![]() |
Metamath
Proof Explorer Theorem List (p. 304 of 473) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Color key: | ![]() (1-29860) |
![]() (29861-31383) |
![]() (31384-47242) |
Type | Label | Description |
---|---|---|
Statement | ||
Theorem | shless 30301 | Subset implies subset of subspace sum. (Contributed by Mario Carneiro, 15-May-2014.) (New usage is discouraged.) |
⊢ (((𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ∧ 𝐶 ∈ Sℋ ) ∧ 𝐴 ⊆ 𝐵) → (𝐴 +ℋ 𝐶) ⊆ (𝐵 +ℋ 𝐶)) | ||
Theorem | shlej1 30302 | Add disjunct to both sides of Hilbert subspace ordering. (Contributed by NM, 22-Jun-2004.) (Revised by Mario Carneiro, 15-May-2014.) (New usage is discouraged.) |
⊢ (((𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ∧ 𝐶 ∈ Sℋ ) ∧ 𝐴 ⊆ 𝐵) → (𝐴 ∨ℋ 𝐶) ⊆ (𝐵 ∨ℋ 𝐶)) | ||
Theorem | shlej2 30303 | Add disjunct to both sides of Hilbert subspace ordering. (Contributed by NM, 22-Jun-2004.) (New usage is discouraged.) |
⊢ (((𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ∧ 𝐶 ∈ Sℋ ) ∧ 𝐴 ⊆ 𝐵) → (𝐶 ∨ℋ 𝐴) ⊆ (𝐶 ∨ℋ 𝐵)) | ||
Theorem | shincli 30304 | Closure of intersection of two subspaces. (Contributed by NM, 19-Oct-1999.) (New usage is discouraged.) |
⊢ 𝐴 ∈ Sℋ & ⊢ 𝐵 ∈ Sℋ ⇒ ⊢ (𝐴 ∩ 𝐵) ∈ Sℋ | ||
Theorem | shscomi 30305 | Commutative law for subspace sum. (Contributed by NM, 17-Oct-1999.) (New usage is discouraged.) |
⊢ 𝐴 ∈ Sℋ & ⊢ 𝐵 ∈ Sℋ ⇒ ⊢ (𝐴 +ℋ 𝐵) = (𝐵 +ℋ 𝐴) | ||
Theorem | shsvai 30306 | Vector sum belongs to subspace sum. (Contributed by NM, 17-Oct-1999.) (New usage is discouraged.) |
⊢ 𝐴 ∈ Sℋ & ⊢ 𝐵 ∈ Sℋ ⇒ ⊢ ((𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐵) → (𝐶 +ℎ 𝐷) ∈ (𝐴 +ℋ 𝐵)) | ||
Theorem | shsel1i 30307 | A subspace sum contains a member of one of its subspaces. (Contributed by NM, 19-Oct-1999.) (New usage is discouraged.) |
⊢ 𝐴 ∈ Sℋ & ⊢ 𝐵 ∈ Sℋ ⇒ ⊢ (𝐶 ∈ 𝐴 → 𝐶 ∈ (𝐴 +ℋ 𝐵)) | ||
Theorem | shsel2i 30308 | A subspace sum contains a member of one of its subspaces. (Contributed by NM, 19-Oct-1999.) (New usage is discouraged.) |
⊢ 𝐴 ∈ Sℋ & ⊢ 𝐵 ∈ Sℋ ⇒ ⊢ (𝐶 ∈ 𝐵 → 𝐶 ∈ (𝐴 +ℋ 𝐵)) | ||
Theorem | shsvsi 30309 | Vector subtraction belongs to subspace sum. (Contributed by NM, 19-Oct-1999.) (New usage is discouraged.) |
⊢ 𝐴 ∈ Sℋ & ⊢ 𝐵 ∈ Sℋ ⇒ ⊢ ((𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐵) → (𝐶 −ℎ 𝐷) ∈ (𝐴 +ℋ 𝐵)) | ||
Theorem | shunssi 30310 | Union is smaller than subspace sum. (Contributed by NM, 18-Oct-1999.) (New usage is discouraged.) |
⊢ 𝐴 ∈ Sℋ & ⊢ 𝐵 ∈ Sℋ ⇒ ⊢ (𝐴 ∪ 𝐵) ⊆ (𝐴 +ℋ 𝐵) | ||
Theorem | shunssji 30311 | Union is smaller than Hilbert lattice join. (Contributed by NM, 11-Jun-2004.) (Revised by Mario Carneiro, 15-May-2014.) (New usage is discouraged.) |
⊢ 𝐴 ∈ Sℋ & ⊢ 𝐵 ∈ Sℋ ⇒ ⊢ (𝐴 ∪ 𝐵) ⊆ (𝐴 ∨ℋ 𝐵) | ||
Theorem | shsleji 30312 | Subspace sum is smaller than Hilbert lattice join. Remark in [Kalmbach] p. 65. (Contributed by NM, 19-Oct-1999.) (Revised by Mario Carneiro, 15-May-2014.) (New usage is discouraged.) |
⊢ 𝐴 ∈ Sℋ & ⊢ 𝐵 ∈ Sℋ ⇒ ⊢ (𝐴 +ℋ 𝐵) ⊆ (𝐴 ∨ℋ 𝐵) | ||
Theorem | shjcomi 30313 | Commutative law for join in Sℋ. (Contributed by NM, 19-Oct-1999.) (New usage is discouraged.) |
⊢ 𝐴 ∈ Sℋ & ⊢ 𝐵 ∈ Sℋ ⇒ ⊢ (𝐴 ∨ℋ 𝐵) = (𝐵 ∨ℋ 𝐴) | ||
Theorem | shsub1i 30314 | Subspace sum is an upper bound of its arguments. (Contributed by NM, 19-Oct-1999.) (New usage is discouraged.) |
⊢ 𝐴 ∈ Sℋ & ⊢ 𝐵 ∈ Sℋ ⇒ ⊢ 𝐴 ⊆ (𝐴 +ℋ 𝐵) | ||
Theorem | shsub2i 30315 | Subspace sum is an upper bound of its arguments. (Contributed by NM, 17-Dec-2004.) (New usage is discouraged.) |
⊢ 𝐴 ∈ Sℋ & ⊢ 𝐵 ∈ Sℋ ⇒ ⊢ 𝐴 ⊆ (𝐵 +ℋ 𝐴) | ||
Theorem | shub1i 30316 | Hilbert lattice join is an upper bound of two subspaces. (Contributed by NM, 19-Oct-1999.) (New usage is discouraged.) |
⊢ 𝐴 ∈ Sℋ & ⊢ 𝐵 ∈ Sℋ ⇒ ⊢ 𝐴 ⊆ (𝐴 ∨ℋ 𝐵) | ||
Theorem | shjcli 30317 | Closure of Cℋ join. (Contributed by NM, 19-Oct-1999.) (New usage is discouraged.) |
⊢ 𝐴 ∈ Sℋ & ⊢ 𝐵 ∈ Sℋ ⇒ ⊢ (𝐴 ∨ℋ 𝐵) ∈ Cℋ | ||
Theorem | shjshcli 30318 | Sℋ closure of join. (Contributed by NM, 5-May-2000.) (New usage is discouraged.) |
⊢ 𝐴 ∈ Sℋ & ⊢ 𝐵 ∈ Sℋ ⇒ ⊢ (𝐴 ∨ℋ 𝐵) ∈ Sℋ | ||
Theorem | shlessi 30319 | Subset implies subset of subspace sum. (Contributed by NM, 18-Nov-2000.) (New usage is discouraged.) |
⊢ 𝐴 ∈ Sℋ & ⊢ 𝐵 ∈ Sℋ & ⊢ 𝐶 ∈ Sℋ ⇒ ⊢ (𝐴 ⊆ 𝐵 → (𝐴 +ℋ 𝐶) ⊆ (𝐵 +ℋ 𝐶)) | ||
Theorem | shlej1i 30320 | Add disjunct to both sides of Hilbert subspace ordering. (Contributed by NM, 19-Oct-1999.) (Revised by Mario Carneiro, 15-May-2014.) (New usage is discouraged.) |
⊢ 𝐴 ∈ Sℋ & ⊢ 𝐵 ∈ Sℋ & ⊢ 𝐶 ∈ Sℋ ⇒ ⊢ (𝐴 ⊆ 𝐵 → (𝐴 ∨ℋ 𝐶) ⊆ (𝐵 ∨ℋ 𝐶)) | ||
Theorem | shlej2i 30321 | Add disjunct to both sides of Hilbert subspace ordering. (Contributed by NM, 19-Oct-1999.) (New usage is discouraged.) |
⊢ 𝐴 ∈ Sℋ & ⊢ 𝐵 ∈ Sℋ & ⊢ 𝐶 ∈ Sℋ ⇒ ⊢ (𝐴 ⊆ 𝐵 → (𝐶 ∨ℋ 𝐴) ⊆ (𝐶 ∨ℋ 𝐵)) | ||
Theorem | shslej 30322 | Subspace sum is smaller than subspace join. Remark in [Kalmbach] p. 65. (Contributed by NM, 12-Jul-2004.) (New usage is discouraged.) |
⊢ ((𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ) → (𝐴 +ℋ 𝐵) ⊆ (𝐴 ∨ℋ 𝐵)) | ||
Theorem | shincl 30323 | Closure of intersection of two subspaces. (Contributed by NM, 24-Jun-2004.) (New usage is discouraged.) |
⊢ ((𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ) → (𝐴 ∩ 𝐵) ∈ Sℋ ) | ||
Theorem | shub1 30324 | Hilbert lattice join is an upper bound of two subspaces. (Contributed by NM, 22-Jun-2004.) (New usage is discouraged.) |
⊢ ((𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ) → 𝐴 ⊆ (𝐴 ∨ℋ 𝐵)) | ||
Theorem | shub2 30325 | A subspace is a subset of its Hilbert lattice join with another. (Contributed by NM, 22-Jun-2004.) (New usage is discouraged.) |
⊢ ((𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ) → 𝐴 ⊆ (𝐵 ∨ℋ 𝐴)) | ||
Theorem | shsidmi 30326 | Idempotent law for Hilbert subspace sum. (Contributed by NM, 6-Jun-2004.) (New usage is discouraged.) |
⊢ 𝐴 ∈ Sℋ ⇒ ⊢ (𝐴 +ℋ 𝐴) = 𝐴 | ||
Theorem | shslubi 30327 | The least upper bound law for Hilbert subspace sum. (Contributed by NM, 15-Jun-2004.) (New usage is discouraged.) |
⊢ 𝐴 ∈ Sℋ & ⊢ 𝐵 ∈ Sℋ & ⊢ 𝐶 ∈ Sℋ ⇒ ⊢ ((𝐴 ⊆ 𝐶 ∧ 𝐵 ⊆ 𝐶) ↔ (𝐴 +ℋ 𝐵) ⊆ 𝐶) | ||
