![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > hbe1w | Structured version Visualization version GIF version |
Description: Weak version of hbe1 2132. See comments for ax10w 2118. Uses only Tarski's FOL axiom schemes. (Contributed by NM, 19-Apr-2017.) |
Ref | Expression |
---|---|
hbn1w.1 | ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
hbe1w | ⊢ (∃𝑥𝜑 → ∀𝑥∃𝑥𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ex 1775 | . 2 ⊢ (∃𝑥𝜑 ↔ ¬ ∀𝑥 ¬ 𝜑) | |
2 | hbn1w.1 | . . . 4 ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) | |
3 | 2 | notbid 318 | . . 3 ⊢ (𝑥 = 𝑦 → (¬ 𝜑 ↔ ¬ 𝜓)) |
4 | 3 | hbn1w 2042 | . 2 ⊢ (¬ ∀𝑥 ¬ 𝜑 → ∀𝑥 ¬ ∀𝑥 ¬ 𝜑) |
5 | 1, 4 | hbxfrbi 1820 | 1 ⊢ (∃𝑥𝜑 → ∀𝑥∃𝑥𝜑) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∀wal 1532 ∃wex 1774 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 |
This theorem depends on definitions: df-bi 206 df-an 396 df-ex 1775 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |