MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dral1v Structured version   Visualization version   GIF version

Theorem dral1v 2365
Description: Formula-building lemma for use with the Distinctor Reduction Theorem. Version of dral1 2437 with a disjoint variable condition, which does not require ax-13 2370. Remark: the corresponding versions for dral2 2436 and drex2 2440 are instances of albidv 1921 and exbidv 1922 respectively. (Contributed by NM, 24-Nov-1994.) (Revised by BJ, 17-Jun-2019.) Base the proof on ax12v 2170. (Revised by Wolf Lammen, 30-Mar-2024.) Avoid ax-10 2135. (Revised by Gino Giotto, 18-Nov-2024.)
Hypothesis
Ref Expression
dral1v.1 (∀𝑥 𝑥 = 𝑦 → (𝜑𝜓))
Assertion
Ref Expression
dral1v (∀𝑥 𝑥 = 𝑦 → (∀𝑥𝜑 ↔ ∀𝑦𝜓))
Distinct variable group:   𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝜓(𝑥,𝑦)

Proof of Theorem dral1v
StepHypRef Expression
1 hbaev 2060 . . 3 (∀𝑥 𝑥 = 𝑦 → ∀𝑥𝑥 𝑥 = 𝑦)
2 dral1v.1 . . 3 (∀𝑥 𝑥 = 𝑦 → (𝜑𝜓))
31, 2albidh 1867 . 2 (∀𝑥 𝑥 = 𝑦 → (∀𝑥𝜑 ↔ ∀𝑥𝜓))
4 axc11v 2254 . . 3 (∀𝑥 𝑥 = 𝑦 → (∀𝑥𝜓 → ∀𝑦𝜓))
5 axc11rv 2255 . . 3 (∀𝑥 𝑥 = 𝑦 → (∀𝑦𝜓 → ∀𝑥𝜓))
64, 5impbid 211 . 2 (∀𝑥 𝑥 = 𝑦 → (∀𝑥𝜓 ↔ ∀𝑦𝜓))
73, 6bitrd 279 1 (∀𝑥 𝑥 = 𝑦 → (∀𝑥𝜑 ↔ ∀𝑦𝜓))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wal 1537
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-12 2169
This theorem depends on definitions:  df-bi 206  df-an 398  df-ex 1780
This theorem is referenced by:  drex1v  2367  drnf1v  2368  drnf1vOLD  2369
  Copyright terms: Public domain W3C validator