MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hbralrimi Structured version   Visualization version   GIF version

Theorem hbralrimi 3150
Description: Inference from Theorem 19.21 of [Margaris] p. 90 (restricted quantifier version). This theorem contains the common proof steps for ralrimi 3263 and ralrimiv 3151. Its main advantage over these two is its minimal references to axioms. The proof is extracted from NM's previous work. (Contributed by Wolf Lammen, 4-Dec-2019.)
Hypotheses
Ref Expression
hbralrimi.1 (𝜑 → ∀𝑥𝜑)
hbralrimi.2 (𝜑 → (𝑥𝐴𝜓))
Assertion
Ref Expression
hbralrimi (𝜑 → ∀𝑥𝐴 𝜓)

Proof of Theorem hbralrimi
StepHypRef Expression
1 hbralrimi.1 . . 3 (𝜑 → ∀𝑥𝜑)
2 hbralrimi.2 . . 3 (𝜑 → (𝑥𝐴𝜓))
31, 2alrimih 1822 . 2 (𝜑 → ∀𝑥(𝑥𝐴𝜓))
4 df-ral 3068 . 2 (∀𝑥𝐴 𝜓 ↔ ∀𝑥(𝑥𝐴𝜓))
53, 4sylibr 234 1 (𝜑 → ∀𝑥𝐴 𝜓)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wal 1535  wcel 2108  wral 3067
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807
This theorem depends on definitions:  df-bi 207  df-ral 3068
This theorem is referenced by:  ralrimiv  3151  ralrimi  3263  bnj1145  34969
  Copyright terms: Public domain W3C validator