MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hbalw Structured version   Visualization version   GIF version

Theorem hbalw 2053
Description: Weak version of hbal 2169. Uses only Tarski's FOL axiom schemes. Unlike hbal 2169, this theorem requires that 𝑥 and 𝑦 be distinct, i.e., not be bundled. (Contributed by NM, 19-Apr-2017.)
Hypotheses
Ref Expression
hbalw.1 (𝑥 = 𝑧 → (𝜑𝜓))
hbalw.2 (𝜑 → ∀𝑥𝜑)
Assertion
Ref Expression
hbalw (∀𝑦𝜑 → ∀𝑥𝑦𝜑)
Distinct variable groups:   𝑥,𝑧   𝑥,𝑦   𝜑,𝑧   𝜓,𝑥
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝜓(𝑦,𝑧)

Proof of Theorem hbalw
StepHypRef Expression
1 hbalw.2 . . 3 (𝜑 → ∀𝑥𝜑)
21alimi 1815 . 2 (∀𝑦𝜑 → ∀𝑦𝑥𝜑)
3 hbalw.1 . . 3 (𝑥 = 𝑧 → (𝜑𝜓))
43alcomiw 2047 . 2 (∀𝑦𝑥𝜑 → ∀𝑥𝑦𝜑)
52, 4syl 17 1 (∀𝑦𝜑 → ∀𝑥𝑦𝜑)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wal 1537
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012
This theorem depends on definitions:  df-bi 206  df-an 396  df-ex 1784
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator