MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  19.8aw Structured version   Visualization version   GIF version

Theorem 19.8aw 2053
Description: If a formula is true, then it is true for at least one instance. This is to 19.8a 2174 what spw 2037 is to sp 2176. (Contributed by SN, 26-Sep-2024.)
Hypothesis
Ref Expression
19.8aw.1 (𝑥 = 𝑦 → (𝜑𝜓))
Assertion
Ref Expression
19.8aw (𝜑 → ∃𝑥𝜑)
Distinct variable groups:   𝑥,𝑦   𝜓,𝑥   𝜑,𝑦
Allowed substitution hints:   𝜑(𝑥)   𝜓(𝑦)

Proof of Theorem 19.8aw
StepHypRef Expression
1 alnex 1784 . . 3 (∀𝑥 ¬ 𝜑 ↔ ¬ ∃𝑥𝜑)
2 19.8aw.1 . . . . 5 (𝑥 = 𝑦 → (𝜑𝜓))
32notbid 318 . . . 4 (𝑥 = 𝑦 → (¬ 𝜑 ↔ ¬ 𝜓))
43spw 2037 . . 3 (∀𝑥 ¬ 𝜑 → ¬ 𝜑)
51, 4sylbir 234 . 2 (¬ ∃𝑥𝜑 → ¬ 𝜑)
65con4i 114 1 (𝜑 → ∃𝑥𝜑)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wal 1537  wex 1782
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011
This theorem depends on definitions:  df-bi 206  df-an 397  df-ex 1783
This theorem is referenced by:  mo2icl  3649
  Copyright terms: Public domain W3C validator