Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > dral1v | Structured version Visualization version GIF version |
Description: Formula-building lemma for use with the Distinctor Reduction Theorem. Version of dral1 2437 with a disjoint variable condition, which does not require ax-13 2370. Remark: the corresponding versions for dral2 2436 and drex2 2440 are instances of albidv 1921 and exbidv 1922 respectively. (Contributed by NM, 24-Nov-1994.) (Revised by BJ, 17-Jun-2019.) Base the proof on ax12v 2170. (Revised by Wolf Lammen, 30-Mar-2024.) Avoid ax-10 2135. (Revised by Gino Giotto, 18-Nov-2024.) |
Ref | Expression |
---|---|
dral1v.1 | ⊢ (∀𝑥 𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
dral1v | ⊢ (∀𝑥 𝑥 = 𝑦 → (∀𝑥𝜑 ↔ ∀𝑦𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hbaev 2060 | . . 3 ⊢ (∀𝑥 𝑥 = 𝑦 → ∀𝑥∀𝑥 𝑥 = 𝑦) | |
2 | dral1v.1 | . . 3 ⊢ (∀𝑥 𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) | |
3 | 1, 2 | albidh 1867 | . 2 ⊢ (∀𝑥 𝑥 = 𝑦 → (∀𝑥𝜑 ↔ ∀𝑥𝜓)) |
4 | axc11v 2254 | . . 3 ⊢ (∀𝑥 𝑥 = 𝑦 → (∀𝑥𝜓 → ∀𝑦𝜓)) | |
5 | axc11rv 2255 | . . 3 ⊢ (∀𝑥 𝑥 = 𝑦 → (∀𝑦𝜓 → ∀𝑥𝜓)) | |
6 | 4, 5 | impbid 211 | . 2 ⊢ (∀𝑥 𝑥 = 𝑦 → (∀𝑥𝜓 ↔ ∀𝑦𝜓)) |
7 | 3, 6 | bitrd 279 | 1 ⊢ (∀𝑥 𝑥 = 𝑦 → (∀𝑥𝜑 ↔ ∀𝑦𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∀wal 1537 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-12 2169 |
This theorem depends on definitions: df-bi 206 df-an 398 df-ex 1780 |
This theorem is referenced by: drex1v 2367 drnf1v 2368 drnf1vOLD 2369 |
Copyright terms: Public domain | W3C validator |