, 0)) + 𝐴))
7123, 70pm2.61dan 812 . . 3 ((𝐴 ∈ ℂ ∧ 𝜒) → (if((𝜑𝜓), 𝐴, 0) + if((𝜑𝜓), (2 · 𝐴), 0)) = ((if(𝜑, 𝐴, 0) + if(𝜓, 𝐴, 0)) + 𝐴))
72 hadrot 1601 . . . . . . 7 (hadd(𝜒, 𝜑, 𝜓) ↔ hadd(𝜑, 𝜓, 𝜒))
73 had1 1603 . . . . . . 7 (𝜒 → (hadd(𝜒, 𝜑, 𝜓) ↔ (𝜑𝜓)))
7472, 73bitr3id 285 . . . . . 6 (𝜒 → (hadd(𝜑, 𝜓, 𝜒) ↔ (𝜑𝜓)))
7574adantl 481 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝜒) → (hadd(𝜑, 𝜓, 𝜒) ↔ (𝜑𝜓)))
7675ifbid 4500 . . . 4 ((𝐴 ∈ ℂ ∧ 𝜒) → if(hadd(𝜑, 𝜓, 𝜒), 𝐴, 0) = if((𝜑𝜓), 𝐴, 0))
77 cad1 1617 . . . . . 6 (𝜒 → (cadd(𝜑, 𝜓, 𝜒) ↔ (𝜑𝜓)))
7877adantl 481 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝜒) → (cadd(𝜑, 𝜓, 𝜒) ↔ (𝜑𝜓)))
7978ifbid 4500 . . . 4 ((𝐴 ∈ ℂ ∧ 𝜒) → if(cadd(𝜑, 𝜓, 𝜒), (2 · 𝐴), 0) = if((𝜑𝜓), (2 · 𝐴), 0))
8076, 79oveq12d 7367 . . 3 ((𝐴 ∈ ℂ ∧ 𝜒) → (if(hadd(𝜑, 𝜓, 𝜒), 𝐴, 0) + if(cadd(𝜑, 𝜓, 𝜒), (2 · 𝐴), 0)) = (if((𝜑𝜓), 𝐴, 0) + if((𝜑𝜓), (2 · 𝐴), 0)))
81 iftrue 4482 . . . . 5 (𝜒 → if(𝜒, 𝐴, 0) = 𝐴)
8281adantl 481 . . . 4 ((𝐴 ∈ ℂ ∧ 𝜒) → if(𝜒, 𝐴, 0) = 𝐴)
8382oveq2d 7365 . . 3 ((𝐴 ∈ ℂ ∧ 𝜒) → ((if(𝜑, 𝐴, 0) + if(𝜓, 𝐴, 0)) + if(𝜒, 𝐴, 0)) = ((if(𝜑, 𝐴, 0) + if(𝜓, 𝐴, 0)) + 𝐴))
8471, 80, 833eqtr4d 2774 . 2 ((𝐴 ∈ ℂ ∧ 𝜒) → (if(hadd(𝜑, 𝜓, 𝜒), 𝐴, 0) + if(cadd(𝜑, 𝜓, 𝜒), (2 · 𝐴), 0)) = ((if(𝜑, 𝐴, 0) + if(𝜓, 𝐴, 0)) + if(𝜒, 𝐴, 0)))
8519adantl 481 . . . . . 6 (((𝐴 ∈ ℂ ∧ ¬ 𝜒) ∧ 𝜑) → if(𝜑, 𝐴, 0) = 𝐴)
8685oveq1d 7364 . . . . 5 (((𝐴 ∈ ℂ ∧ ¬ 𝜒) ∧ 𝜑) → (if(𝜑, 𝐴, 0) + if(𝜓, 𝐴, 0)) = (𝐴 + if(𝜓, 𝐴, 0)))
8744oveq2d 7365 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝜓) → (𝐴 + if(𝜓, 𝐴, 0)) = (𝐴 + 𝐴))
8837, 42, 873eqtr4d 2774 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝜓) → (if(𝜓, 0, 𝐴) + if(𝜓, (2 · 𝐴), 0)) = (𝐴 + if(𝜓, 𝐴, 0)))
8953, 56eqtr4d 2767 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ ¬ 𝜓) → if(𝜓, (2 · 𝐴), 0) = if(𝜓, 𝐴, 0))
9051, 89oveq12d 7367 . . . . . . 7 ((𝐴 ∈ ℂ ∧ ¬ 𝜓) → (if(𝜓, 0, 𝐴) + if(𝜓, (2 · 𝐴), 0)) = (𝐴 + if(𝜓, 𝐴, 0)))
9188, 90pm2.61dan 812 . . . . . 6 (𝐴 ∈ ℂ → (if(𝜓, 0, 𝐴) + if(𝜓, (2 · 𝐴), 0)) = (𝐴 + if(𝜓, 𝐴, 0)))
9291ad2antrr 726 . . . . 5 (((𝐴 ∈ ℂ ∧ ¬ 𝜒) ∧ 𝜑) → (if(𝜓, 0, 𝐴) + if(𝜓, (2 · 𝐴), 0)) = (𝐴 + if(𝜓, 𝐴, 0)))
939adantl 481 . . . . . . . . . 10 (((𝐴 ∈ ℂ ∧ ¬ 𝜒) ∧ 𝜑) → (𝜓 ↔ (𝜑𝜓)))
9493notbid 318 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ ¬ 𝜒) ∧ 𝜑) → (¬ 𝜓 ↔ ¬ (𝜑𝜓)))
95 df-xor 1512 . . . . . . . . 9 ((𝜑𝜓) ↔ ¬ (𝜑𝜓))
9694, 95bitr4di 289 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ ¬ 𝜒) ∧ 𝜑) → (¬ 𝜓 ↔ (𝜑𝜓)))
9796ifbid 4500 . . . . . . 7 (((𝐴 ∈ ℂ ∧ ¬ 𝜒) ∧ 𝜑) → if(¬ 𝜓, 𝐴, 0) = if((𝜑𝜓), 𝐴, 0))
9861, 97eqtr3id 2778 . . . . . 6 (((𝐴 ∈ ℂ ∧ ¬ 𝜒) ∧ 𝜑) → if(𝜓, 0, 𝐴) = if((𝜑𝜓), 𝐴, 0))
99 ibar 528 . . . . . . . 8 (𝜑 → (𝜓 ↔ (𝜑𝜓)))
10099adantl 481 . . . . . . 7 (((𝐴 ∈ ℂ ∧ ¬ 𝜒) ∧ 𝜑) → (𝜓 ↔ (𝜑𝜓)))
101100ifbid 4500 . . . . . 6 (((𝐴 ∈ ℂ ∧ ¬ 𝜒) ∧ 𝜑) → if(𝜓, (2 · 𝐴), 0) = if((𝜑𝜓), (2 · 𝐴), 0))
10298, 101oveq12d 7367 . . . . 5 (((𝐴 ∈ ℂ ∧ ¬ 𝜒) ∧ 𝜑) → (if(𝜓, 0, 𝐴) + if(𝜓, (2 · 𝐴), 0)) = (if((𝜑𝜓), 𝐴, 0) + if((𝜑𝜓), (2 · 𝐴), 0)))
10386, 92, 1023eqtr2rd 2771 . . . 4 (((𝐴 ∈ ℂ ∧ ¬ 𝜒) ∧ 𝜑) → (if((𝜑𝜓), 𝐴, 0) + if((𝜑𝜓), (2 · 𝐴), 0)) = (if(𝜑, 𝐴, 0) + if(𝜓, 𝐴, 0)))
104 simplll 774 . . . . . . 7 ((((𝐴 ∈ ℂ ∧ ¬ 𝜒) ∧ ¬ 𝜑) ∧ 𝜓) → 𝐴 ∈ ℂ)
105 0cnd 11108 . . . . . . 7 ((((𝐴 ∈ ℂ ∧ ¬ 𝜒) ∧ ¬ 𝜑) ∧ ¬ 𝜓) → 0 ∈ ℂ)
106104, 105ifclda 4512 . . . . . 6 (((𝐴 ∈ ℂ ∧ ¬ 𝜒) ∧ ¬ 𝜑) → if(𝜓, 𝐴, 0) ∈ ℂ)
107 0cnd 11108 . . . . . 6 (((𝐴 ∈ ℂ ∧ ¬ 𝜒) ∧ ¬ 𝜑) → 0 ∈ ℂ)
108106, 107addcomd 11318 . . . . 5 (((𝐴 ∈ ℂ ∧ ¬ 𝜒) ∧ ¬ 𝜑) → (if(𝜓, 𝐴, 0) + 0) = (0 + if(𝜓, 𝐴, 0)))
10962adantl 481 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ ¬ 𝜒) ∧ ¬ 𝜑) → (¬ 𝜓 ↔ (𝜑𝜓)))
110109con1bid 355 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ ¬ 𝜒) ∧ ¬ 𝜑) → (¬ (𝜑𝜓) ↔ 𝜓))
11195, 110bitrid 283 . . . . . . 7 (((𝐴 ∈ ℂ ∧ ¬ 𝜒) ∧ ¬ 𝜑) → ((𝜑𝜓) ↔ 𝜓))
112111ifbid 4500 . . . . . 6 (((𝐴 ∈ ℂ ∧ ¬ 𝜒) ∧ ¬ 𝜑) → if((𝜑𝜓), 𝐴, 0) = if(𝜓, 𝐴, 0))
113 simpr 484 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ ¬ 𝜒) ∧ ¬ 𝜑) → ¬ 𝜑)
114113intnanrd 489 . . . . . . 7 (((𝐴 ∈ ℂ ∧ ¬ 𝜒) ∧ ¬ 𝜑) → ¬ (𝜑𝜓))
115 iffalse 4485 . . . . . . 7 (¬ (𝜑𝜓) → if((𝜑𝜓), (2 · 𝐴), 0) = 0)
116114, 115syl 17 . . . . . 6 (((𝐴 ∈ ℂ ∧ ¬ 𝜒) ∧ ¬ 𝜑) → if((𝜑𝜓), (2 · 𝐴), 0) = 0)
117112, 116oveq12d 7367 . . . . 5 (((𝐴 ∈ ℂ ∧ ¬ 𝜒) ∧ ¬ 𝜑) → (if((𝜑𝜓), 𝐴, 0) + if((𝜑𝜓), (2 · 𝐴), 0)) = (if(𝜓, 𝐴, 0) + 0))
11824adantl 481 . . . . . 6 (((𝐴 ∈ ℂ ∧ ¬ 𝜒) ∧ ¬ 𝜑) → if(𝜑, 𝐴, 0) = 0)
119118oveq1d 7364 . . . . 5 (((𝐴 ∈ ℂ ∧ ¬ 𝜒) ∧ ¬ 𝜑) → (if(𝜑, 𝐴, 0) + if(𝜓, 𝐴, 0)) = (0 + if(𝜓, 𝐴, 0)))
120108, 117, 1193eqtr4d 2774 . . . 4 (((𝐴 ∈ ℂ ∧ ¬ 𝜒) ∧ ¬ 𝜑) → (if((𝜑𝜓), 𝐴, 0) + if((𝜑𝜓), (2 · 𝐴), 0)) = (if(𝜑, 𝐴, 0) + if(𝜓, 𝐴, 0)))
121103, 120pm2.61dan 812 . . 3 ((𝐴 ∈ ℂ ∧ ¬ 𝜒) → (if((𝜑𝜓), 𝐴, 0) + if((𝜑𝜓), (2 · 𝐴), 0)) = (if(𝜑, 𝐴, 0) + if(𝜓, 𝐴, 0)))
122 had0 1604 . . . . . . 7 𝜒 → (hadd(𝜒, 𝜑, 𝜓) ↔ (𝜑𝜓)))
12372, 122bitr3id 285 . . . . . 6 𝜒 → (hadd(𝜑, 𝜓, 𝜒) ↔ (𝜑𝜓)))
124123adantl 481 . . . . 5 ((𝐴 ∈ ℂ ∧ ¬ 𝜒) → (hadd(𝜑, 𝜓, 𝜒) ↔ (𝜑𝜓)))
125124ifbid 4500 . . . 4 ((𝐴 ∈ ℂ ∧ ¬ 𝜒) → if(hadd(𝜑, 𝜓, 𝜒), 𝐴, 0) = if((𝜑𝜓), 𝐴, 0))
126 cad0 1618 . . . . . 6 𝜒 → (cadd(𝜑, 𝜓, 𝜒) ↔ (𝜑𝜓)))
127126adantl 481 . . . . 5 ((𝐴 ∈ ℂ ∧ ¬ 𝜒) → (cadd(𝜑, 𝜓, 𝜒) ↔ (𝜑𝜓)))
128127ifbid 4500 . . . 4 ((𝐴 ∈ ℂ ∧ ¬ 𝜒) → if(cadd(𝜑, 𝜓, 𝜒), (2 · 𝐴), 0) = if((𝜑𝜓), (2 · 𝐴), 0))
