MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hbae Structured version   Visualization version   GIF version

Theorem hbae 2438
Description: All variables are effectively bound in an identical variable specifier. (Contributed by NM, 13-May-1993.) (Proof shortened by Wolf Lammen, 21-Apr-2018.)
Assertion
Ref Expression
hbae (∀𝑥 𝑥 = 𝑦 → ∀𝑧𝑥 𝑥 = 𝑦)

Proof of Theorem hbae
StepHypRef Expression
1 sp 2217 . . . . 5 (∀𝑥 𝑥 = 𝑦𝑥 = 𝑦)
2 axc9 2389 . . . . 5 (¬ ∀𝑧 𝑧 = 𝑥 → (¬ ∀𝑧 𝑧 = 𝑦 → (𝑥 = 𝑦 → ∀𝑧 𝑥 = 𝑦)))
31, 2syl7 74 . . . 4 (¬ ∀𝑧 𝑧 = 𝑥 → (¬ ∀𝑧 𝑧 = 𝑦 → (∀𝑥 𝑥 = 𝑦 → ∀𝑧 𝑥 = 𝑦)))
4 axc11r 2376 . . . 4 (∀𝑧 𝑧 = 𝑥 → (∀𝑥 𝑥 = 𝑦 → ∀𝑧 𝑥 = 𝑦))
5 axc11 2437 . . . . . 6 (∀𝑥 𝑥 = 𝑦 → (∀𝑥 𝑥 = 𝑦 → ∀𝑦 𝑥 = 𝑦))
65pm2.43i 52 . . . . 5 (∀𝑥 𝑥 = 𝑦 → ∀𝑦 𝑥 = 𝑦)
7 axc11r 2376 . . . . 5 (∀𝑧 𝑧 = 𝑦 → (∀𝑦 𝑥 = 𝑦 → ∀𝑧 𝑥 = 𝑦))
86, 7syl5 34 . . . 4 (∀𝑧 𝑧 = 𝑦 → (∀𝑥 𝑥 = 𝑦 → ∀𝑧 𝑥 = 𝑦))
93, 4, 8pm2.61ii 178 . . 3 (∀𝑥 𝑥 = 𝑦 → ∀𝑧 𝑥 = 𝑦)
109axc4i 2344 . 2 (∀𝑥 𝑥 = 𝑦 → ∀𝑥𝑧 𝑥 = 𝑦)
11 ax-11 2200 . 2 (∀𝑥𝑧 𝑥 = 𝑦 → ∀𝑧𝑥 𝑥 = 𝑦)
1210, 11syl 17 1 (∀𝑥 𝑥 = 𝑦 → ∀𝑧𝑥 𝑥 = 𝑦)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wal 1651
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1891  ax-4 1905  ax-5 2006  ax-6 2072  ax-7 2107  ax-10 2185  ax-11 2200  ax-12 2213  ax-13 2377
This theorem depends on definitions:  df-bi 199  df-an 386  df-or 875  df-tru 1657  df-ex 1876  df-nf 1880
This theorem is referenced by:  nfae  2439  hbnae  2440  ax6e2eq  39539
  Copyright terms: Public domain W3C validator