Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > hbae | Structured version Visualization version GIF version |
Description: All variables are effectively bound in an identical variable specifier. Usage of this theorem is discouraged because it depends on ax-13 2372. Use the weaker hbaev 2063 when possible. (Contributed by NM, 13-May-1993.) (Proof shortened by Wolf Lammen, 21-Apr-2018.) (New usage is discouraged.) |
Ref | Expression |
---|---|
hbae | ⊢ (∀𝑥 𝑥 = 𝑦 → ∀𝑧∀𝑥 𝑥 = 𝑦) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sp 2178 | . . . . 5 ⊢ (∀𝑥 𝑥 = 𝑦 → 𝑥 = 𝑦) | |
2 | axc9 2382 | . . . . 5 ⊢ (¬ ∀𝑧 𝑧 = 𝑥 → (¬ ∀𝑧 𝑧 = 𝑦 → (𝑥 = 𝑦 → ∀𝑧 𝑥 = 𝑦))) | |
3 | 1, 2 | syl7 74 | . . . 4 ⊢ (¬ ∀𝑧 𝑧 = 𝑥 → (¬ ∀𝑧 𝑧 = 𝑦 → (∀𝑥 𝑥 = 𝑦 → ∀𝑧 𝑥 = 𝑦))) |
4 | axc11r 2366 | . . . 4 ⊢ (∀𝑧 𝑧 = 𝑥 → (∀𝑥 𝑥 = 𝑦 → ∀𝑧 𝑥 = 𝑦)) | |
5 | axc11 2430 | . . . . . 6 ⊢ (∀𝑥 𝑥 = 𝑦 → (∀𝑥 𝑥 = 𝑦 → ∀𝑦 𝑥 = 𝑦)) | |
6 | 5 | pm2.43i 52 | . . . . 5 ⊢ (∀𝑥 𝑥 = 𝑦 → ∀𝑦 𝑥 = 𝑦) |
7 | axc11r 2366 | . . . . 5 ⊢ (∀𝑧 𝑧 = 𝑦 → (∀𝑦 𝑥 = 𝑦 → ∀𝑧 𝑥 = 𝑦)) | |
8 | 6, 7 | syl5 34 | . . . 4 ⊢ (∀𝑧 𝑧 = 𝑦 → (∀𝑥 𝑥 = 𝑦 → ∀𝑧 𝑥 = 𝑦)) |
9 | 3, 4, 8 | pm2.61ii 183 | . . 3 ⊢ (∀𝑥 𝑥 = 𝑦 → ∀𝑧 𝑥 = 𝑦) |
10 | 9 | axc4i 2320 | . 2 ⊢ (∀𝑥 𝑥 = 𝑦 → ∀𝑥∀𝑧 𝑥 = 𝑦) |
11 | ax-11 2156 | . 2 ⊢ (∀𝑥∀𝑧 𝑥 = 𝑦 → ∀𝑧∀𝑥 𝑥 = 𝑦) | |
12 | 10, 11 | syl 17 | 1 ⊢ (∀𝑥 𝑥 = 𝑦 → ∀𝑧∀𝑥 𝑥 = 𝑦) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∀wal 1537 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-10 2139 ax-11 2156 ax-12 2173 ax-13 2372 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-tru 1542 df-ex 1784 df-nf 1788 |
This theorem is referenced by: hbnae 2432 nfae 2433 ax6e2eq 42066 |
Copyright terms: Public domain | W3C validator |