| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dral1v | Structured version Visualization version GIF version | ||
| Description: Formula-building lemma for use with the Distinctor Reduction Theorem. Version of dral1 2444 with a disjoint variable condition, which does not require ax-13 2377. Remark: the corresponding versions for dral2 2443 and drex2 2447 are instances of albidv 1920 and exbidv 1921 respectively. (Contributed by NM, 24-Nov-1994.) (Revised by BJ, 17-Jun-2019.) Base the proof on ax12v 2178. (Revised by Wolf Lammen, 30-Mar-2024.) Avoid ax-10 2141. (Revised by GG, 18-Nov-2024.) |
| Ref | Expression |
|---|---|
| dral1v.1 | ⊢ (∀𝑥 𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) |
| Ref | Expression |
|---|---|
| dral1v | ⊢ (∀𝑥 𝑥 = 𝑦 → (∀𝑥𝜑 ↔ ∀𝑦𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hbaev 2059 | . . 3 ⊢ (∀𝑥 𝑥 = 𝑦 → ∀𝑥∀𝑥 𝑥 = 𝑦) | |
| 2 | dral1v.1 | . . 3 ⊢ (∀𝑥 𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) | |
| 3 | 1, 2 | albidh 1866 | . 2 ⊢ (∀𝑥 𝑥 = 𝑦 → (∀𝑥𝜑 ↔ ∀𝑥𝜓)) |
| 4 | axc11v 2264 | . . 3 ⊢ (∀𝑥 𝑥 = 𝑦 → (∀𝑥𝜓 → ∀𝑦𝜓)) | |
| 5 | axc11rv 2265 | . . 3 ⊢ (∀𝑥 𝑥 = 𝑦 → (∀𝑦𝜓 → ∀𝑥𝜓)) | |
| 6 | 4, 5 | impbid 212 | . 2 ⊢ (∀𝑥 𝑥 = 𝑦 → (∀𝑥𝜓 ↔ ∀𝑦𝜓)) |
| 7 | 3, 6 | bitrd 279 | 1 ⊢ (∀𝑥 𝑥 = 𝑦 → (∀𝑥𝜑 ↔ ∀𝑦𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∀wal 1538 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-12 2177 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 |
| This theorem is referenced by: drex1v 2374 drnf1v 2375 drnf1vOLD 2376 |
| Copyright terms: Public domain | W3C validator |