129125, 128oveq12d 7367 . . 3 ((𝐴 ∈ ℂ ∧ ¬ 𝜒) → (if(hadd(𝜑, 𝜓, 𝜒), 𝐴, 0) + if(cadd(𝜑, 𝜓, 𝜒), (2 · 𝐴), 0)) = (if((𝜑𝜓), 𝐴, 0) + if((𝜑𝜓), (2 · 𝐴), 0)))
130 iffalse 4485 . . . . 5 𝜒 → if(𝜒, 𝐴, 0) = 0)
131130oveq2d 7365 . . . 4 𝜒 → ((if(𝜑, 𝐴, 0) + if(𝜓, 𝐴, 0)) + if(𝜒, 𝐴, 0)) = ((if(𝜑, 𝐴, 0) + if(𝜓, 𝐴, 0)) + 0))
132 ifcl 4522 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 0 ∈ ℂ) → if(𝜑, 𝐴, 0) ∈ ℂ)
1331, 132mpan2 691 . . . . . 6 (𝐴 ∈ ℂ → if(𝜑, 𝐴, 0) ∈ ℂ)
134133, 3addcld 11134 . . . . 5 (𝐴 ∈ ℂ → (if(𝜑, 𝐴, 0) + if(𝜓, 𝐴, 0)) ∈ ℂ)
135134addridd 11316 . . . 4 (𝐴 ∈ ℂ → ((if(𝜑, 𝐴, 0) + if(𝜓, 𝐴, 0)) + 0) = (if(𝜑, 𝐴, 0) + if(𝜓, 𝐴, 0)))
136131, 135sylan9eqr 2786 . . 3 ((𝐴 ∈ ℂ ∧ ¬ 𝜒) → ((if(𝜑, 𝐴, 0) + if(𝜓, 𝐴, 0)) + if(𝜒, 𝐴, 0)) = (if(𝜑, 𝐴, 0) + if(𝜓, 𝐴, 0)))
137121, 129, 1363eqtr4d 2774 . 2 ((𝐴 ∈ ℂ ∧ ¬ 𝜒) → (if(hadd(𝜑, 𝜓, 𝜒), 𝐴, 0) + if(cadd(𝜑, 𝜓, 𝜒), (2 · 𝐴), 0)) = ((if(𝜑, 𝐴, 0) + if(𝜓, 𝐴, 0)) + if(𝜒, 𝐴, 0)))
13884, 137pm2.61dan 812 1 (𝐴 ∈ ℂ → (if(hadd(𝜑, 𝜓, 𝜒), 𝐴, 0) + if(cadd(𝜑, 𝜓, 𝜒), (2 · 𝐴), 0)) = ((if(𝜑, 𝐴, 0) + if(𝜓, 𝐴, 0)) + if(𝜒, 𝐴, 0)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847  wxo 1511   = wceq 1540  haddwhad 1593  caddwcad 1606  wcel 2109  ifcif 4476  (class class class)co 7349  cc 11007  0cc0 11009   + caddc 11012   · cmul 11014  2c2 12183
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-xor 1512  df-tru 1543  df-fal 1553  df-had 1594  df-cad 1607  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-br 5093  df-opab 5155  df-mpt 5174  df-id 5514  df-po 5527  df-so 5528  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-ov 7352  df-er 8625  df-en 8873  df-dom 8874  df-sdom 8875  df-pnf 11151  df-mnf 11152  df-ltxr 11154  df-2 12191
This theorem is referenced by:  sadadd2lem  16370
  Copyright terms: Public domain W3C validator