Users' Mathboxes Mathbox for Alan Sare < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ax6e2ndALT Structured version   Visualization version   GIF version

Theorem ax6e2ndALT 41636
Description: If at least two sets exist (dtru 5236) , then the same is true expressed in an alternate form similar to the form of ax6e 2390. The proof is derived by completeusersproof.c from User's Proof in VirtualDeductionProofs.txt. The User's Proof in html format is displayed in ax6e2ndVD 41614. (Contributed by Alan Sare, 11-Sep-2016.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
ax6e2ndALT (¬ ∀𝑥 𝑥 = 𝑦 → ∃𝑥𝑦(𝑥 = 𝑢𝑦 = 𝑣))
Distinct variable groups:   𝑥,𝑢   𝑦,𝑢   𝑥,𝑣

Proof of Theorem ax6e2ndALT
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 vex 3444 . . . . . . 7 𝑢 ∈ V
2 ax6e 2390 . . . . . . 7 𝑦 𝑦 = 𝑣
31, 2pm3.2i 474 . . . . . 6 (𝑢 ∈ V ∧ ∃𝑦 𝑦 = 𝑣)
4 19.42v 1954 . . . . . . 7 (∃𝑦(𝑢 ∈ V ∧ 𝑦 = 𝑣) ↔ (𝑢 ∈ V ∧ ∃𝑦 𝑦 = 𝑣))
54biimpri 231 . . . . . 6 ((𝑢 ∈ V ∧ ∃𝑦 𝑦 = 𝑣) → ∃𝑦(𝑢 ∈ V ∧ 𝑦 = 𝑣))
63, 5ax-mp 5 . . . . 5 𝑦(𝑢 ∈ V ∧ 𝑦 = 𝑣)
7 isset 3453 . . . . . . 7 (𝑢 ∈ V ↔ ∃𝑥 𝑥 = 𝑢)
87anbi1i 626 . . . . . 6 ((𝑢 ∈ V ∧ 𝑦 = 𝑣) ↔ (∃𝑥 𝑥 = 𝑢𝑦 = 𝑣))
98exbii 1849 . . . . 5 (∃𝑦(𝑢 ∈ V ∧ 𝑦 = 𝑣) ↔ ∃𝑦(∃𝑥 𝑥 = 𝑢𝑦 = 𝑣))
106, 9mpbi 233 . . . 4 𝑦(∃𝑥 𝑥 = 𝑢𝑦 = 𝑣)
11 id 22 . . . . . 6 (¬ ∀𝑥 𝑥 = 𝑦 → ¬ ∀𝑥 𝑥 = 𝑦)
12 hbnae 2443 . . . . . . 7 (¬ ∀𝑥 𝑥 = 𝑦 → ∀𝑦 ¬ ∀𝑥 𝑥 = 𝑦)
13 hbn1 2143 . . . . . . . . . . . 12 (¬ ∀𝑥 𝑥 = 𝑦 → ∀𝑥 ¬ ∀𝑥 𝑥 = 𝑦)
14 ax-5 1911 . . . . . . . . . . . . . . . 16 (𝑧 = 𝑣 → ∀𝑥 𝑧 = 𝑣)
15 ax-5 1911 . . . . . . . . . . . . . . . 16 (𝑦 = 𝑣 → ∀𝑧 𝑦 = 𝑣)
16 id 22 . . . . . . . . . . . . . . . . 17 (𝑧 = 𝑦𝑧 = 𝑦)
17 equequ1 2032 . . . . . . . . . . . . . . . . . 18 (𝑧 = 𝑦 → (𝑧 = 𝑣𝑦 = 𝑣))
1817a1i 11 . . . . . . . . . . . . . . . . 17 ((𝑧 = 𝑦𝑧 = 𝑦) → (𝑧 = 𝑦 → (𝑧 = 𝑣𝑦 = 𝑣)))
1916, 18ax-mp 5 . . . . . . . . . . . . . . . 16 (𝑧 = 𝑦 → (𝑧 = 𝑣𝑦 = 𝑣))
