| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > hbral | Structured version Visualization version GIF version | ||
| Description: Bound-variable hypothesis builder for restricted quantification. (Contributed by NM, 1-Sep-1999.) (Revised by David Abernethy, 13-Dec-2009.) |
| Ref | Expression |
|---|---|
| hbral.1 | ⊢ (𝑦 ∈ 𝐴 → ∀𝑥 𝑦 ∈ 𝐴) |
| hbral.2 | ⊢ (𝜑 → ∀𝑥𝜑) |
| Ref | Expression |
|---|---|
| hbral | ⊢ (∀𝑦 ∈ 𝐴 𝜑 → ∀𝑥∀𝑦 ∈ 𝐴 𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ral 3062 | . 2 ⊢ (∀𝑦 ∈ 𝐴 𝜑 ↔ ∀𝑦(𝑦 ∈ 𝐴 → 𝜑)) | |
| 2 | hbral.1 | . . . 4 ⊢ (𝑦 ∈ 𝐴 → ∀𝑥 𝑦 ∈ 𝐴) | |
| 3 | hbral.2 | . . . 4 ⊢ (𝜑 → ∀𝑥𝜑) | |
| 4 | 2, 3 | hbim 2299 | . . 3 ⊢ ((𝑦 ∈ 𝐴 → 𝜑) → ∀𝑥(𝑦 ∈ 𝐴 → 𝜑)) |
| 5 | 4 | hbal 2167 | . 2 ⊢ (∀𝑦(𝑦 ∈ 𝐴 → 𝜑) → ∀𝑥∀𝑦(𝑦 ∈ 𝐴 → 𝜑)) |
| 6 | 1, 5 | hbxfrbi 1825 | 1 ⊢ (∀𝑦 ∈ 𝐴 𝜑 → ∀𝑥∀𝑦 ∈ 𝐴 𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∀wal 1538 ∈ wcel 2108 ∀wral 3061 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-10 2141 ax-11 2157 ax-12 2177 |
| This theorem depends on definitions: df-bi 207 df-ex 1780 df-nf 1784 df-ral 3062 |
| This theorem is referenced by: nfralw 3311 tratrbVD 44881 |
| Copyright terms: Public domain | W3C validator |