MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfnaewOLD Structured version   Visualization version   GIF version

Theorem nfnaewOLD 2145
Description: Obsolete version of nfnaew 2144 as of 25-Sep-2024. (Contributed by Mario Carneiro, 11-Aug-2016.) (Revised by Gino Giotto, 10-Jan-2024.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
nfnaewOLD 𝑧 ¬ ∀𝑥 𝑥 = 𝑦
Distinct variable group:   𝑥,𝑦

Proof of Theorem nfnaewOLD
StepHypRef Expression
1 hbaev 2061 . . 3 (∀𝑥 𝑥 = 𝑦 → ∀𝑧𝑥 𝑥 = 𝑦)
21nf5i 2141 . 2 𝑧𝑥 𝑥 = 𝑦
32nfn 1859 1 𝑧 ¬ ∀𝑥 𝑥 = 𝑦
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wal 1538  wnf 1784
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-10 2136
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-ex 1781  df-nf 1785
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator