| Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > hbntg | Structured version Visualization version GIF version | ||
| Description: A more general form of hbnt 2294. (Contributed by Scott Fenton, 13-Dec-2010.) |
| Ref | Expression |
|---|---|
| hbntg | ⊢ (∀𝑥(𝜑 → ∀𝑥𝜓) → (¬ 𝜓 → ∀𝑥 ¬ 𝜑)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | axc7 2317 | . . 3 ⊢ (¬ ∀𝑥 ¬ ∀𝑥𝜓 → 𝜓) | |
| 2 | 1 | con1i 147 | . 2 ⊢ (¬ 𝜓 → ∀𝑥 ¬ ∀𝑥𝜓) |
| 3 | con3 153 | . . 3 ⊢ ((𝜑 → ∀𝑥𝜓) → (¬ ∀𝑥𝜓 → ¬ 𝜑)) | |
| 4 | 3 | al2imi 1815 | . 2 ⊢ (∀𝑥(𝜑 → ∀𝑥𝜓) → (∀𝑥 ¬ ∀𝑥𝜓 → ∀𝑥 ¬ 𝜑)) |
| 5 | 2, 4 | syl5 34 | 1 ⊢ (∀𝑥(𝜑 → ∀𝑥𝜓) → (¬ 𝜓 → ∀𝑥 ¬ 𝜑)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∀wal 1538 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-10 2141 ax-12 2177 |
| This theorem depends on definitions: df-bi 207 df-ex 1780 |
| This theorem is referenced by: hbimtg 35807 hbng 35809 |
| Copyright terms: Public domain | W3C validator |