Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > hban | Structured version Visualization version GIF version |
Description: If 𝑥 is not free in 𝜑 and 𝜓, it is not free in (𝜑 ∧ 𝜓). (Contributed by NM, 14-May-1993.) (Proof shortened by Wolf Lammen, 2-Jan-2018.) |
Ref | Expression |
---|---|
hb.1 | ⊢ (𝜑 → ∀𝑥𝜑) |
hb.2 | ⊢ (𝜓 → ∀𝑥𝜓) |
Ref | Expression |
---|---|
hban | ⊢ ((𝜑 ∧ 𝜓) → ∀𝑥(𝜑 ∧ 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hb.1 | . . . 4 ⊢ (𝜑 → ∀𝑥𝜑) | |
2 | 1 | nf5i 2141 | . . 3 ⊢ Ⅎ𝑥𝜑 |
3 | hb.2 | . . . 4 ⊢ (𝜓 → ∀𝑥𝜓) | |
4 | 3 | nf5i 2141 | . . 3 ⊢ Ⅎ𝑥𝜓 |
5 | 2, 4 | nfan 1901 | . 2 ⊢ Ⅎ𝑥(𝜑 ∧ 𝜓) |
6 | 5 | nf5ri 2187 | 1 ⊢ ((𝜑 ∧ 𝜓) → ∀𝑥(𝜑 ∧ 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∀wal 1538 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-10 2136 ax-12 2170 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-tru 1543 df-ex 1781 df-nf 1785 |
This theorem is referenced by: bnj982 33057 bnj1351 33105 bnj1352 33106 bnj1441 33119 bnj1441g 33120 copsex2b 35424 dvelimf-o 37204 ax12indalem 37220 ax12inda2ALT 37221 hbimpg 42503 hbimpgVD 42853 |
Copyright terms: Public domain | W3C validator |