| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ralrimiv | Structured version Visualization version GIF version | ||
| Description: Inference from Theorem 19.21 of [Margaris] p. 90. (Restricted quantifier version.) (Contributed by NM, 22-Nov-1994.) Reduce dependencies on axioms. (Revised by Wolf Lammen, 4-Dec-2019.) |
| Ref | Expression |
|---|---|
| ralrimiv.1 | ⊢ (𝜑 → (𝑥 ∈ 𝐴 → 𝜓)) |
| Ref | Expression |
|---|---|
| ralrimiv | ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-5 1909 | . 2 ⊢ (𝜑 → ∀𝑥𝜑) | |
| 2 | ralrimiv.1 | . 2 ⊢ (𝜑 → (𝑥 ∈ 𝐴 → 𝜓)) | |
| 3 | 1, 2 | hbralrimi 3131 | 1 ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 𝜓) |
| Copyright terms: Public domain | W3C validator |