Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > hbimd | Structured version Visualization version GIF version |
Description: Deduction form of bound-variable hypothesis builder hbim 2299. (Contributed by NM, 14-May-1993.) (Proof shortened by Wolf Lammen, 3-Jan-2018.) |
Ref | Expression |
---|---|
hbimd.1 | ⊢ (𝜑 → ∀𝑥𝜑) |
hbimd.2 | ⊢ (𝜑 → (𝜓 → ∀𝑥𝜓)) |
hbimd.3 | ⊢ (𝜑 → (𝜒 → ∀𝑥𝜒)) |
Ref | Expression |
---|---|
hbimd | ⊢ (𝜑 → ((𝜓 → 𝜒) → ∀𝑥(𝜓 → 𝜒))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hbimd.1 | . . . 4 ⊢ (𝜑 → ∀𝑥𝜑) | |
2 | hbimd.2 | . . . 4 ⊢ (𝜑 → (𝜓 → ∀𝑥𝜓)) | |
3 | 1, 2 | nf5dh 2145 | . . 3 ⊢ (𝜑 → Ⅎ𝑥𝜓) |
4 | hbimd.3 | . . . 4 ⊢ (𝜑 → (𝜒 → ∀𝑥𝜒)) | |
5 | 1, 4 | nf5dh 2145 | . . 3 ⊢ (𝜑 → Ⅎ𝑥𝜒) |
6 | 3, 5 | nfimd 1898 | . 2 ⊢ (𝜑 → Ⅎ𝑥(𝜓 → 𝜒)) |
7 | 6 | nf5rd 2192 | 1 ⊢ (𝜑 → ((𝜓 → 𝜒) → ∀𝑥(𝜓 → 𝜒))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∀wal 1537 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-10 2139 ax-12 2173 |
This theorem depends on definitions: df-bi 206 df-ex 1784 df-nf 1788 |
This theorem is referenced by: dvelimf-o 36870 |
Copyright terms: Public domain | W3C validator |