Theorem | shlesb1i 30328 | Hilbert lattice ordering in terms of subspace sum. (Contributed by NM, 23-Nov-2004.) (New usage is discouraged.) |
⊢ 𝐴 ∈ Sℋ & ⊢ 𝐵 ∈ Sℋ ⇒ ⊢ (𝐴 ⊆ 𝐵 ↔ (𝐴 +ℋ 𝐵) = 𝐵) | ||
Theorem | shsval2i 30329* | An alternate way to express subspace sum. (Contributed by NM, 25-Nov-2004.) (New usage is discouraged.) |
⊢ 𝐴 ∈ Sℋ & ⊢ 𝐵 ∈ Sℋ ⇒ ⊢ (𝐴 +ℋ 𝐵) = ∩ {𝑥 ∈ Sℋ ∣ (𝐴 ∪ 𝐵) ⊆ 𝑥} | ||
Theorem | shsval3i 30330 | An alternate way to express subspace sum. (Contributed by NM, 25-Nov-2004.) (New usage is discouraged.) |
⊢ 𝐴 ∈ Sℋ & ⊢ 𝐵 ∈ Sℋ ⇒ ⊢ (𝐴 +ℋ 𝐵) = (span‘(𝐴 ∪ 𝐵)) | ||
Theorem | shmodsi 30331 | The modular law holds for subspace sum. Similar to part of Theorem 16.9 of [MaedaMaeda] p. 70. (Contributed by NM, 23-Nov-2004.) (New usage is discouraged.) |
⊢ 𝐴 ∈ Sℋ & ⊢ 𝐵 ∈ Sℋ & ⊢ 𝐶 ∈ Sℋ ⇒ ⊢ (𝐴 ⊆ 𝐶 → ((𝐴 +ℋ 𝐵) ∩ 𝐶) ⊆ (𝐴 +ℋ (𝐵 ∩ 𝐶))) | ||
Theorem | shmodi 30332 | The modular law is implied by the closure of subspace sum. Part of proof of Theorem 16.9 of [MaedaMaeda] p. 70. (Contributed by NM, 23-Nov-2004.) (New usage is discouraged.) |
⊢ 𝐴 ∈ Sℋ & ⊢ 𝐵 ∈ Sℋ & ⊢ 𝐶 ∈ Sℋ ⇒ ⊢ (((𝐴 +ℋ 𝐵) = (𝐴 ∨ℋ 𝐵) ∧ 𝐴 ⊆ 𝐶) → ((𝐴 ∨ℋ 𝐵) ∩ 𝐶) ⊆ (𝐴 ∨ℋ (𝐵 ∩ 𝐶))) | ||
Theorem | pjhthlem1 30333* | Lemma for pjhth 30335. (Contributed by NM, 10-Oct-1999.) (Revised by Mario Carneiro, 15-May-2014.) (Proof shortened by AV, 10-Jul-2022.) (New usage is discouraged.) |
⊢ 𝐻 ∈ Cℋ & ⊢ (𝜑 → 𝐴 ∈ ℋ) & ⊢ (𝜑 → 𝐵 ∈ 𝐻) & ⊢ (𝜑 → 𝐶 ∈ 𝐻) & ⊢ (𝜑 → ∀𝑥 ∈ 𝐻 (normℎ‘(𝐴 −ℎ 𝐵)) ≤ (normℎ‘(𝐴 −ℎ 𝑥))) & ⊢ 𝑇 = (((𝐴 −ℎ 𝐵) ·ih 𝐶) / ((𝐶 ·ih 𝐶) + 1)) ⇒ ⊢ (𝜑 → ((𝐴 −ℎ 𝐵) ·ih 𝐶) = 0) | ||
Theorem | pjhthlem2 30334* | Lemma for pjhth 30335. (Contributed by NM, 10-Oct-1999.) (Revised by Mario Carneiro, 15-May-2014.) (New usage is discouraged.) |
⊢ 𝐻 ∈ Cℋ & ⊢ (𝜑 → 𝐴 ∈ ℋ) ⇒ ⊢ (𝜑 → ∃𝑥 ∈ 𝐻 ∃𝑦 ∈ (⊥‘𝐻)𝐴 = (𝑥 +ℎ 𝑦)) | ||
Theorem | pjhth 30335 | Projection Theorem: Any Hilbert space vector 𝐴 can be decomposed uniquely into a member 𝑥 of a closed subspace 𝐻 and a member 𝑦 of the complement of the subspace. Theorem 3.7(i) of [Beran] p. 102 (existence part). (Contributed by NM, 23-Oct-1999.) (Revised by Mario Carneiro, 14-May-2014.) (New usage is discouraged.) |
⊢ (𝐻 ∈ Cℋ → (𝐻 +ℋ (⊥‘𝐻)) = ℋ) | ||
Theorem | pjhtheu 30336* | Projection Theorem: Any Hilbert space vector 𝐴 can be decomposed uniquely into a member 𝑥 of a closed subspace 𝐻 and a member 𝑦 of the complement of the subspace. Theorem 3.7(i) of [Beran] p. 102. See pjhtheu2 30358 for the uniqueness of 𝑦. (Contributed by NM, 23-Oct-1999.) (Revised by Mario Carneiro, 14-May-2014.) (New usage is discouraged.) |
⊢ ((𝐻 ∈ Cℋ ∧ 𝐴 ∈ ℋ) → ∃!𝑥 ∈ 𝐻 ∃𝑦 ∈ (⊥‘𝐻)𝐴 = (𝑥 +ℎ 𝑦)) | ||
Definition | df-pjh 30337* | Define the projection function on a Hilbert space, as a mapping from the Hilbert lattice to a function on Hilbert space. Every closed subspace is associated with a unique projection function. Remark in [Kalmbach] p. 66, adopted as a definition. (projℎ‘𝐻)‘𝐴 is the projection of vector 𝐴 onto closed subspace 𝐻. Note that the range of projℎ is the set of all projection operators, so 𝑇 ∈ ran projℎ means that 𝑇 is a projection operator. (Contributed by NM, 23-Oct-1999.) (New usage is discouraged.) |
⊢ projℎ = (ℎ ∈ Cℋ ↦ (𝑥 ∈ ℋ ↦ (℩𝑧 ∈ ℎ ∃𝑦 ∈ (⊥‘ℎ)𝑥 = (𝑧 +ℎ 𝑦)))) | ||
Theorem | pjhfval 30338* | The value of the projection map. (Contributed by NM, 23-Oct-1999.) (Revised by Mario Carneiro, 15-Dec-2013.) (New usage is discouraged.) |
⊢ (𝐻 ∈ Cℋ → (projℎ‘𝐻) = (𝑥 ∈ ℋ ↦ (℩𝑧 ∈ 𝐻 ∃𝑦 ∈ (⊥‘𝐻)𝑥 = (𝑧 +ℎ 𝑦)))) | ||
Theorem | pjhval 30339* | Value of a projection. (Contributed by NM, 23-Oct-1999.) (Revised by Mario Carneiro, 15-Dec-2013.) (New usage is discouraged.) |
⊢ ((𝐻 ∈ Cℋ ∧ 𝐴 ∈ ℋ) → ((projℎ‘𝐻)‘𝐴) = (℩𝑥 ∈ 𝐻 ∃𝑦 ∈ (⊥‘𝐻)𝐴 = (𝑥 +ℎ 𝑦))) | ||
Theorem | pjpreeq 30340* | Equality with a projection. This version of pjeq 30341 does not assume the Axiom of Choice via pjhth 30335. (Contributed by Mario Carneiro, 15-May-2014.) (New usage is discouraged.) |
⊢ ((𝐻 ∈ Cℋ ∧ 𝐴 ∈ (𝐻 +ℋ (⊥‘𝐻))) → (((projℎ‘𝐻)‘𝐴) = 𝐵 ↔ (𝐵 ∈ 𝐻 ∧ ∃𝑥 ∈ (⊥‘𝐻)𝐴 = (𝐵 +ℎ 𝑥)))) | ||
Theorem | pjeq 30341* | Equality with a projection. (Contributed by NM, 20-Jan-2007.) (Revised by Mario Carneiro, 15-May-2014.) (New usage is discouraged.) |
⊢ ((𝐻 ∈ Cℋ ∧ 𝐴 ∈ ℋ) → (((projℎ‘𝐻)‘𝐴) = 𝐵 ↔ (𝐵 ∈ 𝐻 ∧ ∃𝑥 ∈ (⊥‘𝐻)𝐴 = (𝐵 +ℎ 𝑥)))) | ||
Theorem | axpjcl 30342 | Closure of a projection in its subspace. If we consider this together with axpjpj 30362 to be axioms, the need for the ax-hcompl 30144 can often be avoided for the kinds of theorems we are interested in here. An interesting project is to see how far we can go by using them in place of it. In particular, we can prove the orthomodular law pjomli 30377.) (Contributed by NM, 23-Oct-1999.) (Revised by Mario Carneiro, 15-May-2014.) (New usage is discouraged.) |
⊢ ((𝐻 ∈ Cℋ ∧ 𝐴 ∈ ℋ) → ((projℎ‘𝐻)‘𝐴) ∈ 𝐻) | ||
Theorem | pjhcl 30343 | Closure of a projection in Hilbert space. (Contributed by NM, 30-Oct-1999.) (New usage is discouraged.) |
⊢ ((𝐻 ∈ Cℋ ∧ 𝐴 ∈ ℋ) → ((projℎ‘𝐻)‘𝐴) ∈ ℋ) | ||
Theorem | omlsilem 30344 | Lemma for orthomodular law in the Hilbert lattice. (Contributed by NM, 14-Oct-1999.) (New usage is discouraged.) |
⊢ 𝐺 ∈ Sℋ & ⊢ 𝐻 ∈ Sℋ & ⊢ 𝐺 ⊆ 𝐻 & ⊢ (𝐻 ∩ (⊥‘𝐺)) = 0ℋ & ⊢ 𝐴 ∈ 𝐻 & ⊢ 𝐵 ∈ 𝐺 & ⊢ 𝐶 ∈ (⊥‘𝐺) ⇒ ⊢ (𝐴 = (𝐵 +ℎ 𝐶) → 𝐴 ∈ 𝐺) | ||
Theorem | omlsii 30345 | Subspace inference form of orthomodular law in the Hilbert lattice. (Contributed by NM, 14-Oct-1999.) (Revised by Mario Carneiro, 15-May-2014.) (New usage is discouraged.) |
⊢ 𝐴 ∈ Cℋ & ⊢ 𝐵 ∈ Sℋ & ⊢ 𝐴 ⊆ 𝐵 & ⊢ (𝐵 ∩ (⊥‘𝐴)) = 0ℋ ⇒ ⊢ 𝐴 = 𝐵 | ||
Theorem | omlsi 30346 | Subspace form of orthomodular law in the Hilbert lattice. Compare the orthomodular law in Theorem 2(ii) of [Kalmbach] p. 22. (Contributed by NM, 14-Oct-1999.) (New usage is discouraged.) |
⊢ 𝐴 ∈ Cℋ & ⊢ 𝐵 ∈ Sℋ ⇒ ⊢ ((𝐴 ⊆ 𝐵 ∧ (𝐵 ∩ (⊥‘𝐴)) = 0ℋ) → 𝐴 = 𝐵) | ||
Theorem | ococi 30347 | Complement of complement of a closed subspace of Hilbert space. Theorem 3.7(ii) of [Beran] p. 102. (Contributed by NM, 11-Oct-1999.) (New usage is discouraged.) |
⊢ 𝐴 ∈ Cℋ ⇒ ⊢ (⊥‘(⊥‘𝐴)) = 𝐴 | ||
Theorem | ococ 30348 | Complement of complement of a closed subspace of Hilbert space. Theorem 3.7(ii) of [Beran] p. 102. (Contributed by NM, 11-Oct-1999.) (New usage is discouraged.) |
⊢ (𝐴 ∈ Cℋ → (⊥‘(⊥‘𝐴)) = 𝐴) | ||
Theorem | dfch2 30349 | Alternate definition of the Hilbert lattice. (Contributed by NM, 8-Aug-2000.) (Revised by Mario Carneiro, 23-Dec-2013.) (New usage is discouraged.) |
⊢ Cℋ = {𝑥 ∈ 𝒫 ℋ ∣ (⊥‘(⊥‘𝑥)) = 𝑥} | ||
Theorem | ococin 30350* | The double complement is the smallest closed subspace containing a subset of Hilbert space. Remark 3.12(B) of [Beran] p. 107. (Contributed by NM, 8-Aug-2000.) (New usage is discouraged.) |
⊢ (𝐴 ⊆ ℋ → (⊥‘(⊥‘𝐴)) = ∩ {𝑥 ∈ Cℋ ∣ 𝐴 ⊆ 𝑥}) | ||
Theorem | hsupval2 30351* | Alternate definition of supremum of a subset of the Hilbert lattice. Definition of supremum in Proposition 1 of [Kalmbach] p. 65. We actually define it on any collection of Hilbert space subsets, not just the Hilbert lattice Cℋ, to allow more general theorems. (Contributed by NM, 13-Aug-2002.) (New usage is discouraged.) |
⊢ (𝐴 ⊆ 𝒫 ℋ → ( ∨ℋ ‘𝐴) = ∩ {𝑥 ∈ Cℋ ∣ ∪ 𝐴 ⊆ 𝑥}) | ||
Theorem | chsupval2 30352* | The value of the supremum of a set of closed subspaces of Hilbert space. Definition of supremum in Proposition 1 of [Kalmbach] p. 65. (Contributed by NM, 13-Aug-2002.) (New usage is discouraged.) |
⊢ (𝐴 ⊆ Cℋ → ( ∨ℋ ‘𝐴) = ∩ {𝑥 ∈ Cℋ ∣ ∪ 𝐴 ⊆ 𝑥}) | ||
Theorem | sshjval2 30353* | Value of join in the set of closed subspaces of Hilbert space Cℋ. (Contributed by NM, 1-Nov-2000.) (Revised by Mario Carneiro, 23-Dec-2013.) (New usage is discouraged.) |
⊢ ((𝐴 ⊆ ℋ ∧ 𝐵 ⊆ ℋ) → (𝐴 ∨ℋ 𝐵) = ∩ {𝑥 ∈ Cℋ ∣ (𝐴 ∪ 𝐵) ⊆ 𝑥}) | ||
Theorem | chsupid 30354* | A subspace is the supremum of all smaller subspaces. (Contributed by NM, 13-Aug-2002.) (New usage is discouraged.) |
⊢ (𝐴 ∈ Cℋ → ( ∨ℋ ‘{𝑥 ∈ Cℋ ∣ 𝑥 ⊆ 𝐴}) = 𝐴) | ||
Theorem | chsupsn 30355 | Value of supremum of subset of Cℋ on a singleton. (Contributed by NM, 13-Aug-2002.) (New usage is discouraged.) |
⊢ (𝐴 ∈ Cℋ → ( ∨ℋ ‘{𝐴}) = 𝐴) | ||
Theorem | shlub 30356 | Hilbert lattice join is the least upper bound (among Hilbert lattice elements) of two subspaces. (Contributed by NM, 15-Jun-2004.) (New usage is discouraged.) |
⊢ ((𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ∧ 𝐶 ∈ Cℋ ) → ((𝐴 ⊆ 𝐶 ∧ 𝐵 ⊆ 𝐶) ↔ (𝐴 ∨ℋ 𝐵) ⊆ 𝐶)) | ||
Theorem | shlubi 30357 | Hilbert lattice join is the least upper bound (among Hilbert lattice elements) of two subspaces. (Contributed by NM, 11-Jun-2004.) (New usage is discouraged.) |
⊢ 𝐴 ∈ Sℋ & ⊢ 𝐵 ∈ Sℋ & ⊢ 𝐶 ∈ Cℋ ⇒ ⊢ ((𝐴 ⊆ 𝐶 ∧ 𝐵 ⊆ 𝐶) ↔ (𝐴 ∨ℋ 𝐵) ⊆ 𝐶) | ||
Theorem | pjhtheu2 30358* | Uniqueness of 𝑦 for the projection theorem. (Contributed by NM, 6-Nov-1999.) (Revised by Mario Carneiro, 15-May-2014.) (New usage is discouraged.) |
⊢ ((𝐻 ∈ Cℋ ∧ 𝐴 ∈ ℋ) → ∃!𝑦 ∈ (⊥‘𝐻)∃𝑥 ∈ 𝐻 𝐴 = (𝑥 +ℎ 𝑦)) | ||
Theorem | pjcli 30359 | Closure of a projection in its subspace. (Contributed by NM, 7-Oct-2000.) (New usage is discouraged.) |
⊢ 𝐻 ∈ Cℋ ⇒ ⊢ (𝐴 ∈ ℋ → ((projℎ‘𝐻)‘𝐴) ∈ 𝐻) | ||
Theorem | pjhcli 30360 | Closure of a projection in Hilbert space. (Contributed by NM, 7-Oct-2000.) (New usage is discouraged.) |
⊢ 𝐻 ∈ Cℋ ⇒ ⊢ (𝐴 ∈ ℋ → ((projℎ‘𝐻)‘𝐴) ∈ ℋ) | ||
Theorem | pjpjpre 30361 | Decomposition of a vector into projections. This formulation of axpjpj 30362 avoids pjhth 30335. (Contributed by Mario Carneiro, 15-May-2014.) (New usage is discouraged.) |
⊢ (𝜑 → 𝐻 ∈ Cℋ ) & ⊢ (𝜑 → 𝐴 ∈ (𝐻 +ℋ (⊥‘𝐻))) ⇒ ⊢ (𝜑 → 𝐴 = (((projℎ‘𝐻)‘𝐴) +ℎ ((projℎ‘(⊥‘𝐻))‘𝐴))) | ||
Theorem | axpjpj 30362 | Decomposition of a vector into projections. See comment in axpjcl 30342. (Contributed by NM, 26-Oct-1999.) (Revised by Mario Carneiro, 15-May-2014.) (New usage is discouraged.) |
⊢ ((𝐻 ∈ Cℋ ∧ 𝐴 ∈ ℋ) → 𝐴 = (((projℎ‘𝐻)‘𝐴) +ℎ ((projℎ‘(⊥‘𝐻))‘𝐴))) | ||
Theorem | pjclii 30363 | Closure of a projection in its subspace. (Contributed by NM, 30-Oct-1999.) (New usage is discouraged.) |
⊢ 𝐻 ∈ Cℋ & ⊢ 𝐴 ∈ ℋ ⇒ ⊢ ((projℎ‘𝐻)‘𝐴) ∈ 𝐻 | ||
Theorem | pjhclii 30364 | Closure of a projection in Hilbert space. (Contributed by NM, 30-Oct-1999.) (New usage is discouraged.) |
⊢ 𝐻 ∈ Cℋ & ⊢ 𝐴 ∈ ℋ ⇒ ⊢ ((projℎ‘𝐻)‘𝐴) ∈ ℋ | ||
Theorem | pjpj0i 30365 | Decomposition of a vector into projections. (Contributed by NM, 26-Oct-1999.) (Revised by Mario Carneiro, 15-May-2014.) (New usage is discouraged.) |
⊢ 𝐻 ∈ Cℋ & ⊢ 𝐴 ∈ ℋ ⇒ ⊢ 𝐴 = (((projℎ‘𝐻)‘𝐴) +ℎ ((projℎ‘(⊥‘𝐻))‘𝐴)) | ||
Theorem | pjpji 30366 | Decomposition of a vector into projections. (Contributed by NM, 6-Nov-1999.) (New usage is discouraged.) |
⊢ 𝐻 ∈ Cℋ & ⊢ 𝐴 ∈ ℋ ⇒ ⊢ 𝐴 = (((projℎ‘𝐻)‘𝐴) +ℎ ((projℎ‘(⊥‘𝐻))‘𝐴)) | ||
Theorem | pjpjhth 30367* | Projection Theorem: Any Hilbert space vector 𝐴 can be decomposed into a member 𝑥 of a closed subspace 𝐻 and a member 𝑦 of the complement of the subspace. Theorem 3.7(i) of [Beran] p. 102 (existence part). (Contributed by NM, 6-Nov-1999.) (New usage is discouraged.) |
⊢ ((𝐻 ∈ Cℋ ∧ 𝐴 ∈ ℋ) → ∃𝑥 ∈ 𝐻 ∃𝑦 ∈ (⊥‘𝐻)𝐴 = (𝑥 +ℎ 𝑦)) | ||
Theorem | pjpjhthi 30368* | Projection Theorem: Any Hilbert space vector 𝐴 can be decomposed into a member 𝑥 of a closed subspace 𝐻 and a member 𝑦 of the complement of the subspace. Theorem 3.7(i) of [Beran] p. 102 (existence part). (Contributed by NM, 6-Nov-1999.) (New usage is discouraged.) |
⊢ 𝐴 ∈ ℋ & ⊢ 𝐻 ∈ Cℋ ⇒ ⊢ ∃𝑥 ∈ 𝐻 ∃𝑦 ∈ (⊥‘𝐻)𝐴 = (𝑥 +ℎ 𝑦) | ||
Theorem | pjop 30369 | Orthocomplement projection in terms of projection. (Contributed by NM, 5-Nov-1999.) (New usage is discouraged.) |
⊢ ((𝐻 ∈ Cℋ ∧ 𝐴 ∈ ℋ) → ((projℎ‘(⊥‘𝐻))‘𝐴) = (𝐴 −ℎ ((projℎ‘𝐻)‘𝐴))) | ||
Theorem | pjpo 30370 | Projection in terms of orthocomplement projection. (Contributed by NM, 5-Nov-1999.) (New usage is discouraged.) |
⊢ ((𝐻 ∈ Cℋ ∧ 𝐴 ∈ ℋ) → ((projℎ‘𝐻)‘𝐴) = (𝐴 −ℎ ((projℎ‘(⊥‘𝐻))‘𝐴))) | ||
Theorem | pjopi 30371 | Orthocomplement projection in terms of projection. (Contributed by NM, 31-Oct-1999.) (New usage is discouraged.) |
⊢ 𝐻 ∈ Cℋ & ⊢ 𝐴 ∈ ℋ ⇒ ⊢ ((projℎ‘(⊥‘𝐻))‘𝐴) = (𝐴 −ℎ ((projℎ‘𝐻)‘𝐴)) | ||
Theorem | pjpoi 30372 | Projection in terms of orthocomplement projection. (Contributed by NM, 31-Oct-1999.) (New usage is discouraged.) |
⊢ 𝐻 ∈ Cℋ & ⊢ 𝐴 ∈ ℋ ⇒ ⊢ ((projℎ‘𝐻)‘𝐴) = (𝐴 −ℎ ((projℎ‘(⊥‘𝐻))‘𝐴)) | ||
Theorem | pjoc1i 30373 | Projection of a vector in the orthocomplement of the projection subspace. (Contributed by NM, 27-Oct-1999.) (New usage is discouraged.) |
⊢ 𝐻 ∈ Cℋ & ⊢ 𝐴 ∈ ℋ ⇒ ⊢ (𝐴 ∈ 𝐻 ↔ ((projℎ‘(⊥‘𝐻))‘𝐴) = 0ℎ) | ||
Theorem | pjchi 30374 | Projection of a vector in the projection subspace. Lemma 4.4(ii) of [Beran] p. 111. (Contributed by NM, 27-Oct-1999.) (New usage is discouraged.) |
⊢ 𝐻 ∈ Cℋ & ⊢ 𝐴 ∈ ℋ ⇒ ⊢ (𝐴 ∈ 𝐻 ↔ ((projℎ‘𝐻)‘𝐴) = 𝐴) | ||
Theorem | pjoccl 30375 | The part of a vector that belongs to the orthocomplemented space. (Contributed by NM, 11-Apr-2006.) (New usage is discouraged.) |
⊢ ((𝐻 ∈ Cℋ ∧ 𝐴 ∈ ℋ) → (𝐴 −ℎ ((projℎ‘𝐻)‘𝐴)) ∈ (⊥‘𝐻)) | ||
Theorem | pjoc1 30376 | Projection of a vector in the orthocomplement of the projection subspace. (Contributed by NM, 6-Nov-1999.) (New usage is discouraged.) |
⊢ ((𝐻 ∈ Cℋ ∧ 𝐴 ∈ ℋ) → (𝐴 ∈ 𝐻 ↔ ((projℎ‘(⊥‘𝐻))‘𝐴) = 0ℎ)) | ||
Theorem | pjomli 30377 | Subspace form of orthomodular law in the Hilbert lattice. Compare the orthomodular law in Theorem 2(ii) of [Kalmbach] p. 22. Derived using projections; compare omlsi 30346. (Contributed by NM, 6-Nov-1999.) (New usage is discouraged.) |
⊢ 𝐴 ∈ Cℋ & ⊢ 𝐵 ∈ Sℋ ⇒ ⊢ ((𝐴 ⊆ 𝐵 ∧ (𝐵 ∩ (⊥‘𝐴)) = 0ℋ) → 𝐴 = 𝐵) | ||
Theorem | pjoml 30378 | Subspace form of orthomodular law in the Hilbert lattice. Compare the orthomodular law in Theorem 2(ii) of [Kalmbach] p. 22. Derived using projections; compare omlsi 30346. (Contributed by NM, 14-Jun-2006.) (New usage is discouraged.) |
⊢ (((𝐴 ∈ Cℋ ∧ 𝐵 ∈ Sℋ ) ∧ (𝐴 ⊆ 𝐵 ∧ (𝐵 ∩ (⊥‘𝐴)) = 0ℋ)) → 𝐴 = 𝐵) | ||
Theorem | pjococi 30379 | Proof of orthocomplement theorem using projections. Compare ococ 30348. (Contributed by NM, 5-Nov-1999.) (New usage is discouraged.) |
⊢ 𝐻 ∈ Cℋ ⇒ ⊢ (⊥‘(⊥‘𝐻)) = 𝐻 | ||
Theorem | pjoc2i 30380 | Projection of a vector in the orthocomplement of the projection subspace. Lemma 4.4(iii) of [Beran] p. 111. (Contributed by NM, 27-Oct-1999.) (New usage is discouraged.) |
⊢ 𝐻 ∈ Cℋ & ⊢ 𝐴 ∈ ℋ ⇒ ⊢ (𝐴 ∈ (⊥‘𝐻) ↔ ((projℎ‘𝐻)‘𝐴) = 0ℎ) | ||
Theorem | pjoc2 30381 | Projection of a vector in the orthocomplement of the projection subspace. Lemma 4.4(iii) of [Beran] p. 111. (Contributed by NM, 24-Apr-2006.) (New usage is discouraged.) |
⊢ ((𝐻 ∈ Cℋ ∧ 𝐴 ∈ ℋ) → (𝐴 ∈ (⊥‘𝐻) ↔ ((projℎ‘𝐻)‘𝐴) = 0ℎ)) | ||
Theorem | sh0le 30382 | The zero subspace is the smallest subspace. (Contributed by NM, 3-Jun-2004.) (New usage is discouraged.) |
⊢ (𝐴 ∈ Sℋ → 0ℋ ⊆ 𝐴) | ||
Theorem | ch0le 30383 | The zero subspace is the smallest member of Cℋ. (Contributed by NM, 14-Aug-2002.) (New usage is discouraged.) |
⊢ (𝐴 ∈ Cℋ → 0ℋ ⊆ 𝐴) | ||
Theorem | shle0 30384 | No subspace is smaller than the zero subspace. (Contributed by NM, 24-Nov-2004.) (New usage is discouraged.) |
⊢ (𝐴 ∈ Sℋ → (𝐴 ⊆ 0ℋ ↔ 𝐴 = 0ℋ)) | ||
Theorem | chle0 30385 | No Hilbert lattice element is smaller than zero. (Contributed by NM, 14-Aug-2002.) (New usage is discouraged.) |
⊢ (𝐴 ∈ Cℋ → (𝐴 ⊆ 0ℋ ↔ 𝐴 = 0ℋ)) | ||
Theorem | chnlen0 30386 | A Hilbert lattice element that is not a subset of another is nonzero. (Contributed by NM, 30-Jun-2004.) (New usage is discouraged.) |
⊢ (𝐵 ∈ Cℋ → (¬ 𝐴 ⊆ 𝐵 → ¬ 𝐴 = 0ℋ)) | ||
Theorem | ch0pss 30387 | The zero subspace is a proper subset of nonzero Hilbert lattice elements. (Contributed by NM, 9-Jun-2004.) (New usage is discouraged.) |
⊢ (𝐴 ∈ Cℋ → (0ℋ ⊊ 𝐴 ↔ 𝐴 ≠ 0ℋ)) | ||
Theorem | orthin 30388 | The intersection of orthogonal subspaces is the zero subspace. (Contributed by NM, 24-Jun-2004.) (New usage is discouraged.) |
⊢ ((𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ) → (𝐴 ⊆ (⊥‘𝐵) → (𝐴 ∩ 𝐵) = 0ℋ)) | ||
Theorem | ssjo 30389 | The lattice join of a subset with its orthocomplement is the whole space. (Contributed by Mario Carneiro, 15-May-2014.) (New usage is discouraged.) |
⊢ (𝐴 ⊆ ℋ → (𝐴 ∨ℋ (⊥‘𝐴)) = ℋ) | ||
Theorem | shne0i 30390* | A nonzero subspace has a nonzero vector. (Contributed by NM, 25-Feb-2006.) (New usage is discouraged.) |
⊢ 𝐴 ∈ Sℋ ⇒ ⊢ (𝐴 ≠ 0ℋ ↔ ∃𝑥 ∈ 𝐴 𝑥 ≠ 0ℎ) | ||
Theorem | shs0i 30391 | Hilbert subspace sum with the zero subspace. (Contributed by NM, 14-Jan-2005.) (New usage is discouraged.) |
⊢ 𝐴 ∈ Sℋ ⇒ ⊢ (𝐴 +ℋ 0ℋ) = 𝐴 | ||
Theorem | shs00i 30392 | Two subspaces are zero iff their join is zero. (Contributed by NM, 7-Aug-2004.) (New usage is discouraged.) |
⊢ 𝐴 ∈ Sℋ & ⊢ 𝐵 ∈ Sℋ ⇒ ⊢ ((𝐴 = 0ℋ ∧ 𝐵 = 0ℋ) ↔ (𝐴 +ℋ 𝐵) = 0ℋ) | ||
Theorem | ch0lei 30393 | The closed subspace zero is the smallest member of Cℋ. (Contributed by NM, 15-Oct-1999.) (New usage is discouraged.) |
⊢ 𝐴 ∈ Cℋ ⇒ ⊢ 0ℋ ⊆ 𝐴 | ||
Theorem | chle0i 30394 | No Hilbert closed subspace is smaller than zero. (Contributed by NM, 7-Apr-2001.) (New usage is discouraged.) |
⊢ 𝐴 ∈ Cℋ ⇒ ⊢ (𝐴 ⊆ 0ℋ ↔ 𝐴 = 0ℋ) | ||
Theorem | chne0i 30395* | A nonzero closed subspace has a nonzero vector. (Contributed by NM, 25-Feb-2006.) (New usage is discouraged.) |
⊢ 𝐴 ∈ Cℋ ⇒ ⊢ (𝐴 ≠ 0ℋ ↔ ∃𝑥 ∈ 𝐴 𝑥 ≠ 0ℎ) | ||
Theorem | chocini 30396 | Intersection of a closed subspace and its orthocomplement. Part of Proposition 1 of [Kalmbach] p. 65. (Contributed by NM, 11-Oct-1999.) (New usage is discouraged.) |
⊢ 𝐴 ∈ Cℋ ⇒ ⊢ (𝐴 ∩ (⊥‘𝐴)) = 0ℋ | ||
Theorem | chj0i 30397 | Join with lattice zero in Cℋ. (Contributed by NM, 15-Oct-1999.) (New usage is discouraged.) |
⊢ 𝐴 ∈ Cℋ ⇒ ⊢ (𝐴 ∨ℋ 0ℋ) = 𝐴 | ||
Theorem | chm1i 30398 | Meet with lattice one in Cℋ. (Contributed by NM, 24-Oct-1999.) (New usage is discouraged.) |
⊢ 𝐴 ∈ Cℋ ⇒ ⊢ (𝐴 ∩ ℋ) = 𝐴 | ||
Theorem | chjcli 30399 | Closure of Cℋ join. (Contributed by NM, 29-Jul-1999.) (New usage is discouraged.) |
⊢ 𝐴 ∈ Cℋ & ⊢ 𝐵 ∈ Cℋ ⇒ ⊢ (𝐴 ∨ℋ 𝐵) ∈ Cℋ | ||
Theorem | chsleji 30400 | Subspace sum is smaller than subspace join. Remark in [Kalmbach] p. 65. (Contributed by NM, 17-Oct-1999.) (New usage is discouraged.) |
⊢ 𝐴 ∈ Cℋ & ⊢ 𝐵 ∈ Cℋ ⇒ ⊢ (𝐴 +ℋ 𝐵) ⊆ (𝐴 ∨ℋ 𝐵) |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |