MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hbe1w Structured version   Visualization version   GIF version

Theorem hbe1w 2051
Description: Weak version of hbe1 2139. See comments for ax10w 2125. Uses only Tarski's FOL axiom schemes. (Contributed by NM, 19-Apr-2017.)
Hypothesis
Ref Expression
hbn1w.1 (𝑥 = 𝑦 → (𝜑𝜓))
Assertion
Ref Expression
hbe1w (∃𝑥𝜑 → ∀𝑥𝑥𝜑)
Distinct variable groups:   𝜑,𝑦   𝜓,𝑥   𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥)   𝜓(𝑦)

Proof of Theorem hbe1w
StepHypRef Expression
1 df-ex 1783 . 2 (∃𝑥𝜑 ↔ ¬ ∀𝑥 ¬ 𝜑)
2 hbn1w.1 . . . 4 (𝑥 = 𝑦 → (𝜑𝜓))
32notbid 318 . . 3 (𝑥 = 𝑦 → (¬ 𝜑 ↔ ¬ 𝜓))
43hbn1w 2049 . 2 (¬ ∀𝑥 ¬ 𝜑 → ∀𝑥 ¬ ∀𝑥 ¬ 𝜑)
51, 4hbxfrbi 1827 1 (∃𝑥𝜑 → ∀𝑥𝑥𝜑)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wal 1537  wex 1782
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011
This theorem depends on definitions:  df-bi 206  df-an 397  df-ex 1783
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator