| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > hban | Structured version Visualization version GIF version | ||
| Description: If 𝑥 is not free in 𝜑 and 𝜓, it is not free in (𝜑 ∧ 𝜓). (Contributed by NM, 14-May-1993.) (Proof shortened by Wolf Lammen, 2-Jan-2018.) |
| Ref | Expression |
|---|---|
| hb.1 | ⊢ (𝜑 → ∀𝑥𝜑) |
| hb.2 | ⊢ (𝜓 → ∀𝑥𝜓) |
| Ref | Expression |
|---|---|
| hban | ⊢ ((𝜑 ∧ 𝜓) → ∀𝑥(𝜑 ∧ 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hb.1 | . . . 4 ⊢ (𝜑 → ∀𝑥𝜑) | |
| 2 | 1 | nf5i 2147 | . . 3 ⊢ Ⅎ𝑥𝜑 |
| 3 | hb.2 | . . . 4 ⊢ (𝜓 → ∀𝑥𝜓) | |
| 4 | 3 | nf5i 2147 | . . 3 ⊢ Ⅎ𝑥𝜓 |
| 5 | 2, 4 | nfan 1899 | . 2 ⊢ Ⅎ𝑥(𝜑 ∧ 𝜓) |
| 6 | 5 | nf5ri 2196 | 1 ⊢ ((𝜑 ∧ 𝜓) → ∀𝑥(𝜑 ∧ 𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∀wal 1538 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-10 2142 ax-12 2178 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-ex 1780 df-nf 1784 |
| This theorem is referenced by: bnj982 34814 bnj1351 34862 bnj1352 34863 bnj1441 34876 bnj1441g 34877 copsex2b 37163 dvelimf-o 38952 ax12indalem 38968 ax12inda2ALT 38969 hbimpg 44546 hbimpgVD 44895 |
| Copyright terms: Public domain | W3C validator |