|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > axi5r | Structured version Visualization version GIF version | ||
| Description: Converse of axc4 2321 (intuitionistic logic axiom ax-i5r). (Contributed by Jim Kingdon, 31-Dec-2017.) | 
| Ref | Expression | 
|---|---|
| axi5r | ⊢ ((∀𝑥𝜑 → ∀𝑥𝜓) → ∀𝑥(∀𝑥𝜑 → 𝜓)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | hba1 2293 | . . 3 ⊢ (∀𝑥𝜑 → ∀𝑥∀𝑥𝜑) | |
| 2 | hba1 2293 | . . 3 ⊢ (∀𝑥𝜓 → ∀𝑥∀𝑥𝜓) | |
| 3 | 1, 2 | hbim 2299 | . 2 ⊢ ((∀𝑥𝜑 → ∀𝑥𝜓) → ∀𝑥(∀𝑥𝜑 → ∀𝑥𝜓)) | 
| 4 | sp 2183 | . . 3 ⊢ (∀𝑥𝜓 → 𝜓) | |
| 5 | 4 | imim2i 16 | . 2 ⊢ ((∀𝑥𝜑 → ∀𝑥𝜓) → (∀𝑥𝜑 → 𝜓)) | 
| 6 | 3, 5 | alrimih 1824 | 1 ⊢ ((∀𝑥𝜑 → ∀𝑥𝜓) → ∀𝑥(∀𝑥𝜑 → 𝜓)) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ∀wal 1538 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-10 2141 ax-12 2177 | 
| This theorem depends on definitions: df-bi 207 df-or 849 df-ex 1780 df-nf 1784 | 
| This theorem is referenced by: (None) | 
| Copyright terms: Public domain | W3C validator |