Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > hban | Structured version Visualization version GIF version |
Description: If 𝑥 is not free in 𝜑 and 𝜓, it is not free in (𝜑 ∧ 𝜓). (Contributed by NM, 14-May-1993.) (Proof shortened by Wolf Lammen, 2-Jan-2018.) |
Ref | Expression |
---|---|
hb.1 | ⊢ (𝜑 → ∀𝑥𝜑) |
hb.2 | ⊢ (𝜓 → ∀𝑥𝜓) |
Ref | Expression |
---|---|
hban | ⊢ ((𝜑 ∧ 𝜓) → ∀𝑥(𝜑 ∧ 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hb.1 | . . . 4 ⊢ (𝜑 → ∀𝑥𝜑) | |
2 | 1 | nf5i 2142 | . . 3 ⊢ Ⅎ𝑥𝜑 |
3 | hb.2 | . . . 4 ⊢ (𝜓 → ∀𝑥𝜓) | |
4 | 3 | nf5i 2142 | . . 3 ⊢ Ⅎ𝑥𝜓 |
5 | 2, 4 | nfan 1902 | . 2 ⊢ Ⅎ𝑥(𝜑 ∧ 𝜓) |
6 | 5 | nf5ri 2188 | 1 ⊢ ((𝜑 ∧ 𝜓) → ∀𝑥(𝜑 ∧ 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∀wal 1537 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-10 2137 ax-12 2171 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-tru 1542 df-ex 1783 df-nf 1787 |
This theorem is referenced by: bnj982 32758 bnj1351 32806 bnj1352 32807 bnj1441 32820 bnj1441g 32821 copsex2b 35311 dvelimf-o 36943 ax12indalem 36959 ax12inda2ALT 36960 hbimpg 42174 hbimpgVD 42524 |
Copyright terms: Public domain | W3C validator |