Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > hbntg | Structured version Visualization version GIF version |
Description: A more general form of hbnt 2298. (Contributed by Scott Fenton, 13-Dec-2010.) |
Ref | Expression |
---|---|
hbntg | ⊢ (∀𝑥(𝜑 → ∀𝑥𝜓) → (¬ 𝜓 → ∀𝑥 ¬ 𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | axc7 2325 | . . 3 ⊢ (¬ ∀𝑥 ¬ ∀𝑥𝜓 → 𝜓) | |
2 | 1 | con1i 149 | . 2 ⊢ (¬ 𝜓 → ∀𝑥 ¬ ∀𝑥𝜓) |
3 | con3 156 | . . 3 ⊢ ((𝜑 → ∀𝑥𝜓) → (¬ ∀𝑥𝜓 → ¬ 𝜑)) | |
4 | 3 | al2imi 1817 | . 2 ⊢ (∀𝑥(𝜑 → ∀𝑥𝜓) → (∀𝑥 ¬ ∀𝑥𝜓 → ∀𝑥 ¬ 𝜑)) |
5 | 2, 4 | syl5 34 | 1 ⊢ (∀𝑥(𝜑 → ∀𝑥𝜓) → (¬ 𝜓 → ∀𝑥 ¬ 𝜑)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∀wal 1536 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-10 2142 ax-12 2175 |
This theorem depends on definitions: df-bi 210 df-ex 1782 |
This theorem is referenced by: hbimtg 33298 hbng 33300 |
Copyright terms: Public domain | W3C validator |