Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > hbralrimi | Structured version Visualization version GIF version |
Description: Inference from Theorem 19.21 of [Margaris] p. 90 (restricted quantifier version). This theorem contains the common proof steps for ralrimi 3141 and ralrimiv 3102. Its main advantage over these two is its minimal references to axioms. The proof is extracted from NM's previous work. (Contributed by Wolf Lammen, 4-Dec-2019.) |
Ref | Expression |
---|---|
hbralrimi.1 | ⊢ (𝜑 → ∀𝑥𝜑) |
hbralrimi.2 | ⊢ (𝜑 → (𝑥 ∈ 𝐴 → 𝜓)) |
Ref | Expression |
---|---|
hbralrimi | ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hbralrimi.1 | . . 3 ⊢ (𝜑 → ∀𝑥𝜑) | |
2 | hbralrimi.2 | . . 3 ⊢ (𝜑 → (𝑥 ∈ 𝐴 → 𝜓)) | |
3 | 1, 2 | alrimih 1826 | . 2 ⊢ (𝜑 → ∀𝑥(𝑥 ∈ 𝐴 → 𝜓)) |
4 | df-ral 3069 | . 2 ⊢ (∀𝑥 ∈ 𝐴 𝜓 ↔ ∀𝑥(𝑥 ∈ 𝐴 → 𝜓)) | |
5 | 3, 4 | sylibr 233 | 1 ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∀wal 1537 ∈ wcel 2106 ∀wral 3064 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 |
This theorem depends on definitions: df-bi 206 df-ral 3069 |
This theorem is referenced by: ralrimiv 3102 ralrimi 3141 bnj1145 32973 |
Copyright terms: Public domain | W3C validator |