| Step | Hyp | Ref
| Expression |
| 1 | | bnj1145.1 |
. . 3
⊢ (𝜑 ↔ (𝑓‘∅) = pred(𝑋, 𝐴, 𝑅)) |
| 2 | | bnj1145.2 |
. . 3
⊢ (𝜓 ↔ ∀𝑖 ∈ ω (suc 𝑖 ∈ 𝑛 → (𝑓‘suc 𝑖) = ∪ 𝑦 ∈ (𝑓‘𝑖) pred(𝑦, 𝐴, 𝑅))) |
| 3 | | bnj1145.3 |
. . 3
⊢ 𝐷 = (ω ∖
{∅}) |
| 4 | | bnj1145.4 |
. . 3
⊢ 𝐵 = {𝑓 ∣ ∃𝑛 ∈ 𝐷 (𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓)} |
| 5 | 1, 2, 3, 4 | bnj882 34940 |
. 2
⊢
trCl(𝑋, 𝐴, 𝑅) = ∪
𝑓 ∈ 𝐵 ∪ 𝑖 ∈ dom 𝑓(𝑓‘𝑖) |
| 6 | | ss2iun 5010 |
. . . 4
⊢
(∀𝑓 ∈
𝐵 ∪ 𝑖 ∈ dom 𝑓(𝑓‘𝑖) ⊆ 𝐴 → ∪
𝑓 ∈ 𝐵 ∪ 𝑖 ∈ dom 𝑓(𝑓‘𝑖) ⊆ ∪
𝑓 ∈ 𝐵 𝐴) |
| 7 | | bnj1145.5 |
. . . . . . 7
⊢ (𝜒 ↔ (𝑛 ∈ 𝐷 ∧ 𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓)) |
| 8 | 7, 4 | bnj1083 34992 |
. . . . . 6
⊢ (𝑓 ∈ 𝐵 ↔ ∃𝑛𝜒) |
| 9 | 2 | bnj1095 34795 |
. . . . . . . . 9
⊢ (𝜓 → ∀𝑖𝜓) |
| 10 | 9, 7 | bnj1096 34796 |
. . . . . . . 8
⊢ (𝜒 → ∀𝑖𝜒) |
| 11 | 3 | bnj1098 34797 |
. . . . . . . . . . . . . . . . 17
⊢
∃𝑗((𝑖 ≠ ∅ ∧ 𝑖 ∈ 𝑛 ∧ 𝑛 ∈ 𝐷) → (𝑗 ∈ 𝑛 ∧ 𝑖 = suc 𝑗)) |
| 12 | 7 | bnj1232 34817 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜒 → 𝑛 ∈ 𝐷) |
| 13 | 12 | 3anim3i 1155 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑖 ≠ ∅ ∧ 𝑖 ∈ 𝑛 ∧ 𝜒) → (𝑖 ≠ ∅ ∧ 𝑖 ∈ 𝑛 ∧ 𝑛 ∈ 𝐷)) |
| 14 | 11, 13 | bnj1101 34798 |
. . . . . . . . . . . . . . . 16
⊢
∃𝑗((𝑖 ≠ ∅ ∧ 𝑖 ∈ 𝑛 ∧ 𝜒) → (𝑗 ∈ 𝑛 ∧ 𝑖 = suc 𝑗)) |
| 15 | | ancl 544 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑖 ≠ ∅ ∧ 𝑖 ∈ 𝑛 ∧ 𝜒) → (𝑗 ∈ 𝑛 ∧ 𝑖 = suc 𝑗)) → ((𝑖 ≠ ∅ ∧ 𝑖 ∈ 𝑛 ∧ 𝜒) → ((𝑖 ≠ ∅ ∧ 𝑖 ∈ 𝑛 ∧ 𝜒) ∧ (𝑗 ∈ 𝑛 ∧ 𝑖 = suc 𝑗)))) |
| 16 | 14, 15 | bnj101 34737 |
. . . . . . . . . . . . . . 15
⊢
∃𝑗((𝑖 ≠ ∅ ∧ 𝑖 ∈ 𝑛 ∧ 𝜒) → ((𝑖 ≠ ∅ ∧ 𝑖 ∈ 𝑛 ∧ 𝜒) ∧ (𝑗 ∈ 𝑛 ∧ 𝑖 = suc 𝑗))) |
| 17 | | bnj1145.6 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜃 ↔ ((𝑖 ≠ ∅ ∧ 𝑖 ∈ 𝑛 ∧ 𝜒) ∧ (𝑗 ∈ 𝑛 ∧ 𝑖 = suc 𝑗))) |
| 18 | 17 | imbi2i 336 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑖 ≠ ∅ ∧ 𝑖 ∈ 𝑛 ∧ 𝜒) → 𝜃) ↔ ((𝑖 ≠ ∅ ∧ 𝑖 ∈ 𝑛 ∧ 𝜒) → ((𝑖 ≠ ∅ ∧ 𝑖 ∈ 𝑛 ∧ 𝜒) ∧ (𝑗 ∈ 𝑛 ∧ 𝑖 = suc 𝑗)))) |
| 19 | 18 | exbii 1848 |
. . . . . . . . . . . . . . 15
⊢
(∃𝑗((𝑖 ≠ ∅ ∧ 𝑖 ∈ 𝑛 ∧ 𝜒) → 𝜃) ↔ ∃𝑗((𝑖 ≠ ∅ ∧ 𝑖 ∈ 𝑛 ∧ 𝜒) → ((𝑖 ≠ ∅ ∧ 𝑖 ∈ 𝑛 ∧ 𝜒) ∧ (𝑗 ∈ 𝑛 ∧ 𝑖 = suc 𝑗)))) |
| 20 | 16, 19 | mpbir 231 |
. . . . . . . . . . . . . 14
⊢
∃𝑗((𝑖 ≠ ∅ ∧ 𝑖 ∈ 𝑛 ∧ 𝜒) → 𝜃) |
| 21 | | bnj213 34896 |
. . . . . . . . . . . . . . . 16
⊢
pred(𝑦, 𝐴, 𝑅) ⊆ 𝐴 |
| 22 | 21 | bnj226 34748 |
. . . . . . . . . . . . . . 15
⊢ ∪ 𝑦 ∈ (𝑓‘𝑗) pred(𝑦, 𝐴, 𝑅) ⊆ 𝐴 |
| 23 | | simpr 484 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑗 ∈ 𝑛 ∧ 𝑖 = suc 𝑗) → 𝑖 = suc 𝑗) |
| 24 | 17, 23 | simplbiim 504 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜃 → 𝑖 = suc 𝑗) |
| 25 | | simp2 1138 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑖 ≠ ∅ ∧ 𝑖 ∈ 𝑛 ∧ 𝜒) → 𝑖 ∈ 𝑛) |
| 26 | 12 | 3ad2ant3 1136 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑖 ≠ ∅ ∧ 𝑖 ∈ 𝑛 ∧ 𝜒) → 𝑛 ∈ 𝐷) |
| 27 | 3 | bnj923 34782 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑛 ∈ 𝐷 → 𝑛 ∈ ω) |
| 28 | | elnn 7898 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑖 ∈ 𝑛 ∧ 𝑛 ∈ ω) → 𝑖 ∈ ω) |
| 29 | 27, 28 | sylan2 593 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑖 ∈ 𝑛 ∧ 𝑛 ∈ 𝐷) → 𝑖 ∈ ω) |
| 30 | 25, 26, 29 | syl2anc 584 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑖 ≠ ∅ ∧ 𝑖 ∈ 𝑛 ∧ 𝜒) → 𝑖 ∈ ω) |
| 31 | 17, 30 | bnj832 34772 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜃 → 𝑖 ∈ ω) |
| 32 | | vex 3484 |
. . . . . . . . . . . . . . . . . . . 20
⊢ 𝑗 ∈ V |
| 33 | 32 | bnj216 34746 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑖 = suc 𝑗 → 𝑗 ∈ 𝑖) |
| 34 | | elnn 7898 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑗 ∈ 𝑖 ∧ 𝑖 ∈ ω) → 𝑗 ∈ ω) |
| 35 | 33, 34 | sylan 580 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑖 = suc 𝑗 ∧ 𝑖 ∈ ω) → 𝑗 ∈ ω) |
| 36 | 24, 31, 35 | syl2anc 584 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜃 → 𝑗 ∈ ω) |
| 37 | 17, 25 | bnj832 34772 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜃 → 𝑖 ∈ 𝑛) |
| 38 | 24, 37 | eqeltrrd 2842 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜃 → suc 𝑗 ∈ 𝑛) |
| 39 | 2 | bnj589 34923 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝜓 ↔ ∀𝑗 ∈ ω (suc 𝑗 ∈ 𝑛 → (𝑓‘suc 𝑗) = ∪ 𝑦 ∈ (𝑓‘𝑗) pred(𝑦, 𝐴, 𝑅))) |
| 40 | 39 | biimpi 216 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝜓 → ∀𝑗 ∈ ω (suc 𝑗 ∈ 𝑛 → (𝑓‘suc 𝑗) = ∪ 𝑦 ∈ (𝑓‘𝑗) pred(𝑦, 𝐴, 𝑅))) |
| 41 | 40 | bnj708 34770 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑛 ∈ 𝐷 ∧ 𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓) → ∀𝑗 ∈ ω (suc 𝑗 ∈ 𝑛 → (𝑓‘suc 𝑗) = ∪ 𝑦 ∈ (𝑓‘𝑗) pred(𝑦, 𝐴, 𝑅))) |
| 42 | | rsp 3247 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
(∀𝑗 ∈
ω (suc 𝑗 ∈ 𝑛 → (𝑓‘suc 𝑗) = ∪ 𝑦 ∈ (𝑓‘𝑗) pred(𝑦, 𝐴, 𝑅)) → (𝑗 ∈ ω → (suc 𝑗 ∈ 𝑛 → (𝑓‘suc 𝑗) = ∪ 𝑦 ∈ (𝑓‘𝑗) pred(𝑦, 𝐴, 𝑅)))) |
| 43 | 41, 42 | syl 17 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑛 ∈ 𝐷 ∧ 𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓) → (𝑗 ∈ ω → (suc 𝑗 ∈ 𝑛 → (𝑓‘suc 𝑗) = ∪ 𝑦 ∈ (𝑓‘𝑗) pred(𝑦, 𝐴, 𝑅)))) |
| 44 | 7, 43 | sylbi 217 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜒 → (𝑗 ∈ ω → (suc 𝑗 ∈ 𝑛 → (𝑓‘suc 𝑗) = ∪ 𝑦 ∈ (𝑓‘𝑗) pred(𝑦, 𝐴, 𝑅)))) |
| 45 | 44 | 3ad2ant3 1136 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑖 ≠ ∅ ∧ 𝑖 ∈ 𝑛 ∧ 𝜒) → (𝑗 ∈ ω → (suc 𝑗 ∈ 𝑛 → (𝑓‘suc 𝑗) = ∪ 𝑦 ∈ (𝑓‘𝑗) pred(𝑦, 𝐴, 𝑅)))) |
| 46 | 17, 45 | bnj832 34772 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜃 → (𝑗 ∈ ω → (suc 𝑗 ∈ 𝑛 → (𝑓‘suc 𝑗) = ∪ 𝑦 ∈ (𝑓‘𝑗) pred(𝑦, 𝐴, 𝑅)))) |
| 47 | 36, 38, 46 | mp2d 49 |
. . . . . . . . . . . . . . . 16
⊢ (𝜃 → (𝑓‘suc 𝑗) = ∪ 𝑦 ∈ (𝑓‘𝑗) pred(𝑦, 𝐴, 𝑅)) |
| 48 | | fveqeq2 6915 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑖 = suc 𝑗 → ((𝑓‘𝑖) = ∪ 𝑦 ∈ (𝑓‘𝑗) pred(𝑦, 𝐴, 𝑅) ↔ (𝑓‘suc 𝑗) = ∪ 𝑦 ∈ (𝑓‘𝑗) pred(𝑦, 𝐴, 𝑅))) |
| 49 | 24, 48 | syl 17 |
. . . . . . . . . . . . . . . 16
⊢ (𝜃 → ((𝑓‘𝑖) = ∪ 𝑦 ∈ (𝑓‘𝑗) pred(𝑦, 𝐴, 𝑅) ↔ (𝑓‘suc 𝑗) = ∪ 𝑦 ∈ (𝑓‘𝑗) pred(𝑦, 𝐴, 𝑅))) |
| 50 | 47, 49 | mpbird 257 |
. . . . . . . . . . . . . . 15
⊢ (𝜃 → (𝑓‘𝑖) = ∪ 𝑦 ∈ (𝑓‘𝑗) pred(𝑦, 𝐴, 𝑅)) |
| 51 | 22, 50 | bnj1262 34824 |
. . . . . . . . . . . . . 14
⊢ (𝜃 → (𝑓‘𝑖) ⊆ 𝐴) |
| 52 | 20, 51 | bnj1023 34794 |
. . . . . . . . . . . . 13
⊢
∃𝑗((𝑖 ≠ ∅ ∧ 𝑖 ∈ 𝑛 ∧ 𝜒) → (𝑓‘𝑖) ⊆ 𝐴) |
| 53 | | 3anass 1095 |
. . . . . . . . . . . . . . 15
⊢ ((𝑖 ≠ ∅ ∧ 𝑖 ∈ 𝑛 ∧ 𝜒) ↔ (𝑖 ≠ ∅ ∧ (𝑖 ∈ 𝑛 ∧ 𝜒))) |
| 54 | 53 | imbi1i 349 |
. . . . . . . . . . . . . 14
⊢ (((𝑖 ≠ ∅ ∧ 𝑖 ∈ 𝑛 ∧ 𝜒) → (𝑓‘𝑖) ⊆ 𝐴) ↔ ((𝑖 ≠ ∅ ∧ (𝑖 ∈ 𝑛 ∧ 𝜒)) → (𝑓‘𝑖) ⊆ 𝐴)) |
| 55 | 54 | exbii 1848 |
. . . . . . . . . . . . 13
⊢
(∃𝑗((𝑖 ≠ ∅ ∧ 𝑖 ∈ 𝑛 ∧ 𝜒) → (𝑓‘𝑖) ⊆ 𝐴) ↔ ∃𝑗((𝑖 ≠ ∅ ∧ (𝑖 ∈ 𝑛 ∧ 𝜒)) → (𝑓‘𝑖) ⊆ 𝐴)) |
| 56 | 52, 55 | mpbi 230 |
. . . . . . . . . . . 12
⊢
∃𝑗((𝑖 ≠ ∅ ∧ (𝑖 ∈ 𝑛 ∧ 𝜒)) → (𝑓‘𝑖) ⊆ 𝐴) |
| 57 | 1 | biimpi 216 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → (𝑓‘∅) = pred(𝑋, 𝐴, 𝑅)) |
| 58 | 7, 57 | bnj771 34778 |
. . . . . . . . . . . . . 14
⊢ (𝜒 → (𝑓‘∅) = pred(𝑋, 𝐴, 𝑅)) |
| 59 | | fveq2 6906 |
. . . . . . . . . . . . . . 15
⊢ (𝑖 = ∅ → (𝑓‘𝑖) = (𝑓‘∅)) |
| 60 | | bnj213 34896 |
. . . . . . . . . . . . . . . 16
⊢
pred(𝑋, 𝐴, 𝑅) ⊆ 𝐴 |
| 61 | | sseq1 4009 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑓‘∅) = pred(𝑋, 𝐴, 𝑅) → ((𝑓‘∅) ⊆ 𝐴 ↔ pred(𝑋, 𝐴, 𝑅) ⊆ 𝐴)) |
| 62 | 60, 61 | mpbiri 258 |
. . . . . . . . . . . . . . 15
⊢ ((𝑓‘∅) = pred(𝑋, 𝐴, 𝑅) → (𝑓‘∅) ⊆ 𝐴) |
| 63 | | sseq1 4009 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑓‘𝑖) = (𝑓‘∅) → ((𝑓‘𝑖) ⊆ 𝐴 ↔ (𝑓‘∅) ⊆ 𝐴)) |
| 64 | 63 | biimpar 477 |
. . . . . . . . . . . . . . 15
⊢ (((𝑓‘𝑖) = (𝑓‘∅) ∧ (𝑓‘∅) ⊆ 𝐴) → (𝑓‘𝑖) ⊆ 𝐴) |
| 65 | 59, 62, 64 | syl2an 596 |
. . . . . . . . . . . . . 14
⊢ ((𝑖 = ∅ ∧ (𝑓‘∅) = pred(𝑋, 𝐴, 𝑅)) → (𝑓‘𝑖) ⊆ 𝐴) |
| 66 | 58, 65 | sylan2 593 |
. . . . . . . . . . . . 13
⊢ ((𝑖 = ∅ ∧ 𝜒) → (𝑓‘𝑖) ⊆ 𝐴) |
| 67 | 66 | adantrl 716 |
. . . . . . . . . . . 12
⊢ ((𝑖 = ∅ ∧ (𝑖 ∈ 𝑛 ∧ 𝜒)) → (𝑓‘𝑖) ⊆ 𝐴) |
| 68 | 56, 67 | bnj1109 34800 |
. . . . . . . . . . 11
⊢
∃𝑗((𝑖 ∈ 𝑛 ∧ 𝜒) → (𝑓‘𝑖) ⊆ 𝐴) |
| 69 | | 19.9v 1983 |
. . . . . . . . . . 11
⊢
(∃𝑗((𝑖 ∈ 𝑛 ∧ 𝜒) → (𝑓‘𝑖) ⊆ 𝐴) ↔ ((𝑖 ∈ 𝑛 ∧ 𝜒) → (𝑓‘𝑖) ⊆ 𝐴)) |
| 70 | 68, 69 | mpbi 230 |
. . . . . . . . . 10
⊢ ((𝑖 ∈ 𝑛 ∧ 𝜒) → (𝑓‘𝑖) ⊆ 𝐴) |
| 71 | 70 | expcom 413 |
. . . . . . . . 9
⊢ (𝜒 → (𝑖 ∈ 𝑛 → (𝑓‘𝑖) ⊆ 𝐴)) |
| 72 | | fndm 6671 |
. . . . . . . . . . 11
⊢ (𝑓 Fn 𝑛 → dom 𝑓 = 𝑛) |
| 73 | 7, 72 | bnj770 34777 |
. . . . . . . . . 10
⊢ (𝜒 → dom 𝑓 = 𝑛) |
| 74 | | eleq2 2830 |
. . . . . . . . . . 11
⊢ (dom
𝑓 = 𝑛 → (𝑖 ∈ dom 𝑓 ↔ 𝑖 ∈ 𝑛)) |
| 75 | 74 | imbi1d 341 |
. . . . . . . . . 10
⊢ (dom
𝑓 = 𝑛 → ((𝑖 ∈ dom 𝑓 → (𝑓‘𝑖) ⊆ 𝐴) ↔ (𝑖 ∈ 𝑛 → (𝑓‘𝑖) ⊆ 𝐴))) |
| 76 | 73, 75 | syl 17 |
. . . . . . . . 9
⊢ (𝜒 → ((𝑖 ∈ dom 𝑓 → (𝑓‘𝑖) ⊆ 𝐴) ↔ (𝑖 ∈ 𝑛 → (𝑓‘𝑖) ⊆ 𝐴))) |
| 77 | 71, 76 | mpbird 257 |
. . . . . . . 8
⊢ (𝜒 → (𝑖 ∈ dom 𝑓 → (𝑓‘𝑖) ⊆ 𝐴)) |
| 78 | 10, 77 | hbralrimi 3144 |
. . . . . . 7
⊢ (𝜒 → ∀𝑖 ∈ dom 𝑓(𝑓‘𝑖) ⊆ 𝐴) |
| 79 | 78 | exlimiv 1930 |
. . . . . 6
⊢
(∃𝑛𝜒 → ∀𝑖 ∈ dom 𝑓(𝑓‘𝑖) ⊆ 𝐴) |
| 80 | 8, 79 | sylbi 217 |
. . . . 5
⊢ (𝑓 ∈ 𝐵 → ∀𝑖 ∈ dom 𝑓(𝑓‘𝑖) ⊆ 𝐴) |
| 81 | | ss2iun 5010 |
. . . . . 6
⊢
(∀𝑖 ∈
dom 𝑓(𝑓‘𝑖) ⊆ 𝐴 → ∪
𝑖 ∈ dom 𝑓(𝑓‘𝑖) ⊆ ∪
𝑖 ∈ dom 𝑓 𝐴) |
| 82 | | bnj1143 34804 |
. . . . . 6
⊢ ∪ 𝑖 ∈ dom 𝑓 𝐴 ⊆ 𝐴 |
| 83 | 81, 82 | sstrdi 3996 |
. . . . 5
⊢
(∀𝑖 ∈
dom 𝑓(𝑓‘𝑖) ⊆ 𝐴 → ∪
𝑖 ∈ dom 𝑓(𝑓‘𝑖) ⊆ 𝐴) |
| 84 | 80, 83 | syl 17 |
. . . 4
⊢ (𝑓 ∈ 𝐵 → ∪
𝑖 ∈ dom 𝑓(𝑓‘𝑖) ⊆ 𝐴) |
| 85 | 6, 84 | mprg 3067 |
. . 3
⊢ ∪ 𝑓 ∈ 𝐵 ∪ 𝑖 ∈ dom 𝑓(𝑓‘𝑖) ⊆ ∪
𝑓 ∈ 𝐵 𝐴 |
| 86 | 4 | bnj1317 34835 |
. . . 4
⊢ (𝑤 ∈ 𝐵 → ∀𝑓 𝑤 ∈ 𝐵) |
| 87 | 86 | bnj1146 34805 |
. . 3
⊢ ∪ 𝑓 ∈ 𝐵 𝐴 ⊆ 𝐴 |
| 88 | 85, 87 | sstri 3993 |
. 2
⊢ ∪ 𝑓 ∈ 𝐵 ∪ 𝑖 ∈ dom 𝑓(𝑓‘𝑖) ⊆ 𝐴 |
| 89 | 5, 88 | eqsstri 4030 |
1
⊢
trCl(𝑋, 𝐴, 𝑅) ⊆ 𝐴 |