MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hbaev Structured version   Visualization version   GIF version

Theorem hbaev 2065
Description: All variables are effectively bound in an identical variable specifier. Version of hbae 2432 with a disjoint variable condition, requiring fewer axioms. Instance of aev2 2064. (Contributed by NM, 13-May-1993.) (Revised by Wolf Lammen, 22-Mar-2021.)
Assertion
Ref Expression
hbaev (∀𝑥 𝑥 = 𝑦 → ∀𝑧𝑥 𝑥 = 𝑦)
Distinct variable group:   𝑥,𝑦

Proof of Theorem hbaev
StepHypRef Expression
1 aev2 2064 1 (∀𝑥 𝑥 = 𝑦 → ∀𝑧𝑥 𝑥 = 𝑦)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wal 1539
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1801  ax-4 1815  ax-5 1916  ax-6 1974  ax-7 2014
This theorem depends on definitions:  df-bi 206  df-an 396  df-ex 1786
This theorem is referenced by:  nfnaewOLD  2149  dral1v  2368  euae  2662  wl-moae  35654
  Copyright terms: Public domain W3C validator