2014, 15, 19dvelimh 2461 . . . . . . . . . . . . . . 15 (¬ ∀𝑥 𝑥 = 𝑦 → (𝑦 = 𝑣 → ∀𝑥 𝑦 = 𝑣))
2111, 20syl 17 . . . . . . . . . . . . . 14 (¬ ∀𝑥 𝑥 = 𝑦 → (𝑦 = 𝑣 → ∀𝑥 𝑦 = 𝑣))
2221idiALT 41183 . . . . . . . . . . . . 13 (¬ ∀𝑥 𝑥 = 𝑦 → (𝑦 = 𝑣 → ∀𝑥 𝑦 = 𝑣))
2322alimi 1813 . . . . . . . . . . . 12 (∀𝑥 ¬ ∀𝑥 𝑥 = 𝑦 → ∀𝑥(𝑦 = 𝑣 → ∀𝑥 𝑦 = 𝑣))
2413, 23syl 17 . . . . . . . . . . 11 (¬ ∀𝑥 𝑥 = 𝑦 → ∀𝑥(𝑦 = 𝑣 → ∀𝑥 𝑦 = 𝑣))
2511, 24syl 17 . . . . . . . . . 10 (¬ ∀𝑥 𝑥 = 𝑦 → ∀𝑥(𝑦 = 𝑣 → ∀𝑥 𝑦 = 𝑣))
26 19.41rg 41256 . . . . . . . . . 10 (∀𝑥(𝑦 = 𝑣 → ∀𝑥 𝑦 = 𝑣) → ((∃𝑥 𝑥 = 𝑢𝑦 = 𝑣) → ∃𝑥(𝑥 = 𝑢𝑦 = 𝑣)))
2725, 26syl 17 . . . . . . . . 9 (¬ ∀𝑥 𝑥 = 𝑦 → ((∃𝑥 𝑥 = 𝑢𝑦 = 𝑣) → ∃𝑥(𝑥 = 𝑢𝑦 = 𝑣)))
2827idiALT 41183 . . . . . . . 8 (¬ ∀𝑥 𝑥 = 𝑦 → ((∃𝑥 𝑥 = 𝑢𝑦 = 𝑣) → ∃𝑥(𝑥 = 𝑢𝑦 = 𝑣)))
2928alimi 1813 . . . . . . 7 (∀𝑦 ¬ ∀𝑥 𝑥 = 𝑦 → ∀𝑦((∃𝑥 𝑥 = 𝑢𝑦 = 𝑣) → ∃𝑥(𝑥 = 𝑢𝑦 = 𝑣)))
3012, 29syl 17 . . . . . 6 (¬ ∀𝑥 𝑥 = 𝑦 → ∀𝑦((∃𝑥 𝑥 = 𝑢𝑦 = 𝑣) → ∃𝑥(𝑥 = 𝑢𝑦 = 𝑣)))
3111, 30syl 17 . . . . 5 (¬ ∀𝑥 𝑥 = 𝑦 → ∀𝑦((∃𝑥 𝑥 = 𝑢𝑦 = 𝑣) → ∃𝑥(𝑥 = 𝑢𝑦 = 𝑣)))
32 exim 1835 . . . . 5 (∀𝑦((∃𝑥 𝑥 = 𝑢𝑦 = 𝑣) → ∃𝑥(𝑥 = 𝑢𝑦 = 𝑣)) → (∃𝑦(∃𝑥 𝑥 = 𝑢𝑦 = 𝑣) → ∃𝑦𝑥(𝑥 = 𝑢𝑦 = 𝑣)))
3331, 32syl 17 . . . 4 (¬ ∀𝑥 𝑥 = 𝑦 → (∃𝑦(∃𝑥 𝑥 = 𝑢𝑦 = 𝑣) → ∃𝑦𝑥(𝑥 = 𝑢𝑦 = 𝑣)))
34 pm3.35 802 . . . 4 ((∃𝑦(∃𝑥 𝑥 = 𝑢𝑦 = 𝑣) ∧ (∃𝑦(∃𝑥 𝑥 = 𝑢𝑦 = 𝑣) → ∃𝑦𝑥(𝑥 = 𝑢𝑦 = 𝑣))) → ∃𝑦𝑥(𝑥 = 𝑢𝑦 = 𝑣))
3510, 33, 34sylancr 590 . . 3 (¬ ∀𝑥 𝑥 = 𝑦 → ∃𝑦𝑥(𝑥 = 𝑢𝑦 = 𝑣))
36 excomim 2167 . . 3 (∃𝑦𝑥(𝑥 = 𝑢𝑦 = 𝑣) → ∃𝑥𝑦(𝑥 = 𝑢𝑦 = 𝑣))
3735, 36syl 17 . 2 (¬ ∀𝑥 𝑥 = 𝑦 → ∃𝑥𝑦(𝑥 = 𝑢𝑦 = 𝑣))
3837idiALT 41183 1 (¬ ∀𝑥 𝑥 = 𝑦 → ∃𝑥𝑦(𝑥 = 𝑢𝑦 = 𝑣))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 399  wal 1536   = wceq 1538  wex 1781  wcel 2111  Vcvv 3441
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-13 2379  ax-ext 2770
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-clab 2777  df-cleq 2791  df-clel 2870  df-v 3443
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator