MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hbralrimi Structured version   Visualization version   GIF version

Theorem hbralrimi 3101
Description: Inference from Theorem 19.21 of [Margaris] p. 90 (restricted quantifier version). This theorem contains the common proof steps for ralrimi 3141 and ralrimiv 3102. Its main advantage over these two is its minimal references to axioms. The proof is extracted from NM's previous work. (Contributed by Wolf Lammen, 4-Dec-2019.)
Hypotheses
Ref Expression
hbralrimi.1 (𝜑 → ∀𝑥𝜑)
hbralrimi.2 (𝜑 → (𝑥𝐴𝜓))
Assertion
Ref Expression
hbralrimi (𝜑 → ∀𝑥𝐴 𝜓)

Proof of Theorem hbralrimi
StepHypRef Expression
1 hbralrimi.1 . . 3 (𝜑 → ∀𝑥𝜑)
2 hbralrimi.2 . . 3 (𝜑 → (𝑥𝐴𝜓))
31, 2alrimih 1826 . 2 (𝜑 → ∀𝑥(𝑥𝐴𝜓))
4 df-ral 3069 . 2 (∀𝑥𝐴 𝜓 ↔ ∀𝑥(𝑥𝐴𝜓))
53, 4sylibr 233 1 (𝜑 → ∀𝑥𝐴 𝜓)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wal 1537  wcel 2106  wral 3064
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812
This theorem depends on definitions:  df-bi 206  df-ral 3069
This theorem is referenced by:  ralrimiv  3102  ralrimi  3141  bnj1145  32973
  Copyright terms: Public domain W3C validator