| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > hbimd | Structured version Visualization version GIF version | ||
| Description: Deduction form of bound-variable hypothesis builder hbim 2300. (Contributed by NM, 14-May-1993.) (Proof shortened by Wolf Lammen, 3-Jan-2018.) |
| Ref | Expression |
|---|---|
| hbimd.1 | ⊢ (𝜑 → ∀𝑥𝜑) |
| hbimd.2 | ⊢ (𝜑 → (𝜓 → ∀𝑥𝜓)) |
| hbimd.3 | ⊢ (𝜑 → (𝜒 → ∀𝑥𝜒)) |
| Ref | Expression |
|---|---|
| hbimd | ⊢ (𝜑 → ((𝜓 → 𝜒) → ∀𝑥(𝜓 → 𝜒))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hbimd.1 | . . . 4 ⊢ (𝜑 → ∀𝑥𝜑) | |
| 2 | hbimd.2 | . . . 4 ⊢ (𝜑 → (𝜓 → ∀𝑥𝜓)) | |
| 3 | 1, 2 | nf5dh 2148 | . . 3 ⊢ (𝜑 → Ⅎ𝑥𝜓) |
| 4 | hbimd.3 | . . . 4 ⊢ (𝜑 → (𝜒 → ∀𝑥𝜒)) | |
| 5 | 1, 4 | nf5dh 2148 | . . 3 ⊢ (𝜑 → Ⅎ𝑥𝜒) |
| 6 | 3, 5 | nfimd 1894 | . 2 ⊢ (𝜑 → Ⅎ𝑥(𝜓 → 𝜒)) |
| 7 | 6 | nf5rd 2197 | 1 ⊢ (𝜑 → ((𝜓 → 𝜒) → ∀𝑥(𝜓 → 𝜒))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∀wal 1538 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-10 2142 ax-12 2178 |
| This theorem depends on definitions: df-bi 207 df-ex 1780 df-nf 1784 |
| This theorem is referenced by: dvelimf-o 38952 |
| Copyright terms: Public domain | W3C validator |