Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > HSE Home > Th. List > hvassi | Structured version Visualization version GIF version |
Description: Hilbert vector space associative law. (Contributed by NM, 3-Sep-1999.) (New usage is discouraged.) |
Ref | Expression |
---|---|
hvass.1 | ⊢ 𝐴 ∈ ℋ |
hvass.2 | ⊢ 𝐵 ∈ ℋ |
hvass.3 | ⊢ 𝐶 ∈ ℋ |
Ref | Expression |
---|---|
hvassi | ⊢ ((𝐴 +ℎ 𝐵) +ℎ 𝐶) = (𝐴 +ℎ (𝐵 +ℎ 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hvass.1 | . 2 ⊢ 𝐴 ∈ ℋ | |
2 | hvass.2 | . 2 ⊢ 𝐵 ∈ ℋ | |
3 | hvass.3 | . 2 ⊢ 𝐶 ∈ ℋ | |
4 | ax-hvass 29265 | . 2 ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → ((𝐴 +ℎ 𝐵) +ℎ 𝐶) = (𝐴 +ℎ (𝐵 +ℎ 𝐶))) | |
5 | 1, 2, 3, 4 | mp3an 1459 | 1 ⊢ ((𝐴 +ℎ 𝐵) +ℎ 𝐶) = (𝐴 +ℎ (𝐵 +ℎ 𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 ∈ wcel 2108 (class class class)co 7255 ℋchba 29182 +ℎ cva 29183 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-hvass 29265 |
This theorem depends on definitions: df-bi 206 df-an 396 df-3an 1087 |
This theorem is referenced by: hvadd12i 29320 hvsubeq0i 29326 norm3difi 29410 |
Copyright terms: Public domain | W3C validator |