| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > axi5r | Structured version Visualization version GIF version | ||
| Description: Converse of axc4 2322 (intuitionistic logic axiom ax-i5r). (Contributed by Jim Kingdon, 31-Dec-2017.) |
| Ref | Expression |
|---|---|
| axi5r | ⊢ ((∀𝑥𝜑 → ∀𝑥𝜓) → ∀𝑥(∀𝑥𝜑 → 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hba1 2294 | . . 3 ⊢ (∀𝑥𝜑 → ∀𝑥∀𝑥𝜑) | |
| 2 | hba1 2294 | . . 3 ⊢ (∀𝑥𝜓 → ∀𝑥∀𝑥𝜓) | |
| 3 | 1, 2 | hbim 2300 | . 2 ⊢ ((∀𝑥𝜑 → ∀𝑥𝜓) → ∀𝑥(∀𝑥𝜑 → ∀𝑥𝜓)) |
| 4 | sp 2184 | . . 3 ⊢ (∀𝑥𝜓 → 𝜓) | |
| 5 | 4 | imim2i 16 | . 2 ⊢ ((∀𝑥𝜑 → ∀𝑥𝜓) → (∀𝑥𝜑 → 𝜓)) |
| 6 | 3, 5 | alrimih 1824 | 1 ⊢ ((∀𝑥𝜑 → ∀𝑥𝜓) → ∀𝑥(∀𝑥𝜑 → 𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∀wal 1538 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-10 2142 ax-12 2178 |
| This theorem depends on definitions: df-bi 207 df-or 848 df-ex 1780 df-nf 1784 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |