HomeHome Metamath Proof Explorer
Theorem List (p. 304 of 480)
< Previous  Next >
Bad symbols? Try the
GIF version.

Mirrors  >  Metamath Home Page  >  MPE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Color key:    Metamath Proof Explorer  Metamath Proof Explorer
(1-30435)
  Hilbert Space Explorer  Hilbert Space Explorer
(30436-31958)
  Users' Mathboxes  Users' Mathboxes
(31959-47941)
 

Theorem List for Metamath Proof Explorer - 30301-30400   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theorembloln 30301 A bounded operator is a linear operator. (Contributed by NM, 8-Dec-2007.) (New usage is discouraged.)
𝐿 = (π‘ˆ LnOp π‘Š)    &   π΅ = (π‘ˆ BLnOp π‘Š)    β‡’   ((π‘ˆ ∈ NrmCVec ∧ π‘Š ∈ NrmCVec ∧ 𝑇 ∈ 𝐡) β†’ 𝑇 ∈ 𝐿)
 
Theoremblof 30302 A bounded operator is an operator. (Contributed by NM, 8-Dec-2007.) (New usage is discouraged.)
𝑋 = (BaseSetβ€˜π‘ˆ)    &   π‘Œ = (BaseSetβ€˜π‘Š)    &   π΅ = (π‘ˆ BLnOp π‘Š)    β‡’   ((π‘ˆ ∈ NrmCVec ∧ π‘Š ∈ NrmCVec ∧ 𝑇 ∈ 𝐡) β†’ 𝑇:π‘‹βŸΆπ‘Œ)
 
Theoremnmblore 30303 The norm of a bounded operator is a real number. (Contributed by NM, 8-Dec-2007.) (New usage is discouraged.)
𝑋 = (BaseSetβ€˜π‘ˆ)    &   π‘Œ = (BaseSetβ€˜π‘Š)    &   π‘ = (π‘ˆ normOpOLD π‘Š)    &   π΅ = (π‘ˆ BLnOp π‘Š)    β‡’   ((π‘ˆ ∈ NrmCVec ∧ π‘Š ∈ NrmCVec ∧ 𝑇 ∈ 𝐡) β†’ (π‘β€˜π‘‡) ∈ ℝ)
 
Theorem0ofval 30304 The zero operator between two normed complex vector spaces. (Contributed by NM, 28-Nov-2007.) (Revised by Mario Carneiro, 16-Nov-2013.) (New usage is discouraged.)
𝑋 = (BaseSetβ€˜π‘ˆ)    &   π‘ = (0vecβ€˜π‘Š)    &   π‘‚ = (π‘ˆ 0op π‘Š)    β‡’   ((π‘ˆ ∈ NrmCVec ∧ π‘Š ∈ NrmCVec) β†’ 𝑂 = (𝑋 Γ— {𝑍}))
 
Theorem0oval 30305 Value of the zero operator. (Contributed by NM, 28-Nov-2007.) (New usage is discouraged.)
𝑋 = (BaseSetβ€˜π‘ˆ)    &   π‘ = (0vecβ€˜π‘Š)    &   π‘‚ = (π‘ˆ 0op π‘Š)    β‡’   ((π‘ˆ ∈ NrmCVec ∧ π‘Š ∈ NrmCVec ∧ 𝐴 ∈ 𝑋) β†’ (π‘‚β€˜π΄) = 𝑍)
 
Theorem0oo 30306 The zero operator is an operator. (Contributed by NM, 28-Nov-2007.) (New usage is discouraged.)
𝑋 = (BaseSetβ€˜π‘ˆ)    &   π‘Œ = (BaseSetβ€˜π‘Š)    &   π‘ = (π‘ˆ 0op π‘Š)    β‡’   ((π‘ˆ ∈ NrmCVec ∧ π‘Š ∈ NrmCVec) β†’ 𝑍:π‘‹βŸΆπ‘Œ)
 
Theorem0lno 30307 The zero operator is linear. (Contributed by NM, 28-Nov-2007.) (Revised by Mario Carneiro, 19-Nov-2013.) (New usage is discouraged.)
𝑍 = (π‘ˆ 0op π‘Š)    &   πΏ = (π‘ˆ LnOp π‘Š)    β‡’   ((π‘ˆ ∈ NrmCVec ∧ π‘Š ∈ NrmCVec) β†’ 𝑍 ∈ 𝐿)
 
Theoremnmoo0 30308 The operator norm of the zero operator. (Contributed by NM, 27-Nov-2007.) (New usage is discouraged.)
𝑁 = (π‘ˆ normOpOLD π‘Š)    &   π‘ = (π‘ˆ 0op π‘Š)    β‡’   ((π‘ˆ ∈ NrmCVec ∧ π‘Š ∈ NrmCVec) β†’ (π‘β€˜π‘) = 0)
 
Theorem0blo 30309 The zero operator is a bounded linear operator. (Contributed by NM, 8-Dec-2007.) (New usage is discouraged.)
𝑍 = (π‘ˆ 0op π‘Š)    &   π΅ = (π‘ˆ BLnOp π‘Š)    β‡’   ((π‘ˆ ∈ NrmCVec ∧ π‘Š ∈ NrmCVec) β†’ 𝑍 ∈ 𝐡)
 
Theoremnmlno0lem 30310 Lemma for nmlno0i 30311. (Contributed by NM, 28-Nov-2007.) (New usage is discouraged.)
𝑁 = (π‘ˆ normOpOLD π‘Š)    &   π‘ = (π‘ˆ 0op π‘Š)    &   πΏ = (π‘ˆ LnOp π‘Š)    &   π‘ˆ ∈ NrmCVec    &   π‘Š ∈ NrmCVec    &   π‘‡ ∈ 𝐿    &   π‘‹ = (BaseSetβ€˜π‘ˆ)    &   π‘Œ = (BaseSetβ€˜π‘Š)    &   π‘… = ( ·𝑠OLD β€˜π‘ˆ)    &   π‘† = ( ·𝑠OLD β€˜π‘Š)    &   π‘ƒ = (0vecβ€˜π‘ˆ)    &   π‘„ = (0vecβ€˜π‘Š)    &   πΎ = (normCVβ€˜π‘ˆ)    &   π‘€ = (normCVβ€˜π‘Š)    β‡’   ((π‘β€˜π‘‡) = 0 ↔ 𝑇 = 𝑍)
 
Theoremnmlno0i 30311 The norm of a linear operator is zero iff the operator is zero. (Contributed by NM, 6-Dec-2007.) (New usage is discouraged.)
𝑁 = (π‘ˆ normOpOLD π‘Š)    &   π‘ = (π‘ˆ 0op π‘Š)    &   πΏ = (π‘ˆ LnOp π‘Š)    &   π‘ˆ ∈ NrmCVec    &   π‘Š ∈ NrmCVec    β‡’   (𝑇 ∈ 𝐿 β†’ ((π‘β€˜π‘‡) = 0 ↔ 𝑇 = 𝑍))
 
Theoremnmlno0 30312 The norm of a linear operator is zero iff the operator is zero. (Contributed by NM, 24-Nov-2007.) (New usage is discouraged.)
𝑁 = (π‘ˆ normOpOLD π‘Š)    &   π‘ = (π‘ˆ 0op π‘Š)    &   πΏ = (π‘ˆ LnOp π‘Š)    β‡’   ((π‘ˆ ∈ NrmCVec ∧ π‘Š ∈ NrmCVec ∧ 𝑇 ∈ 𝐿) β†’ ((π‘β€˜π‘‡) = 0 ↔ 𝑇 = 𝑍))
 
Theoremnmlnoubi 30313* An upper bound for the operator norm of a linear operator, using only the properties of nonzero arguments. (Contributed by NM, 1-Jan-2008.) (New usage is discouraged.)
𝑋 = (BaseSetβ€˜π‘ˆ)    &   π‘ = (0vecβ€˜π‘ˆ)    &   πΎ = (normCVβ€˜π‘ˆ)    &   π‘€ = (normCVβ€˜π‘Š)    &   π‘ = (π‘ˆ normOpOLD π‘Š)    &   πΏ = (π‘ˆ LnOp π‘Š)    &   π‘ˆ ∈ NrmCVec    &   π‘Š ∈ NrmCVec    β‡’   ((𝑇 ∈ 𝐿 ∧ (𝐴 ∈ ℝ ∧ 0 ≀ 𝐴) ∧ βˆ€π‘₯ ∈ 𝑋 (π‘₯ β‰  𝑍 β†’ (π‘€β€˜(π‘‡β€˜π‘₯)) ≀ (𝐴 Β· (πΎβ€˜π‘₯)))) β†’ (π‘β€˜π‘‡) ≀ 𝐴)
 
Theoremnmlnogt0 30314 The norm of a nonzero linear operator is positive. (Contributed by NM, 10-Dec-2007.) (New usage is discouraged.)
𝑁 = (π‘ˆ normOpOLD π‘Š)    &   π‘ = (π‘ˆ 0op π‘Š)    &   πΏ = (π‘ˆ LnOp π‘Š)    β‡’   ((π‘ˆ ∈ NrmCVec ∧ π‘Š ∈ NrmCVec ∧ 𝑇 ∈ 𝐿) β†’ (𝑇 β‰  𝑍 ↔ 0 < (π‘β€˜π‘‡)))
 
Theoremlnon0 30315* The domain of a nonzero linear operator contains a nonzero vector. (Contributed by NM, 15-Dec-2007.) (New usage is discouraged.)
𝑋 = (BaseSetβ€˜π‘ˆ)    &   π‘ = (0vecβ€˜π‘ˆ)    &   π‘‚ = (π‘ˆ 0op π‘Š)    &   πΏ = (π‘ˆ LnOp π‘Š)    β‡’   (((π‘ˆ ∈ NrmCVec ∧ π‘Š ∈ NrmCVec ∧ 𝑇 ∈ 𝐿) ∧ 𝑇 β‰  𝑂) β†’ βˆƒπ‘₯ ∈ 𝑋 π‘₯ β‰  𝑍)
 
Theoremnmblolbii 30316 A lower bound for the norm of a bounded linear operator. (Contributed by NM, 7-Dec-2007.) (New usage is discouraged.)
𝑋 = (BaseSetβ€˜π‘ˆ)    &   πΏ = (normCVβ€˜π‘ˆ)    &   π‘€ = (normCVβ€˜π‘Š)    &   π‘ = (π‘ˆ normOpOLD π‘Š)    &   π΅ = (π‘ˆ BLnOp π‘Š)    &   π‘ˆ ∈ NrmCVec    &   π‘Š ∈ NrmCVec    &   π‘‡ ∈ 𝐡    β‡’   (𝐴 ∈ 𝑋 β†’ (π‘€β€˜(π‘‡β€˜π΄)) ≀ ((π‘β€˜π‘‡) Β· (πΏβ€˜π΄)))
 
Theoremnmblolbi 30317 A lower bound for the norm of a bounded linear operator. (Contributed by NM, 10-Dec-2007.) (New usage is discouraged.)
𝑋 = (BaseSetβ€˜π‘ˆ)    &   πΏ = (normCVβ€˜π‘ˆ)    &   π‘€ = (normCVβ€˜π‘Š)    &   π‘ = (π‘ˆ normOpOLD π‘Š)    &   π΅ = (π‘ˆ BLnOp π‘Š)    &   π‘ˆ ∈ NrmCVec    &   π‘Š ∈ NrmCVec    β‡’   ((𝑇 ∈ 𝐡 ∧ 𝐴 ∈ 𝑋) β†’ (π‘€β€˜(π‘‡β€˜π΄)) ≀ ((π‘β€˜π‘‡) Β· (πΏβ€˜π΄)))
 
Theoremisblo3i 30318* The predicate "is a bounded linear operator." Definition 2.7-1 of [Kreyszig] p. 91. (Contributed by NM, 11-Dec-2007.) (New usage is discouraged.)
𝑋 = (BaseSetβ€˜π‘ˆ)    &   π‘€ = (normCVβ€˜π‘ˆ)    &   π‘ = (normCVβ€˜π‘Š)    &   πΏ = (π‘ˆ LnOp π‘Š)    &   π΅ = (π‘ˆ BLnOp π‘Š)    &   π‘ˆ ∈ NrmCVec    &   π‘Š ∈ NrmCVec    β‡’   (𝑇 ∈ 𝐡 ↔ (𝑇 ∈ 𝐿 ∧ βˆƒπ‘₯ ∈ ℝ βˆ€π‘¦ ∈ 𝑋 (π‘β€˜(π‘‡β€˜π‘¦)) ≀ (π‘₯ Β· (π‘€β€˜π‘¦))))
 
Theoremblo3i 30319* Properties that determine a bounded linear operator. (Contributed by NM, 13-Jan-2008.) (New usage is discouraged.)
𝑋 = (BaseSetβ€˜π‘ˆ)    &   π‘€ = (normCVβ€˜π‘ˆ)    &   π‘ = (normCVβ€˜π‘Š)    &   πΏ = (π‘ˆ LnOp π‘Š)    &   π΅ = (π‘ˆ BLnOp π‘Š)    &   π‘ˆ ∈ NrmCVec    &   π‘Š ∈ NrmCVec    β‡’   ((𝑇 ∈ 𝐿 ∧ 𝐴 ∈ ℝ ∧ βˆ€π‘¦ ∈ 𝑋 (π‘β€˜(π‘‡β€˜π‘¦)) ≀ (𝐴 Β· (π‘€β€˜π‘¦))) β†’ 𝑇 ∈ 𝐡)
 
Theoremblometi 30320 Upper bound for the distance between the values of a bounded linear operator. (Contributed by NM, 11-Dec-2007.) (New usage is discouraged.)
𝑋 = (BaseSetβ€˜π‘ˆ)    &   π‘Œ = (BaseSetβ€˜π‘Š)    &   πΆ = (IndMetβ€˜π‘ˆ)    &   π· = (IndMetβ€˜π‘Š)    &   π‘ = (π‘ˆ normOpOLD π‘Š)    &   π΅ = (π‘ˆ BLnOp π‘Š)    &   π‘ˆ ∈ NrmCVec    &   π‘Š ∈ NrmCVec    β‡’   ((𝑇 ∈ 𝐡 ∧ 𝑃 ∈ 𝑋 ∧ 𝑄 ∈ 𝑋) β†’ ((π‘‡β€˜π‘ƒ)𝐷(π‘‡β€˜π‘„)) ≀ ((π‘β€˜π‘‡) Β· (𝑃𝐢𝑄)))
 
Theoremblocnilem 30321 Lemma for blocni 30322 and lnocni 30323. If a linear operator is continuous at any point, it is bounded. (Contributed by NM, 17-Dec-2007.) (Revised by Mario Carneiro, 10-Jan-2014.) (New usage is discouraged.)
𝐢 = (IndMetβ€˜π‘ˆ)    &   π· = (IndMetβ€˜π‘Š)    &   π½ = (MetOpenβ€˜πΆ)    &   πΎ = (MetOpenβ€˜π·)    &   πΏ = (π‘ˆ LnOp π‘Š)    &   π΅ = (π‘ˆ BLnOp π‘Š)    &   π‘ˆ ∈ NrmCVec    &   π‘Š ∈ NrmCVec    &   π‘‡ ∈ 𝐿    &   π‘‹ = (BaseSetβ€˜π‘ˆ)    β‡’   ((𝑃 ∈ 𝑋 ∧ 𝑇 ∈ ((𝐽 CnP 𝐾)β€˜π‘ƒ)) β†’ 𝑇 ∈ 𝐡)
 
Theoremblocni 30322 A linear operator is continuous iff it is bounded. Theorem 2.7-9(a) of [Kreyszig] p. 97. (Contributed by NM, 18-Dec-2007.) (Revised by Mario Carneiro, 10-Jan-2014.) (New usage is discouraged.)
𝐢 = (IndMetβ€˜π‘ˆ)    &   π· = (IndMetβ€˜π‘Š)    &   π½ = (MetOpenβ€˜πΆ)    &   πΎ = (MetOpenβ€˜π·)    &   πΏ = (π‘ˆ LnOp π‘Š)    &   π΅ = (π‘ˆ BLnOp π‘Š)    &   π‘ˆ ∈ NrmCVec    &   π‘Š ∈ NrmCVec    &   π‘‡ ∈ 𝐿    β‡’   (𝑇 ∈ (𝐽 Cn 𝐾) ↔ 𝑇 ∈ 𝐡)
 
Theoremlnocni 30323 If a linear operator is continuous at any point, it is continuous everywhere. Theorem 2.7-9(b) of [Kreyszig] p. 97. (Contributed by NM, 18-Dec-2007.) (New usage is discouraged.)
𝐢 = (IndMetβ€˜π‘ˆ)    &   π· = (IndMetβ€˜π‘Š)    &   π½ = (MetOpenβ€˜πΆ)    &   πΎ = (MetOpenβ€˜π·)    &   πΏ = (π‘ˆ LnOp π‘Š)    &   π΅ = (π‘ˆ BLnOp π‘Š)    &   π‘ˆ ∈ NrmCVec    &   π‘Š ∈ NrmCVec    &   π‘‡ ∈ 𝐿    &   π‘‹ = (BaseSetβ€˜π‘ˆ)    β‡’   ((𝑃 ∈ 𝑋 ∧ 𝑇 ∈ ((𝐽 CnP 𝐾)β€˜π‘ƒ)) β†’ 𝑇 ∈ (𝐽 Cn 𝐾))
 
Theoremblocn 30324 A linear operator is continuous iff it is bounded. Theorem 2.7-9(a) of [Kreyszig] p. 97. (Contributed by NM, 25-Dec-2007.) (New usage is discouraged.)
𝐢 = (IndMetβ€˜π‘ˆ)    &   π· = (IndMetβ€˜π‘Š)    &   π½ = (MetOpenβ€˜πΆ)    &   πΎ = (MetOpenβ€˜π·)    &   π΅ = (π‘ˆ BLnOp π‘Š)    &   π‘ˆ ∈ NrmCVec    &   π‘Š ∈ NrmCVec    &   πΏ = (π‘ˆ LnOp π‘Š)    β‡’   (𝑇 ∈ 𝐿 β†’ (𝑇 ∈ (𝐽 Cn 𝐾) ↔ 𝑇 ∈ 𝐡))
 
Theoremblocn2 30325 A bounded linear operator is continuous. (Contributed by NM, 25-Dec-2007.) (New usage is discouraged.)
𝐢 = (IndMetβ€˜π‘ˆ)    &   π· = (IndMetβ€˜π‘Š)    &   π½ = (MetOpenβ€˜πΆ)    &   πΎ = (MetOpenβ€˜π·)    &   π΅ = (π‘ˆ BLnOp π‘Š)    &   π‘ˆ ∈ NrmCVec    &   π‘Š ∈ NrmCVec    β‡’   (𝑇 ∈ 𝐡 β†’ 𝑇 ∈ (𝐽 Cn 𝐾))
 
Theoremajfval 30326* The adjoint function. (Contributed by NM, 25-Jan-2008.) (Revised by Mario Carneiro, 16-Nov-2013.) (New usage is discouraged.)
𝑋 = (BaseSetβ€˜π‘ˆ)    &   π‘Œ = (BaseSetβ€˜π‘Š)    &   π‘ƒ = (·𝑖OLDβ€˜π‘ˆ)    &   π‘„ = (·𝑖OLDβ€˜π‘Š)    &   π΄ = (π‘ˆadjπ‘Š)    β‡’   ((π‘ˆ ∈ NrmCVec ∧ π‘Š ∈ NrmCVec) β†’ 𝐴 = {βŸ¨π‘‘, π‘ βŸ© ∣ (𝑑:π‘‹βŸΆπ‘Œ ∧ 𝑠:π‘ŒβŸΆπ‘‹ ∧ βˆ€π‘₯ ∈ 𝑋 βˆ€π‘¦ ∈ π‘Œ ((π‘‘β€˜π‘₯)𝑄𝑦) = (π‘₯𝑃(π‘ β€˜π‘¦)))})
 
Theoremhmoval 30327* The set of Hermitian (self-adjoint) operators on a normed complex vector space. (Contributed by NM, 26-Jan-2008.) (Revised by Mario Carneiro, 16-Nov-2013.) (New usage is discouraged.)
𝐻 = (HmOpβ€˜π‘ˆ)    &   π΄ = (π‘ˆadjπ‘ˆ)    β‡’   (π‘ˆ ∈ NrmCVec β†’ 𝐻 = {𝑑 ∈ dom 𝐴 ∣ (π΄β€˜π‘‘) = 𝑑})
 
Theoremishmo 30328 The predicate "is a hermitian operator." (Contributed by NM, 26-Jan-2008.) (New usage is discouraged.)
𝐻 = (HmOpβ€˜π‘ˆ)    &   π΄ = (π‘ˆadjπ‘ˆ)    β‡’   (π‘ˆ ∈ NrmCVec β†’ (𝑇 ∈ 𝐻 ↔ (𝑇 ∈ dom 𝐴 ∧ (π΄β€˜π‘‡) = 𝑇)))
 
19.5  Inner product (pre-Hilbert) spaces
 
19.5.1  Definition and basic properties
 
Syntaxccphlo 30329 Extend class notation with the class of all complex inner product spaces (also called pre-Hilbert spaces).
class CPreHilOLD
 
Definitiondf-ph 30330* Define the class of all complex inner product spaces. An inner product space is a normed vector space whose norm satisfies the parallelogram law (a property that induces an inner product). Based on Exercise 4(b) of [ReedSimon] p. 63. The vector operation is 𝑔, the scalar product is 𝑠, and the norm is 𝑛. An inner product space is also called a pre-Hilbert space. (Contributed by NM, 2-Apr-2007.) (New usage is discouraged.)
CPreHilOLD = (NrmCVec ∩ {βŸ¨βŸ¨π‘”, π‘ βŸ©, π‘›βŸ© ∣ βˆ€π‘₯ ∈ ran π‘”βˆ€π‘¦ ∈ ran 𝑔(((π‘›β€˜(π‘₯𝑔𝑦))↑2) + ((π‘›β€˜(π‘₯𝑔(-1𝑠𝑦)))↑2)) = (2 Β· (((π‘›β€˜π‘₯)↑2) + ((π‘›β€˜π‘¦)↑2)))})
 
Theoremphnv 30331 Every complex inner product space is a normed complex vector space. (Contributed by NM, 2-Apr-2007.) (New usage is discouraged.)
(π‘ˆ ∈ CPreHilOLD β†’ π‘ˆ ∈ NrmCVec)
 
Theoremphrel 30332 The class of all complex inner product spaces is a relation. (Contributed by NM, 2-Apr-2007.) (New usage is discouraged.)
Rel CPreHilOLD
 
Theoremphnvi 30333 Every complex inner product space is a normed complex vector space. (Contributed by NM, 20-Nov-2007.) (New usage is discouraged.)
π‘ˆ ∈ CPreHilOLD    β‡’   π‘ˆ ∈ NrmCVec
 
Theoremisphg 30334* The predicate "is a complex inner product space." An inner product space is a normed vector space whose norm satisfies the parallelogram law. The vector (group) addition operation is 𝐺, the scalar product is 𝑆, and the norm is 𝑁. An inner product space is also called a pre-Hilbert space. (Contributed by NM, 2-Apr-2007.) (New usage is discouraged.)
𝑋 = ran 𝐺    β‡’   ((𝐺 ∈ 𝐴 ∧ 𝑆 ∈ 𝐡 ∧ 𝑁 ∈ 𝐢) β†’ (⟨⟨𝐺, π‘†βŸ©, π‘βŸ© ∈ CPreHilOLD ↔ (⟨⟨𝐺, π‘†βŸ©, π‘βŸ© ∈ NrmCVec ∧ βˆ€π‘₯ ∈ 𝑋 βˆ€π‘¦ ∈ 𝑋 (((π‘β€˜(π‘₯𝐺𝑦))↑2) + ((π‘β€˜(π‘₯𝐺(-1𝑆𝑦)))↑2)) = (2 Β· (((π‘β€˜π‘₯)↑2) + ((π‘β€˜π‘¦)↑2))))))
 
Theoremphop 30335 A complex inner product space in terms of ordered pair components. (Contributed by NM, 2-Apr-2007.) (New usage is discouraged.)
𝐺 = ( +𝑣 β€˜π‘ˆ)    &   π‘† = ( ·𝑠OLD β€˜π‘ˆ)    &   π‘ = (normCVβ€˜π‘ˆ)    β‡’   (π‘ˆ ∈ CPreHilOLD β†’ π‘ˆ = ⟨⟨𝐺, π‘†βŸ©, π‘βŸ©)
 
19.5.2  Examples of pre-Hilbert spaces
 
Theoremcncph 30336 The set of complex numbers is an inner product (pre-Hilbert) space. (Contributed by Steve Rodriguez, 28-Apr-2007.) (Revised by Mario Carneiro, 7-Nov-2013.) (New usage is discouraged.)
π‘ˆ = ⟨⟨ + , Β· ⟩, abs⟩    β‡’   π‘ˆ ∈ CPreHilOLD
 
Theoremelimph 30337 Hypothesis elimination lemma for complex inner product spaces to assist weak deduction theorem. (Contributed by NM, 27-Apr-2007.) (New usage is discouraged.)
𝑋 = (BaseSetβ€˜π‘ˆ)    &   π‘ = (0vecβ€˜π‘ˆ)    &   π‘ˆ ∈ CPreHilOLD    β‡’   if(𝐴 ∈ 𝑋, 𝐴, 𝑍) ∈ 𝑋
 
Theoremelimphu 30338 Hypothesis elimination lemma for complex inner product spaces to assist weak deduction theorem. (Contributed by NM, 6-May-2007.) (New usage is discouraged.)
if(π‘ˆ ∈ CPreHilOLD, π‘ˆ, ⟨⟨ + , Β· ⟩, abs⟩) ∈ CPreHilOLD
 
19.5.3  Properties of pre-Hilbert spaces
 
Theoremisph 30339* The predicate "is an inner product space." (Contributed by NM, 1-Feb-2008.) (New usage is discouraged.)
𝑋 = (BaseSetβ€˜π‘ˆ)    &   πΊ = ( +𝑣 β€˜π‘ˆ)    &   π‘€ = ( βˆ’π‘£ β€˜π‘ˆ)    &   π‘ = (normCVβ€˜π‘ˆ)    β‡’   (π‘ˆ ∈ CPreHilOLD ↔ (π‘ˆ ∈ NrmCVec ∧ βˆ€π‘₯ ∈ 𝑋 βˆ€π‘¦ ∈ 𝑋 (((π‘β€˜(π‘₯𝐺𝑦))↑2) + ((π‘β€˜(π‘₯𝑀𝑦))↑2)) = (2 Β· (((π‘β€˜π‘₯)↑2) + ((π‘β€˜π‘¦)↑2)))))
 
Theoremphpar2 30340 The parallelogram law for an inner product space. (Contributed by NM, 2-Apr-2007.) (New usage is discouraged.)
𝑋 = (BaseSetβ€˜π‘ˆ)    &   πΊ = ( +𝑣 β€˜π‘ˆ)    &   π‘€ = ( βˆ’π‘£ β€˜π‘ˆ)    &   π‘ = (normCVβ€˜π‘ˆ)    β‡’   ((π‘ˆ ∈ CPreHilOLD ∧ 𝐴 ∈ 𝑋 ∧ 𝐡 ∈ 𝑋) β†’ (((π‘β€˜(𝐴𝐺𝐡))↑2) + ((π‘β€˜(𝐴𝑀𝐡))↑2)) = (2 Β· (((π‘β€˜π΄)↑2) + ((π‘β€˜π΅)↑2))))
 
Theoremphpar 30341 The parallelogram law for an inner product space. (Contributed by NM, 2-Apr-2007.) (New usage is discouraged.)
𝑋 = (BaseSetβ€˜π‘ˆ)    &   πΊ = ( +𝑣 β€˜π‘ˆ)    &   π‘† = ( ·𝑠OLD β€˜π‘ˆ)    &   π‘ = (normCVβ€˜π‘ˆ)    β‡’   ((π‘ˆ ∈ CPreHilOLD ∧ 𝐴 ∈ 𝑋 ∧ 𝐡 ∈ 𝑋) β†’ (((π‘β€˜(𝐴𝐺𝐡))↑2) + ((π‘β€˜(𝐴𝐺(-1𝑆𝐡)))↑2)) = (2 Β· (((π‘β€˜π΄)↑2) + ((π‘β€˜π΅)↑2))))
 
Theoremip0i 30342 A slight variant of Equation 6.46 of [Ponnusamy] p. 362, where 𝐽 is either 1 or -1 to represent +-1. (Contributed by NM, 23-Apr-2007.) (New usage is discouraged.)
𝑋 = (BaseSetβ€˜π‘ˆ)    &   πΊ = ( +𝑣 β€˜π‘ˆ)    &   π‘† = ( ·𝑠OLD β€˜π‘ˆ)    &   π‘ƒ = (·𝑖OLDβ€˜π‘ˆ)    &   π‘ˆ ∈ CPreHilOLD    &   π΄ ∈ 𝑋    &   π΅ ∈ 𝑋    &   πΆ ∈ 𝑋    &   π‘ = (normCVβ€˜π‘ˆ)    &   π½ ∈ β„‚    β‡’   ((((π‘β€˜((𝐴𝐺𝐡)𝐺(𝐽𝑆𝐢)))↑2) βˆ’ ((π‘β€˜((𝐴𝐺𝐡)𝐺(-𝐽𝑆𝐢)))↑2)) + (((π‘β€˜((𝐴𝐺(-1𝑆𝐡))𝐺(𝐽𝑆𝐢)))↑2) βˆ’ ((π‘β€˜((𝐴𝐺(-1𝑆𝐡))𝐺(-𝐽𝑆𝐢)))↑2))) = (2 Β· (((π‘β€˜(𝐴𝐺(𝐽𝑆𝐢)))↑2) βˆ’ ((π‘β€˜(𝐴𝐺(-𝐽𝑆𝐢)))↑2)))
 
Theoremip1ilem 30343 Lemma for ip1i 30344. (Contributed by NM, 21-Apr-2007.) (New usage is discouraged.)
𝑋 = (BaseSetβ€˜π‘ˆ)    &   πΊ = ( +𝑣 β€˜π‘ˆ)    &   π‘† = ( ·𝑠OLD β€˜π‘ˆ)    &   π‘ƒ = (·𝑖OLDβ€˜π‘ˆ)    &   π‘ˆ ∈ CPreHilOLD    &   π΄ ∈ 𝑋    &   π΅ ∈ 𝑋    &   πΆ ∈ 𝑋    &   π‘ = (normCVβ€˜π‘ˆ)    &   π½ ∈ β„‚    β‡’   (((𝐴𝐺𝐡)𝑃𝐢) + ((𝐴𝐺(-1𝑆𝐡))𝑃𝐢)) = (2 Β· (𝐴𝑃𝐢))
 
Theoremip1i 30344 Equation 6.47 of [Ponnusamy] p. 362. (Contributed by NM, 27-Apr-2007.) (New usage is discouraged.)
𝑋 = (BaseSetβ€˜π‘ˆ)    &   πΊ = ( +𝑣 β€˜π‘ˆ)    &   π‘† = ( ·𝑠OLD β€˜π‘ˆ)    &   π‘ƒ = (·𝑖OLDβ€˜π‘ˆ)    &   π‘ˆ ∈ CPreHilOLD    &   π΄ ∈ 𝑋    &   π΅ ∈ 𝑋    &   πΆ ∈ 𝑋    β‡’   (((𝐴𝐺𝐡)𝑃𝐢) + ((𝐴𝐺(-1𝑆𝐡))𝑃𝐢)) = (2 Β· (𝐴𝑃𝐢))
 
Theoremip2i 30345 Equation 6.48 of [Ponnusamy] p. 362. (Contributed by NM, 26-Apr-2007.) (New usage is discouraged.)
𝑋 = (BaseSetβ€˜π‘ˆ)    &   πΊ = ( +𝑣 β€˜π‘ˆ)    &   π‘† = ( ·𝑠OLD β€˜π‘ˆ)    &   π‘ƒ = (·𝑖OLDβ€˜π‘ˆ)    &   π‘ˆ ∈ CPreHilOLD    &   π΄ ∈ 𝑋    &   π΅ ∈ 𝑋    β‡’   ((2𝑆𝐴)𝑃𝐡) = (2 Β· (𝐴𝑃𝐡))
 
Theoremipdirilem 30346 Lemma for ipdiri 30347. (Contributed by NM, 26-Apr-2007.) (New usage is discouraged.)
𝑋 = (BaseSetβ€˜π‘ˆ)    &   πΊ = ( +𝑣 β€˜π‘ˆ)    &   π‘† = ( ·𝑠OLD β€˜π‘ˆ)    &   π‘ƒ = (·𝑖OLDβ€˜π‘ˆ)    &   π‘ˆ ∈ CPreHilOLD    &   π΄ ∈ 𝑋    &   π΅ ∈ 𝑋    &   πΆ ∈ 𝑋    β‡’   ((𝐴𝐺𝐡)𝑃𝐢) = ((𝐴𝑃𝐢) + (𝐡𝑃𝐢))
 
Theoremipdiri 30347 Distributive law for inner product. Equation I3 of [Ponnusamy] p. 362. (Contributed by NM, 27-Apr-2007.) (New usage is discouraged.)
𝑋 = (BaseSetβ€˜π‘ˆ)    &   πΊ = ( +𝑣 β€˜π‘ˆ)    &   π‘† = ( ·𝑠OLD β€˜π‘ˆ)    &   π‘ƒ = (·𝑖OLDβ€˜π‘ˆ)    &   π‘ˆ ∈ CPreHilOLD    β‡’   ((𝐴 ∈ 𝑋 ∧ 𝐡 ∈ 𝑋 ∧ 𝐢 ∈ 𝑋) β†’ ((𝐴𝐺𝐡)𝑃𝐢) = ((𝐴𝑃𝐢) + (𝐡𝑃𝐢)))
 
Theoremipasslem1 30348 Lemma for ipassi 30358. Show the inner product associative law for nonnegative integers. (Contributed by NM, 27-Apr-2007.) (New usage is discouraged.)
𝑋 = (BaseSetβ€˜π‘ˆ)    &   πΊ = ( +𝑣 β€˜π‘ˆ)    &   π‘† = ( ·𝑠OLD β€˜π‘ˆ)    &   π‘ƒ = (·𝑖OLDβ€˜π‘ˆ)    &   π‘ˆ ∈ CPreHilOLD    &   π΅ ∈ 𝑋    β‡’   ((𝑁 ∈ β„•0 ∧ 𝐴 ∈ 𝑋) β†’ ((𝑁𝑆𝐴)𝑃𝐡) = (𝑁 Β· (𝐴𝑃𝐡)))
 
Theoremipasslem2 30349 Lemma for ipassi 30358. Show the inner product associative law for nonpositive integers. (Contributed by NM, 27-Apr-2007.) (New usage is discouraged.)
𝑋 = (BaseSetβ€˜π‘ˆ)    &   πΊ = ( +𝑣 β€˜π‘ˆ)    &   π‘† = ( ·𝑠OLD β€˜π‘ˆ)    &   π‘ƒ = (·𝑖OLDβ€˜π‘ˆ)    &   π‘ˆ ∈ CPreHilOLD    &   π΅ ∈ 𝑋    β‡’   ((𝑁 ∈ β„•0 ∧ 𝐴 ∈ 𝑋) β†’ ((-𝑁𝑆𝐴)𝑃𝐡) = (-𝑁 Β· (𝐴𝑃𝐡)))
 
Theoremipasslem3 30350 Lemma for ipassi 30358. Show the inner product associative law for all integers. (Contributed by NM, 27-Apr-2007.) (New usage is discouraged.)
𝑋 = (BaseSetβ€˜π‘ˆ)    &   πΊ = ( +𝑣 β€˜π‘ˆ)    &   π‘† = ( ·𝑠OLD β€˜π‘ˆ)    &   π‘ƒ = (·𝑖OLDβ€˜π‘ˆ)    &   π‘ˆ ∈ CPreHilOLD    &   π΅ ∈ 𝑋    β‡’   ((𝑁 ∈ β„€ ∧ 𝐴 ∈ 𝑋) β†’ ((𝑁𝑆𝐴)𝑃𝐡) = (𝑁 Β· (𝐴𝑃𝐡)))
 
Theoremipasslem4 30351 Lemma for ipassi 30358. Show the inner product associative law for positive integer reciprocals. (Contributed by NM, 27-Apr-2007.) (New usage is discouraged.)
𝑋 = (BaseSetβ€˜π‘ˆ)    &   πΊ = ( +𝑣 β€˜π‘ˆ)    &   π‘† = ( ·𝑠OLD β€˜π‘ˆ)    &   π‘ƒ = (·𝑖OLDβ€˜π‘ˆ)    &   π‘ˆ ∈ CPreHilOLD    &   π΅ ∈ 𝑋    β‡’   ((𝑁 ∈ β„• ∧ 𝐴 ∈ 𝑋) β†’ (((1 / 𝑁)𝑆𝐴)𝑃𝐡) = ((1 / 𝑁) Β· (𝐴𝑃𝐡)))
 
Theoremipasslem5 30352 Lemma for ipassi 30358. Show the inner product associative law for rational numbers. (Contributed by NM, 27-Apr-2007.) (New usage is discouraged.)
𝑋 = (BaseSetβ€˜π‘ˆ)    &   πΊ = ( +𝑣 β€˜π‘ˆ)    &   π‘† = ( ·𝑠OLD β€˜π‘ˆ)    &   π‘ƒ = (·𝑖OLDβ€˜π‘ˆ)    &   π‘ˆ ∈ CPreHilOLD    &   π΅ ∈ 𝑋    β‡’   ((𝐢 ∈ β„š ∧ 𝐴 ∈ 𝑋) β†’ ((𝐢𝑆𝐴)𝑃𝐡) = (𝐢 Β· (𝐴𝑃𝐡)))
 
Theoremipasslem7 30353* Lemma for ipassi 30358. Show that ((𝑀𝑆𝐴)𝑃𝐡) βˆ’ (𝑀 Β· (𝐴𝑃𝐡)) is continuous on ℝ. (Contributed by NM, 23-Aug-2007.) (Revised by Mario Carneiro, 6-May-2014.) (New usage is discouraged.)
𝑋 = (BaseSetβ€˜π‘ˆ)    &   πΊ = ( +𝑣 β€˜π‘ˆ)    &   π‘† = ( ·𝑠OLD β€˜π‘ˆ)    &   π‘ƒ = (·𝑖OLDβ€˜π‘ˆ)    &   π‘ˆ ∈ CPreHilOLD    &   π΄ ∈ 𝑋    &   π΅ ∈ 𝑋    &   πΉ = (𝑀 ∈ ℝ ↦ (((𝑀𝑆𝐴)𝑃𝐡) βˆ’ (𝑀 Β· (𝐴𝑃𝐡))))    &   π½ = (topGenβ€˜ran (,))    &   πΎ = (TopOpenβ€˜β„‚fld)    β‡’   πΉ ∈ (𝐽 Cn 𝐾)
 
Theoremipasslem8 30354* Lemma for ipassi 30358. By ipasslem5 30352, 𝐹 is 0 for all β„š; since it is continuous and β„š is dense in ℝ by qdensere2 24534, we conclude 𝐹 is 0 for all ℝ. (Contributed by NM, 24-Aug-2007.) (Revised by Mario Carneiro, 6-May-2014.) (New usage is discouraged.)
𝑋 = (BaseSetβ€˜π‘ˆ)    &   πΊ = ( +𝑣 β€˜π‘ˆ)    &   π‘† = ( ·𝑠OLD β€˜π‘ˆ)    &   π‘ƒ = (·𝑖OLDβ€˜π‘ˆ)    &   π‘ˆ ∈ CPreHilOLD    &   π΄ ∈ 𝑋    &   π΅ ∈ 𝑋    &   πΉ = (𝑀 ∈ ℝ ↦ (((𝑀𝑆𝐴)𝑃𝐡) βˆ’ (𝑀 Β· (𝐴𝑃𝐡))))    β‡’   πΉ:β„βŸΆ{0}
 
Theoremipasslem9 30355 Lemma for ipassi 30358. Conclude from ipasslem8 30354 the inner product associative law for real numbers. (Contributed by NM, 24-Aug-2007.) (New usage is discouraged.)
𝑋 = (BaseSetβ€˜π‘ˆ)    &   πΊ = ( +𝑣 β€˜π‘ˆ)    &   π‘† = ( ·𝑠OLD β€˜π‘ˆ)    &   π‘ƒ = (·𝑖OLDβ€˜π‘ˆ)    &   π‘ˆ ∈ CPreHilOLD    &   π΄ ∈ 𝑋    &   π΅ ∈ 𝑋    β‡’   (𝐢 ∈ ℝ β†’ ((𝐢𝑆𝐴)𝑃𝐡) = (𝐢 Β· (𝐴𝑃𝐡)))
 
Theoremipasslem10 30356 Lemma for ipassi 30358. Show the inner product associative law for the imaginary number i. (Contributed by NM, 24-Aug-2007.) (New usage is discouraged.)
𝑋 = (BaseSetβ€˜π‘ˆ)    &   πΊ = ( +𝑣 β€˜π‘ˆ)    &   π‘† = ( ·𝑠OLD β€˜π‘ˆ)    &   π‘ƒ = (·𝑖OLDβ€˜π‘ˆ)    &   π‘ˆ ∈ CPreHilOLD    &   π΄ ∈ 𝑋    &   π΅ ∈ 𝑋    &   π‘ = (normCVβ€˜π‘ˆ)    β‡’   ((i𝑆𝐴)𝑃𝐡) = (i Β· (𝐴𝑃𝐡))
 
Theoremipasslem11 30357 Lemma for ipassi 30358. Show the inner product associative law for all complex numbers. (Contributed by NM, 25-Aug-2007.) (New usage is discouraged.)
𝑋 = (BaseSetβ€˜π‘ˆ)    &   πΊ = ( +𝑣 β€˜π‘ˆ)    &   π‘† = ( ·𝑠OLD β€˜π‘ˆ)    &   π‘ƒ = (·𝑖OLDβ€˜π‘ˆ)    &   π‘ˆ ∈ CPreHilOLD    &   π΄ ∈ 𝑋    &   π΅ ∈ 𝑋    β‡’   (𝐢 ∈ β„‚ β†’ ((𝐢𝑆𝐴)𝑃𝐡) = (𝐢 Β· (𝐴𝑃𝐡)))
 
Theoremipassi 30358 Associative law for inner product. Equation I2 of [Ponnusamy] p. 363. (Contributed by NM, 25-Aug-2007.) (New usage is discouraged.)
𝑋 = (BaseSetβ€˜π‘ˆ)    &   πΊ = ( +𝑣 β€˜π‘ˆ)    &   π‘† = ( ·𝑠OLD β€˜π‘ˆ)    &   π‘ƒ = (·𝑖OLDβ€˜π‘ˆ)    &   π‘ˆ ∈ CPreHilOLD    β‡’   ((𝐴 ∈ β„‚ ∧ 𝐡 ∈ 𝑋 ∧ 𝐢 ∈ 𝑋) β†’ ((𝐴𝑆𝐡)𝑃𝐢) = (𝐴 Β· (𝐡𝑃𝐢)))
 
Theoremdipdir 30359 Distributive law for inner product. Equation I3 of [Ponnusamy] p. 362. (Contributed by NM, 25-Aug-2007.) (New usage is discouraged.)
𝑋 = (BaseSetβ€˜π‘ˆ)    &   πΊ = ( +𝑣 β€˜π‘ˆ)    &   π‘ƒ = (·𝑖OLDβ€˜π‘ˆ)    β‡’   ((π‘ˆ ∈ CPreHilOLD ∧ (𝐴 ∈ 𝑋 ∧ 𝐡 ∈ 𝑋 ∧ 𝐢 ∈ 𝑋)) β†’ ((𝐴𝐺𝐡)𝑃𝐢) = ((𝐴𝑃𝐢) + (𝐡𝑃𝐢)))
 
Theoremdipdi 30360 Distributive law for inner product. (Contributed by NM, 20-Nov-2007.) (New usage is discouraged.)
𝑋 = (BaseSetβ€˜π‘ˆ)    &   πΊ = ( +𝑣 β€˜π‘ˆ)    &   π‘ƒ = (·𝑖OLDβ€˜π‘ˆ)    β‡’   ((π‘ˆ ∈ CPreHilOLD ∧ (𝐴 ∈ 𝑋 ∧ 𝐡 ∈ 𝑋 ∧ 𝐢 ∈ 𝑋)) β†’ (𝐴𝑃(𝐡𝐺𝐢)) = ((𝐴𝑃𝐡) + (𝐴𝑃𝐢)))
 
Theoremip2dii 30361 Inner product of two sums. (Contributed by NM, 17-Apr-2008.) (New usage is discouraged.)
𝑋 = (BaseSetβ€˜π‘ˆ)    &   πΊ = ( +𝑣 β€˜π‘ˆ)    &   π‘ƒ = (·𝑖OLDβ€˜π‘ˆ)    &   π‘ˆ ∈ CPreHilOLD    &   π΄ ∈ 𝑋    &   π΅ ∈ 𝑋    &   πΆ ∈ 𝑋    &   π· ∈ 𝑋    β‡’   ((𝐴𝐺𝐡)𝑃(𝐢𝐺𝐷)) = (((𝐴𝑃𝐢) + (𝐡𝑃𝐷)) + ((𝐴𝑃𝐷) + (𝐡𝑃𝐢)))
 
Theoremdipass 30362 Associative law for inner product. Equation I2 of [Ponnusamy] p. 363. (Contributed by NM, 25-Aug-2007.) (New usage is discouraged.)
𝑋 = (BaseSetβ€˜π‘ˆ)    &   π‘† = ( ·𝑠OLD β€˜π‘ˆ)    &   π‘ƒ = (·𝑖OLDβ€˜π‘ˆ)    β‡’   ((π‘ˆ ∈ CPreHilOLD ∧ (𝐴 ∈ β„‚ ∧ 𝐡 ∈ 𝑋 ∧ 𝐢 ∈ 𝑋)) β†’ ((𝐴𝑆𝐡)𝑃𝐢) = (𝐴 Β· (𝐡𝑃𝐢)))
 
Theoremdipassr 30363 "Associative" law for second argument of inner product (compare dipass 30362). (Contributed by NM, 22-Nov-2007.) (New usage is discouraged.)
𝑋 = (BaseSetβ€˜π‘ˆ)    &   π‘† = ( ·𝑠OLD β€˜π‘ˆ)    &   π‘ƒ = (·𝑖OLDβ€˜π‘ˆ)    β‡’   ((π‘ˆ ∈ CPreHilOLD ∧ (𝐴 ∈ 𝑋 ∧ 𝐡 ∈ β„‚ ∧ 𝐢 ∈ 𝑋)) β†’ (𝐴𝑃(𝐡𝑆𝐢)) = ((βˆ—β€˜π΅) Β· (𝐴𝑃𝐢)))
 
Theoremdipassr2 30364 "Associative" law for inner product. Conjugate version of dipassr 30363. (Contributed by NM, 23-Nov-2007.) (New usage is discouraged.)
𝑋 = (BaseSetβ€˜π‘ˆ)    &   π‘† = ( ·𝑠OLD β€˜π‘ˆ)    &   π‘ƒ = (·𝑖OLDβ€˜π‘ˆ)    β‡’   ((π‘ˆ ∈ CPreHilOLD ∧ (𝐴 ∈ 𝑋 ∧ 𝐡 ∈ β„‚ ∧ 𝐢 ∈ 𝑋)) β†’ (𝐴𝑃((βˆ—β€˜π΅)𝑆𝐢)) = (𝐡 Β· (𝐴𝑃𝐢)))
 
Theoremdipsubdir 30365 Distributive law for inner product subtraction. (Contributed by NM, 20-Nov-2007.) (New usage is discouraged.)
𝑋 = (BaseSetβ€˜π‘ˆ)    &   π‘€ = ( βˆ’π‘£ β€˜π‘ˆ)    &   π‘ƒ = (·𝑖OLDβ€˜π‘ˆ)    β‡’   ((π‘ˆ ∈ CPreHilOLD ∧ (𝐴 ∈ 𝑋 ∧ 𝐡 ∈ 𝑋 ∧ 𝐢 ∈ 𝑋)) β†’ ((𝐴𝑀𝐡)𝑃𝐢) = ((𝐴𝑃𝐢) βˆ’ (𝐡𝑃𝐢)))
 
Theoremdipsubdi 30366 Distributive law for inner product subtraction. (Contributed by NM, 20-Nov-2007.) (New usage is discouraged.)
𝑋 = (BaseSetβ€˜π‘ˆ)    &   π‘€ = ( βˆ’π‘£ β€˜π‘ˆ)    &   π‘ƒ = (·𝑖OLDβ€˜π‘ˆ)    β‡’   ((π‘ˆ ∈ CPreHilOLD ∧ (𝐴 ∈ 𝑋 ∧ 𝐡 ∈ 𝑋 ∧ 𝐢 ∈ 𝑋)) β†’ (𝐴𝑃(𝐡𝑀𝐢)) = ((𝐴𝑃𝐡) βˆ’ (𝐴𝑃𝐢)))
 
Theorempythi 30367 The Pythagorean theorem for an arbitrary complex inner product (pre-Hilbert) space π‘ˆ. The square of the norm of the sum of two orthogonal vectors (i.e. whose inner product is 0) is the sum of the squares of their norms. Problem 2 in [Kreyszig] p. 135. (Contributed by NM, 17-Apr-2008.) (New usage is discouraged.)
𝑋 = (BaseSetβ€˜π‘ˆ)    &   πΊ = ( +𝑣 β€˜π‘ˆ)    &   π‘ = (normCVβ€˜π‘ˆ)    &   π‘ƒ = (·𝑖OLDβ€˜π‘ˆ)    &   π‘ˆ ∈ CPreHilOLD    &   π΄ ∈ 𝑋    &   π΅ ∈ 𝑋    β‡’   ((𝐴𝑃𝐡) = 0 β†’ ((π‘β€˜(𝐴𝐺𝐡))↑2) = (((π‘β€˜π΄)↑2) + ((π‘β€˜π΅)↑2)))
 
Theoremsiilem1 30368 Lemma for sii 30371. (Contributed by NM, 23-Nov-2007.) (New usage is discouraged.)
𝑋 = (BaseSetβ€˜π‘ˆ)    &   π‘ = (normCVβ€˜π‘ˆ)    &   π‘ƒ = (·𝑖OLDβ€˜π‘ˆ)    &   π‘ˆ ∈ CPreHilOLD    &   π΄ ∈ 𝑋    &   π΅ ∈ 𝑋    &   π‘€ = ( βˆ’π‘£ β€˜π‘ˆ)    &   π‘† = ( ·𝑠OLD β€˜π‘ˆ)    &   πΆ ∈ β„‚    &   (𝐢 Β· (𝐴𝑃𝐡)) ∈ ℝ    &   0 ≀ (𝐢 Β· (𝐴𝑃𝐡))    β‡’   ((𝐡𝑃𝐴) = (𝐢 Β· ((π‘β€˜π΅)↑2)) β†’ (βˆšβ€˜((𝐴𝑃𝐡) Β· (𝐢 Β· ((π‘β€˜π΅)↑2)))) ≀ ((π‘β€˜π΄) Β· (π‘β€˜π΅)))
 
Theoremsiilem2 30369 Lemma for sii 30371. (Contributed by NM, 24-Nov-2007.) (New usage is discouraged.)
𝑋 = (BaseSetβ€˜π‘ˆ)    &   π‘ = (normCVβ€˜π‘ˆ)    &   π‘ƒ = (·𝑖OLDβ€˜π‘ˆ)    &   π‘ˆ ∈ CPreHilOLD    &   π΄ ∈ 𝑋    &   π΅ ∈ 𝑋    &   π‘€ = ( βˆ’π‘£ β€˜π‘ˆ)    &   π‘† = ( ·𝑠OLD β€˜π‘ˆ)    β‡’   ((𝐢 ∈ β„‚ ∧ (𝐢 Β· (𝐴𝑃𝐡)) ∈ ℝ ∧ 0 ≀ (𝐢 Β· (𝐴𝑃𝐡))) β†’ ((𝐡𝑃𝐴) = (𝐢 Β· ((π‘β€˜π΅)↑2)) β†’ (βˆšβ€˜((𝐴𝑃𝐡) Β· (𝐢 Β· ((π‘β€˜π΅)↑2)))) ≀ ((π‘β€˜π΄) Β· (π‘β€˜π΅))))
 
Theoremsiii 30370 Inference from sii 30371. (Contributed by NM, 20-Nov-2007.) (New usage is discouraged.)
𝑋 = (BaseSetβ€˜π‘ˆ)    &   π‘ = (normCVβ€˜π‘ˆ)    &   π‘ƒ = (·𝑖OLDβ€˜π‘ˆ)    &   π‘ˆ ∈ CPreHilOLD    &   π΄ ∈ 𝑋    &   π΅ ∈ 𝑋    β‡’   (absβ€˜(𝐴𝑃𝐡)) ≀ ((π‘β€˜π΄) Β· (π‘β€˜π΅))
 
Theoremsii 30371 Obsolete version of ipcau 24987 as of 22-Sep-2024. Schwarz inequality. Part of Lemma 3-2.1(a) of [Kreyszig] p. 137. This is also called the Cauchy-Schwarz inequality by some authors and Bunjakovaskij-Cauchy-Schwarz inequality by others. See also Theorems bcseqi 30637, bcsiALT 30696, bcsiHIL 30697, csbren 25148. (Contributed by NM, 12-Jan-2008.) (Proof modification is discouraged.) (New usage is discouraged.)
𝑋 = (BaseSetβ€˜π‘ˆ)    &   π‘ = (normCVβ€˜π‘ˆ)    &   π‘ƒ = (·𝑖OLDβ€˜π‘ˆ)    &   π‘ˆ ∈ CPreHilOLD    β‡’   ((𝐴 ∈ 𝑋 ∧ 𝐡 ∈ 𝑋) β†’ (absβ€˜(𝐴𝑃𝐡)) ≀ ((π‘β€˜π΄) Β· (π‘β€˜π΅)))
 
Theoremipblnfi 30372* A function 𝐹 generated by varying the first argument of an inner product (with its second argument a fixed vector 𝐴) is a bounded linear functional, i.e. a bounded linear operator from the vector space to β„‚. (Contributed by NM, 12-Jan-2008.) (Revised by Mario Carneiro, 19-Nov-2013.) (New usage is discouraged.)
𝑋 = (BaseSetβ€˜π‘ˆ)    &   π‘ƒ = (·𝑖OLDβ€˜π‘ˆ)    &   π‘ˆ ∈ CPreHilOLD    &   πΆ = ⟨⟨ + , Β· ⟩, abs⟩    &   π΅ = (π‘ˆ BLnOp 𝐢)    &   πΉ = (π‘₯ ∈ 𝑋 ↦ (π‘₯𝑃𝐴))    β‡’   (𝐴 ∈ 𝑋 β†’ 𝐹 ∈ 𝐡)
 
Theoremip2eqi 30373* Two vectors are equal iff their inner products with all other vectors are equal. (Contributed by NM, 24-Jan-2008.) (New usage is discouraged.)
𝑋 = (BaseSetβ€˜π‘ˆ)    &   π‘ƒ = (·𝑖OLDβ€˜π‘ˆ)    &   π‘ˆ ∈ CPreHilOLD    β‡’   ((𝐴 ∈ 𝑋 ∧ 𝐡 ∈ 𝑋) β†’ (βˆ€π‘₯ ∈ 𝑋 (π‘₯𝑃𝐴) = (π‘₯𝑃𝐡) ↔ 𝐴 = 𝐡))
 
Theoremphoeqi 30374* A condition implying that two operators are equal. (Contributed by NM, 25-Jan-2008.) (New usage is discouraged.)
𝑋 = (BaseSetβ€˜π‘ˆ)    &   π‘ƒ = (·𝑖OLDβ€˜π‘ˆ)    &   π‘ˆ ∈ CPreHilOLD    β‡’   ((𝑆:π‘ŒβŸΆπ‘‹ ∧ 𝑇:π‘ŒβŸΆπ‘‹) β†’ (βˆ€π‘₯ ∈ 𝑋 βˆ€π‘¦ ∈ π‘Œ (π‘₯𝑃(π‘†β€˜π‘¦)) = (π‘₯𝑃(π‘‡β€˜π‘¦)) ↔ 𝑆 = 𝑇))
 
Theoremajmoi 30375* Every operator has at most one adjoint. (Contributed by NM, 25-Jan-2008.) (New usage is discouraged.)
𝑋 = (BaseSetβ€˜π‘ˆ)    &   π‘ƒ = (·𝑖OLDβ€˜π‘ˆ)    &   π‘ˆ ∈ CPreHilOLD    β‡’   βˆƒ*𝑠(𝑠:π‘ŒβŸΆπ‘‹ ∧ βˆ€π‘₯ ∈ 𝑋 βˆ€π‘¦ ∈ π‘Œ ((π‘‡β€˜π‘₯)𝑄𝑦) = (π‘₯𝑃(π‘ β€˜π‘¦)))
 
Theoremajfuni 30376 The adjoint function is a function. (Contributed by NM, 25-Jan-2008.) (New usage is discouraged.)
𝐴 = (π‘ˆadjπ‘Š)    &   π‘ˆ ∈ CPreHilOLD    &   π‘Š ∈ NrmCVec    β‡’   Fun 𝐴
 
Theoremajfun 30377 The adjoint function is a function. This is not immediately apparent from df-aj 30267 but results from the uniqueness shown by ajmoi 30375. (Contributed by NM, 26-Jan-2008.) (New usage is discouraged.)
𝐴 = (π‘ˆadjπ‘Š)    β‡’   ((π‘ˆ ∈ CPreHilOLD ∧ π‘Š ∈ NrmCVec) β†’ Fun 𝐴)
 
Theoremajval 30378* Value of the adjoint function. (Contributed by NM, 25-Jan-2008.) (New usage is discouraged.)
𝑋 = (BaseSetβ€˜π‘ˆ)    &   π‘Œ = (BaseSetβ€˜π‘Š)    &   π‘ƒ = (·𝑖OLDβ€˜π‘ˆ)    &   π‘„ = (·𝑖OLDβ€˜π‘Š)    &   π΄ = (π‘ˆadjπ‘Š)    β‡’   ((π‘ˆ ∈ CPreHilOLD ∧ π‘Š ∈ NrmCVec ∧ 𝑇:π‘‹βŸΆπ‘Œ) β†’ (π΄β€˜π‘‡) = (℩𝑠(𝑠:π‘ŒβŸΆπ‘‹ ∧ βˆ€π‘₯ ∈ 𝑋 βˆ€π‘¦ ∈ π‘Œ ((π‘‡β€˜π‘₯)𝑄𝑦) = (π‘₯𝑃(π‘ β€˜π‘¦)))))
 
19.6  Complex Banach spaces
 
19.6.1  Definition and basic properties
 
Syntaxccbn 30379 Extend class notation with the class of all complex Banach spaces.
class CBan
 
Definitiondf-cbn 30380 Define the class of all complex Banach spaces. (Contributed by NM, 5-Dec-2006.) Use df-bn 25085 instead. (New usage is discouraged.)
CBan = {𝑒 ∈ NrmCVec ∣ (IndMetβ€˜π‘’) ∈ (CMetβ€˜(BaseSetβ€˜π‘’))}
 
Theoremiscbn 30381 A complex Banach space is a normed complex vector space with a complete induced metric. (Contributed by NM, 5-Dec-2006.) Use isbn 25087 instead. (New usage is discouraged.)
𝑋 = (BaseSetβ€˜π‘ˆ)    &   π· = (IndMetβ€˜π‘ˆ)    β‡’   (π‘ˆ ∈ CBan ↔ (π‘ˆ ∈ NrmCVec ∧ 𝐷 ∈ (CMetβ€˜π‘‹)))
 
Theoremcbncms 30382 The induced metric on complex Banach space is complete. (Contributed by NM, 8-Sep-2007.) Use bncmet 25096 (or preferably bncms 25093) instead. (New usage is discouraged.)
𝑋 = (BaseSetβ€˜π‘ˆ)    &   π· = (IndMetβ€˜π‘ˆ)    β‡’   (π‘ˆ ∈ CBan β†’ 𝐷 ∈ (CMetβ€˜π‘‹))
 
Theorembnnv 30383 Every complex Banach space is a normed complex vector space. (Contributed by NM, 17-Mar-2007.) Use bnnvc 25089 instead. (New usage is discouraged.)
(π‘ˆ ∈ CBan β†’ π‘ˆ ∈ NrmCVec)
 
Theorembnrel 30384 The class of all complex Banach spaces is a relation. (Contributed by NM, 17-Mar-2007.) (New usage is discouraged.)
Rel CBan
 
Theorembnsscmcl 30385 A subspace of a Banach space is a Banach space iff it is closed in the norm-induced metric of the parent space. (Contributed by NM, 1-Feb-2008.) (New usage is discouraged.)
𝑋 = (BaseSetβ€˜π‘ˆ)    &   π· = (IndMetβ€˜π‘ˆ)    &   π½ = (MetOpenβ€˜π·)    &   π» = (SubSpβ€˜π‘ˆ)    &   π‘Œ = (BaseSetβ€˜π‘Š)    β‡’   ((π‘ˆ ∈ CBan ∧ π‘Š ∈ 𝐻) β†’ (π‘Š ∈ CBan ↔ π‘Œ ∈ (Clsdβ€˜π½)))
 
19.6.2  Examples of complex Banach spaces
 
Theoremcnbn 30386 The set of complex numbers is a complex Banach space. (Contributed by Steve Rodriguez, 4-Jan-2007.) (New usage is discouraged.)
π‘ˆ = ⟨⟨ + , Β· ⟩, abs⟩    β‡’   π‘ˆ ∈ CBan
 
19.6.3  Uniform Boundedness Theorem
 
Theoremubthlem1 30387* Lemma for ubth 30390. The function 𝐴 exhibits a countable collection of sets that are closed, being the inverse image under 𝑑 of the closed ball of radius π‘˜, and by assumption they cover 𝑋. Thus, by the Baire Category theorem bcth2 25079, for some 𝑛 the set π΄β€˜π‘› has an interior, meaning that there is a closed ball {𝑧 ∈ 𝑋 ∣ (𝑦𝐷𝑧) ≀ π‘Ÿ} in the set. (Contributed by Mario Carneiro, 11-Jan-2014.) (New usage is discouraged.)
𝑋 = (BaseSetβ€˜π‘ˆ)    &   π‘ = (normCVβ€˜π‘Š)    &   π· = (IndMetβ€˜π‘ˆ)    &   π½ = (MetOpenβ€˜π·)    &   π‘ˆ ∈ CBan    &   π‘Š ∈ NrmCVec    &   (πœ‘ β†’ 𝑇 βŠ† (π‘ˆ BLnOp π‘Š))    &   (πœ‘ β†’ βˆ€π‘₯ ∈ 𝑋 βˆƒπ‘ ∈ ℝ βˆ€π‘‘ ∈ 𝑇 (π‘β€˜(π‘‘β€˜π‘₯)) ≀ 𝑐)    &   π΄ = (π‘˜ ∈ β„• ↦ {𝑧 ∈ 𝑋 ∣ βˆ€π‘‘ ∈ 𝑇 (π‘β€˜(π‘‘β€˜π‘§)) ≀ π‘˜})    β‡’   (πœ‘ β†’ βˆƒπ‘› ∈ β„• βˆƒπ‘¦ ∈ 𝑋 βˆƒπ‘Ÿ ∈ ℝ+ {𝑧 ∈ 𝑋 ∣ (𝑦𝐷𝑧) ≀ π‘Ÿ} βŠ† (π΄β€˜π‘›))
 
Theoremubthlem2 30388* Lemma for ubth 30390. Given that there is a closed ball 𝐡(𝑃, 𝑅) in π΄β€˜πΎ, for any π‘₯ ∈ 𝐡(0, 1), we have 𝑃 + 𝑅 Β· π‘₯ ∈ 𝐡(𝑃, 𝑅) and 𝑃 ∈ 𝐡(𝑃, 𝑅), so both of these have norm(𝑑(𝑧)) ≀ 𝐾 and so norm(𝑑(π‘₯ )) ≀ (norm(𝑑(𝑃)) + norm(𝑑(𝑃 + 𝑅 Β· π‘₯))) / 𝑅 ≀ ( 𝐾 + 𝐾) / 𝑅, which is our desired uniform bound. (Contributed by Mario Carneiro, 11-Jan-2014.) (New usage is discouraged.)
𝑋 = (BaseSetβ€˜π‘ˆ)    &   π‘ = (normCVβ€˜π‘Š)    &   π· = (IndMetβ€˜π‘ˆ)    &   π½ = (MetOpenβ€˜π·)    &   π‘ˆ ∈ CBan    &   π‘Š ∈ NrmCVec    &   (πœ‘ β†’ 𝑇 βŠ† (π‘ˆ BLnOp π‘Š))    &   (πœ‘ β†’ βˆ€π‘₯ ∈ 𝑋 βˆƒπ‘ ∈ ℝ βˆ€π‘‘ ∈ 𝑇 (π‘β€˜(π‘‘β€˜π‘₯)) ≀ 𝑐)    &   π΄ = (π‘˜ ∈ β„• ↦ {𝑧 ∈ 𝑋 ∣ βˆ€π‘‘ ∈ 𝑇 (π‘β€˜(π‘‘β€˜π‘§)) ≀ π‘˜})    &   (πœ‘ β†’ 𝐾 ∈ β„•)    &   (πœ‘ β†’ 𝑃 ∈ 𝑋)    &   (πœ‘ β†’ 𝑅 ∈ ℝ+)    &   (πœ‘ β†’ {𝑧 ∈ 𝑋 ∣ (𝑃𝐷𝑧) ≀ 𝑅} βŠ† (π΄β€˜πΎ))    β‡’   (πœ‘ β†’ βˆƒπ‘‘ ∈ ℝ βˆ€π‘‘ ∈ 𝑇 ((π‘ˆ normOpOLD π‘Š)β€˜π‘‘) ≀ 𝑑)
 
Theoremubthlem3 30389* Lemma for ubth 30390. Prove the reverse implication, using nmblolbi 30317. (Contributed by Mario Carneiro, 11-Jan-2014.) (New usage is discouraged.)
𝑋 = (BaseSetβ€˜π‘ˆ)    &   π‘ = (normCVβ€˜π‘Š)    &   π· = (IndMetβ€˜π‘ˆ)    &   π½ = (MetOpenβ€˜π·)    &   π‘ˆ ∈ CBan    &   π‘Š ∈ NrmCVec    &   (πœ‘ β†’ 𝑇 βŠ† (π‘ˆ BLnOp π‘Š))    β‡’   (πœ‘ β†’ (βˆ€π‘₯ ∈ 𝑋 βˆƒπ‘ ∈ ℝ βˆ€π‘‘ ∈ 𝑇 (π‘β€˜(π‘‘β€˜π‘₯)) ≀ 𝑐 ↔ βˆƒπ‘‘ ∈ ℝ βˆ€π‘‘ ∈ 𝑇 ((π‘ˆ normOpOLD π‘Š)β€˜π‘‘) ≀ 𝑑))
 
Theoremubth 30390* Uniform Boundedness Theorem, also called the Banach-Steinhaus Theorem. Let 𝑇 be a collection of bounded linear operators on a Banach space. If, for every vector π‘₯, the norms of the operators' values are bounded, then the operators' norms are also bounded. Theorem 4.7-3 of [Kreyszig] p. 249. See also http://en.wikipedia.org/wiki/Uniform_boundedness_principle. (Contributed by NM, 7-Nov-2007.) (Proof shortened by Mario Carneiro, 11-Jan-2014.) (New usage is discouraged.)
𝑋 = (BaseSetβ€˜π‘ˆ)    &   π‘ = (normCVβ€˜π‘Š)    &   π‘€ = (π‘ˆ normOpOLD π‘Š)    β‡’   ((π‘ˆ ∈ CBan ∧ π‘Š ∈ NrmCVec ∧ 𝑇 βŠ† (π‘ˆ BLnOp π‘Š)) β†’ (βˆ€π‘₯ ∈ 𝑋 βˆƒπ‘ ∈ ℝ βˆ€π‘‘ ∈ 𝑇 (π‘β€˜(π‘‘β€˜π‘₯)) ≀ 𝑐 ↔ βˆƒπ‘‘ ∈ ℝ βˆ€π‘‘ ∈ 𝑇 (π‘€β€˜π‘‘) ≀ 𝑑))
 
19.6.4  Minimizing Vector Theorem
 
Theoremminvecolem1 30391* Lemma for minveco 30401. The set of all distances from points of π‘Œ to 𝐴 are a nonempty set of nonnegative reals. (Contributed by Mario Carneiro, 8-May-2014.) (New usage is discouraged.)
𝑋 = (BaseSetβ€˜π‘ˆ)    &   π‘€ = ( βˆ’π‘£ β€˜π‘ˆ)    &   π‘ = (normCVβ€˜π‘ˆ)    &   π‘Œ = (BaseSetβ€˜π‘Š)    &   (πœ‘ β†’ π‘ˆ ∈ CPreHilOLD)    &   (πœ‘ β†’ π‘Š ∈ ((SubSpβ€˜π‘ˆ) ∩ CBan))    &   (πœ‘ β†’ 𝐴 ∈ 𝑋)    &   π· = (IndMetβ€˜π‘ˆ)    &   π½ = (MetOpenβ€˜π·)    &   π‘… = ran (𝑦 ∈ π‘Œ ↦ (π‘β€˜(𝐴𝑀𝑦)))    β‡’   (πœ‘ β†’ (𝑅 βŠ† ℝ ∧ 𝑅 β‰  βˆ… ∧ βˆ€π‘€ ∈ 𝑅 0 ≀ 𝑀))
 
Theoremminvecolem2 30392* Lemma for minveco 30401. Any two points 𝐾 and 𝐿 in π‘Œ are close to each other if they are close to the infimum of distance to 𝐴. (Contributed by Mario Carneiro, 9-May-2014.) (Revised by AV, 4-Oct-2020.) (New usage is discouraged.)
𝑋 = (BaseSetβ€˜π‘ˆ)    &   π‘€ = ( βˆ’π‘£ β€˜π‘ˆ)    &   π‘ = (normCVβ€˜π‘ˆ)    &   π‘Œ = (BaseSetβ€˜π‘Š)    &   (πœ‘ β†’ π‘ˆ ∈ CPreHilOLD)    &   (πœ‘ β†’ π‘Š ∈ ((SubSpβ€˜π‘ˆ) ∩ CBan))    &   (πœ‘ β†’ 𝐴 ∈ 𝑋)    &   π· = (IndMetβ€˜π‘ˆ)    &   π½ = (MetOpenβ€˜π·)    &   π‘… = ran (𝑦 ∈ π‘Œ ↦ (π‘β€˜(𝐴𝑀𝑦)))    &   π‘† = inf(𝑅, ℝ, < )    &   (πœ‘ β†’ 𝐡 ∈ ℝ)    &   (πœ‘ β†’ 0 ≀ 𝐡)    &   (πœ‘ β†’ 𝐾 ∈ π‘Œ)    &   (πœ‘ β†’ 𝐿 ∈ π‘Œ)    &   (πœ‘ β†’ ((𝐴𝐷𝐾)↑2) ≀ ((𝑆↑2) + 𝐡))    &   (πœ‘ β†’ ((𝐴𝐷𝐿)↑2) ≀ ((𝑆↑2) + 𝐡))    β‡’   (πœ‘ β†’ ((𝐾𝐷𝐿)↑2) ≀ (4 Β· 𝐡))
 
Theoremminvecolem3 30393* Lemma for minveco 30401. The sequence formed by taking elements successively closer to the infimum is Cauchy. (Contributed by Mario Carneiro, 8-May-2014.) (Revised by AV, 4-Oct-2020.) (New usage is discouraged.)
𝑋 = (BaseSetβ€˜π‘ˆ)    &   π‘€ = ( βˆ’π‘£ β€˜π‘ˆ)    &   π‘ = (normCVβ€˜π‘ˆ)    &   π‘Œ = (BaseSetβ€˜π‘Š)    &   (πœ‘ β†’ π‘ˆ ∈ CPreHilOLD)    &   (πœ‘ β†’ π‘Š ∈ ((SubSpβ€˜π‘ˆ) ∩ CBan))    &   (πœ‘ β†’ 𝐴 ∈ 𝑋)    &   π· = (IndMetβ€˜π‘ˆ)    &   π½ = (MetOpenβ€˜π·)    &   π‘… = ran (𝑦 ∈ π‘Œ ↦ (π‘β€˜(𝐴𝑀𝑦)))    &   π‘† = inf(𝑅, ℝ, < )    &   (πœ‘ β†’ 𝐹:β„•βŸΆπ‘Œ)    &   ((πœ‘ ∧ 𝑛 ∈ β„•) β†’ ((𝐴𝐷(πΉβ€˜π‘›))↑2) ≀ ((𝑆↑2) + (1 / 𝑛)))    β‡’   (πœ‘ β†’ 𝐹 ∈ (Cauβ€˜π·))
 
Theoremminvecolem4a 30394* Lemma for minveco 30401. 𝐹 is convergent in the subspace topology on π‘Œ. (Contributed by Mario Carneiro, 7-May-2014.) (New usage is discouraged.)
𝑋 = (BaseSetβ€˜π‘ˆ)    &   π‘€ = ( βˆ’π‘£ β€˜π‘ˆ)    &   π‘ = (normCVβ€˜π‘ˆ)    &   π‘Œ = (BaseSetβ€˜π‘Š)    &   (πœ‘ β†’ π‘ˆ ∈ CPreHilOLD)    &   (πœ‘ β†’ π‘Š ∈ ((SubSpβ€˜π‘ˆ) ∩ CBan))    &   (πœ‘ β†’ 𝐴 ∈ 𝑋)    &   π· = (IndMetβ€˜π‘ˆ)    &   π½ = (MetOpenβ€˜π·)    &   π‘… = ran (𝑦 ∈ π‘Œ ↦ (π‘β€˜(𝐴𝑀𝑦)))    &   π‘† = inf(𝑅, ℝ, < )    &   (πœ‘ β†’ 𝐹:β„•βŸΆπ‘Œ)    &   ((πœ‘ ∧ 𝑛 ∈ β„•) β†’ ((𝐴𝐷(πΉβ€˜π‘›))↑2) ≀ ((𝑆↑2) + (1 / 𝑛)))    β‡’   (πœ‘ β†’ 𝐹(β‡π‘‘β€˜(MetOpenβ€˜(𝐷 β†Ύ (π‘Œ Γ— π‘Œ))))((β‡π‘‘β€˜(MetOpenβ€˜(𝐷 β†Ύ (π‘Œ Γ— π‘Œ))))β€˜πΉ))
 
Theoremminvecolem4b 30395* Lemma for minveco 30401. The convergent point of the cauchy sequence 𝐹 is a member of the base space. (Contributed by Mario Carneiro, 16-Jun-2014.) (New usage is discouraged.)
𝑋 = (BaseSetβ€˜π‘ˆ)    &   π‘€ = ( βˆ’π‘£ β€˜π‘ˆ)    &   π‘ = (normCVβ€˜π‘ˆ)    &   π‘Œ = (BaseSetβ€˜π‘Š)    &   (πœ‘ β†’ π‘ˆ ∈ CPreHilOLD)    &   (πœ‘ β†’ π‘Š ∈ ((SubSpβ€˜π‘ˆ) ∩ CBan))    &   (πœ‘ β†’ 𝐴 ∈ 𝑋)    &   π· = (IndMetβ€˜π‘ˆ)    &   π½ = (MetOpenβ€˜π·)    &   π‘… = ran (𝑦 ∈ π‘Œ ↦ (π‘β€˜(𝐴𝑀𝑦)))    &   π‘† = inf(𝑅, ℝ, < )    &   (πœ‘ β†’ 𝐹:β„•βŸΆπ‘Œ)    &   ((πœ‘ ∧ 𝑛 ∈ β„•) β†’ ((𝐴𝐷(πΉβ€˜π‘›))↑2) ≀ ((𝑆↑2) + (1 / 𝑛)))    β‡’   (πœ‘ β†’ ((β‡π‘‘β€˜π½)β€˜πΉ) ∈ 𝑋)
 
Theoremminvecolem4c 30396* Lemma for minveco 30401. The infimum of the distances to 𝐴 is a real number. (Contributed by Mario Carneiro, 16-Jun-2014.) (Revised by AV, 4-Oct-2020.) (New usage is discouraged.)
𝑋 = (BaseSetβ€˜π‘ˆ)    &   π‘€ = ( βˆ’π‘£ β€˜π‘ˆ)    &   π‘ = (normCVβ€˜π‘ˆ)    &   π‘Œ = (BaseSetβ€˜π‘Š)    &   (πœ‘ β†’ π‘ˆ ∈ CPreHilOLD)    &   (πœ‘ β†’ π‘Š ∈ ((SubSpβ€˜π‘ˆ) ∩ CBan))    &   (πœ‘ β†’ 𝐴 ∈ 𝑋)    &   π· = (IndMetβ€˜π‘ˆ)    &   π½ = (MetOpenβ€˜π·)    &   π‘… = ran (𝑦 ∈ π‘Œ ↦ (π‘β€˜(𝐴𝑀𝑦)))    &   π‘† = inf(𝑅, ℝ, < )    &   (πœ‘ β†’ 𝐹:β„•βŸΆπ‘Œ)    &   ((πœ‘ ∧ 𝑛 ∈ β„•) β†’ ((𝐴𝐷(πΉβ€˜π‘›))↑2) ≀ ((𝑆↑2) + (1 / 𝑛)))    β‡’   (πœ‘ β†’ 𝑆 ∈ ℝ)
 
Theoremminvecolem4 30397* Lemma for minveco 30401. The convergent point of the cauchy sequence 𝐹 attains the minimum distance, and so is closer to 𝐴 than any other point in π‘Œ. (Contributed by Mario Carneiro, 7-May-2014.) (Revised by AV, 4-Oct-2020.) (New usage is discouraged.)
𝑋 = (BaseSetβ€˜π‘ˆ)    &   π‘€ = ( βˆ’π‘£ β€˜π‘ˆ)    &   π‘ = (normCVβ€˜π‘ˆ)    &   π‘Œ = (BaseSetβ€˜π‘Š)    &   (πœ‘ β†’ π‘ˆ ∈ CPreHilOLD)    &   (πœ‘ β†’ π‘Š ∈ ((SubSpβ€˜π‘ˆ) ∩ CBan))    &   (πœ‘ β†’ 𝐴 ∈ 𝑋)    &   π· = (IndMetβ€˜π‘ˆ)    &   π½ = (MetOpenβ€˜π·)    &   π‘… = ran (𝑦 ∈ π‘Œ ↦ (π‘β€˜(𝐴𝑀𝑦)))    &   π‘† = inf(𝑅, ℝ, < )    &   (πœ‘ β†’ 𝐹:β„•βŸΆπ‘Œ)    &   ((πœ‘ ∧ 𝑛 ∈ β„•) β†’ ((𝐴𝐷(πΉβ€˜π‘›))↑2) ≀ ((𝑆↑2) + (1 / 𝑛)))    &   π‘‡ = (1 / (((((𝐴𝐷((β‡π‘‘β€˜π½)β€˜πΉ)) + 𝑆) / 2)↑2) βˆ’ (𝑆↑2)))    β‡’   (πœ‘ β†’ βˆƒπ‘₯ ∈ π‘Œ βˆ€π‘¦ ∈ π‘Œ (π‘β€˜(𝐴𝑀π‘₯)) ≀ (π‘β€˜(𝐴𝑀𝑦)))
 
Theoremminvecolem5 30398* Lemma for minveco 30401. Discharge the assumption about the sequence 𝐹 by applying countable choice ax-cc 10433. (Contributed by Mario Carneiro, 9-May-2014.) (Revised by AV, 4-Oct-2020.) (New usage is discouraged.)
𝑋 = (BaseSetβ€˜π‘ˆ)    &   π‘€ = ( βˆ’π‘£ β€˜π‘ˆ)    &   π‘ = (normCVβ€˜π‘ˆ)    &   π‘Œ = (BaseSetβ€˜π‘Š)    &   (πœ‘ β†’ π‘ˆ ∈ CPreHilOLD)    &   (πœ‘ β†’ π‘Š ∈ ((SubSpβ€˜π‘ˆ) ∩ CBan))    &   (πœ‘ β†’ 𝐴 ∈ 𝑋)    &   π· = (IndMetβ€˜π‘ˆ)    &   π½ = (MetOpenβ€˜π·)    &   π‘… = ran (𝑦 ∈ π‘Œ ↦ (π‘β€˜(𝐴𝑀𝑦)))    &   π‘† = inf(𝑅, ℝ, < )    β‡’   (πœ‘ β†’ βˆƒπ‘₯ ∈ π‘Œ βˆ€π‘¦ ∈ π‘Œ (π‘β€˜(𝐴𝑀π‘₯)) ≀ (π‘β€˜(𝐴𝑀𝑦)))
 
Theoremminvecolem6 30399* Lemma for minveco 30401. Any minimal point is less than 𝑆 away from 𝐴. (Contributed by Mario Carneiro, 9-May-2014.) (Revised by AV, 4-Oct-2020.) (New usage is discouraged.)
𝑋 = (BaseSetβ€˜π‘ˆ)    &   π‘€ = ( βˆ’π‘£ β€˜π‘ˆ)    &   π‘ = (normCVβ€˜π‘ˆ)    &   π‘Œ = (BaseSetβ€˜π‘Š)    &   (πœ‘ β†’ π‘ˆ ∈ CPreHilOLD)    &   (πœ‘ β†’ π‘Š ∈ ((SubSpβ€˜π‘ˆ) ∩ CBan))    &   (πœ‘ β†’ 𝐴 ∈ 𝑋)    &   π· = (IndMetβ€˜π‘ˆ)    &   π½ = (MetOpenβ€˜π·)    &   π‘… = ran (𝑦 ∈ π‘Œ ↦ (π‘β€˜(𝐴𝑀𝑦)))    &   π‘† = inf(𝑅, ℝ, < )    β‡’   ((πœ‘ ∧ π‘₯ ∈ π‘Œ) β†’ (((𝐴𝐷π‘₯)↑2) ≀ ((𝑆↑2) + 0) ↔ βˆ€π‘¦ ∈ π‘Œ (π‘β€˜(𝐴𝑀π‘₯)) ≀ (π‘β€˜(𝐴𝑀𝑦))))
 
Theoremminvecolem7 30400* Lemma for minveco 30401. Since any two minimal points are distance zero away from each other, the minimal point is unique. (Contributed by Mario Carneiro, 9-May-2014.) (New usage is discouraged.)
𝑋 = (BaseSetβ€˜π‘ˆ)    &   π‘€ = ( βˆ’π‘£ β€˜π‘ˆ)    &   π‘ = (normCVβ€˜π‘ˆ)    &   π‘Œ = (BaseSetβ€˜π‘Š)    &   (πœ‘ β†’ π‘ˆ ∈ CPreHilOLD)    &   (πœ‘ β†’ π‘Š ∈ ((SubSpβ€˜π‘ˆ) ∩ CBan))    &   (πœ‘ β†’ 𝐴 ∈ 𝑋)    &   π· = (IndMetβ€˜π‘ˆ)    &   π½ = (MetOpenβ€˜π·)    &   π‘… = ran (𝑦 ∈ π‘Œ ↦ (π‘β€˜(𝐴𝑀𝑦)))    &   π‘† = inf(𝑅, ℝ, < )    β‡’   (πœ‘ β†’ βˆƒ!π‘₯ ∈ π‘Œ βˆ€π‘¦ ∈ π‘Œ (π‘β€˜(𝐴𝑀π‘₯)) ≀ (π‘β€˜(𝐴𝑀𝑦)))
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14400 145 14401-14500 146 14501-14600 147 14601-14700 148 14701-14800 149 14801-14900 150 14901-15000 151 15001-15100 152 15101-15200 153 15201-15300 154 15301-15400 155 15401-15500 156 15501-15600 157 15601-15700 158 15701-15800 159 15801-15900 160 15901-16000 161 16001-16100 162 16101-16200 163 16201-16300 164 16301-16400 165 16401-16500 166 16501-16600 167 16601-16700 168 16701-16800 169 16801-16900 170 16901-17000 171 17001-17100 172 17101-17200 173 17201-17300 174 17301-17400 175 17401-17500 176 17501-17600 177 17601-17700 178 17701-17800 179 17801-17900 180 17901-18000 181 18001-18100 182 18101-18200 183 18201-18300 184 18301-18400 185 18401-18500 186 18501-18600 187 18601-18700 188 18701-18800 189 18801-18900 190 18901-19000 191 19001-19100 192 19101-19200 193 19201-19300 194 19301-19400 195 19401-19500 196 19501-19600 197 19601-19700 198 19701-19800 199 19801-19900 200 19901-20000 201 20001-20100 202 20101-20200 203 20201-20300 204 20301-20400 205 20401-20500 206 20501-20600 207 20601-20700 208 20701-20800 209 20801-20900 210 20901-21000 211 21001-21100 212 21101-21200 213 21201-21300 214 21301-21400 215 21401-21500 216 21501-21600 217 21601-21700 218 21701-21800 219 21801-21900 220 21901-22000 221 22001-22100 222 22101-22200 223 22201-22300 224 22301-22400 225 22401-22500 226 22501-22600 227 22601-22700 228 22701-22800 229 22801-22900 230 22901-23000 231 23001-23100 232 23101-23200 233 23201-23300 234 23301-23400 235 23401-23500 236 23501-23600 237 23601-23700 238 23701-23800 239 23801-23900 240 23901-24000 241 24001-24100 242 24101-24200 243 24201-24300 244 24301-24400 245 24401-24500 246 24501-24600 247 24601-24700 248 24701-24800 249 24801-24900 250 24901-25000 251 25001-25100 252 25101-25200 253 25201-25300 254 25301-25400 255 25401-25500 256 25501-25600 257 25601-25700 258 25701-25800 259 25801-25900 260 25901-26000 261 26001-26100 262 26101-26200 263 26201-26300 264 26301-26400 265 26401-26500 266 26501-26600 267 26601-26700 268 26701-26800 269 26801-26900 270 26901-27000 271 27001-27100 272 27101-27200 273 27201-27300 274 27301-27400 275 27401-27500 276 27501-27600 277 27601-27700 278 27701-27800 279 27801-27900 280 27901-28000 281 28001-28100 282 28101-28200 283 28201-28300 284 28301-28400 285 28401-28500 286 28501-28600 287 28601-28700 288 28701-28800 289 28801-28900 290 28901-29000 291 29001-29100 292 29101-29200 293 29201-29300 294 29301-29400 295 29401-29500 296 29501-29600 297 29601-29700 298 29701-29800 299 29801-29900 300 29901-30000 301 30001-30100 302 30101-30200 303 30201-30300 304 30301-30400 305 30401-30500 306 30501-30600 307 30601-30700 308 30701-30800 309 30801-30900 310 30901-31000 311 31001-31100 312 31101-31200 313 31201-31300 314 31301-31400 315 31401-31500 316 31501-31600 317 31601-31700 318 31701-31800 319 31801-31900 320 31901-32000 321 32001-32100 322 32101-32200 323 32201-32300 324 32301-32400 325 32401-32500 326 32501-32600 327 32601-32700 328 32701-32800 329 32801-32900 330 32901-33000 331 33001-33100 332 33101-33200 333 33201-33300 334 33301-33400 335 33401-33500 336 33501-33600 337 33601-33700 338 33701-33800 339 33801-33900 340 33901-34000 341 34001-34100 342 34101-34200 343 34201-34300 344 34301-34400 345 34401-34500 346 34501-34600 347 34601-34700 348 34701-34800 349 34801-34900 350 34901-35000 351 35001-35100 352 35101-35200 353 35201-35300 354 35301-35400 355 35401-35500 356 35501-35600 357 35601-35700 358 35701-35800 359 35801-35900 360 35901-36000 361 36001-36100 362 36101-36200 363 36201-36300 364 36301-36400 365 36401-36500 366 36501-36600 367 36601-36700 368 36701-36800 369 36801-36900 370 36901-37000 371 37001-37100 372 37101-37200 373 37201-37300 374 37301-37400 375 37401-37500 376 37501-37600 377 37601-37700 378 37701-37800 379 37801-37900 380 37901-38000 381 38001-38100 382 38101-38200 383 38201-38300 384 38301-38400 385 38401-38500 386 38501-38600 387 38601-38700 388 38701-38800 389 38801-38900 390 38901-39000 391 39001-39100 392 39101-39200 393 39201-39300 394 39301-39400 395 39401-39500 396 39501-39600 397 39601-39700 398 39701-39800 399 39801-39900 400 39901-40000 401 40001-40100 402 40101-40200 403 40201-40300 404 40301-40400 405 40401-40500 406 40501-40600 407 40601-40700 408 40701-40800 409 40801-40900 410 40901-41000 411 41001-41100 412 41101-41200 413 41201-41300 414 41301-41400 415 41401-41500 416 41501-41600 417 41601-41700 418 41701-41800 419 41801-41900 420 41901-42000 421 42001-42100 422 42101-42200 423 42201-42300 424 42301-42400 425 42401-42500 426 42501-42600 427 42601-42700 428 42701-42800 429 42801-42900 430 42901-43000 431 43001-43100 432 43101-43200 433 43201-43300 434 43301-43400 435 43401-43500 436 43501-43600 437 43601-43700 438 43701-43800 439 43801-43900 440 43901-44000 441 44001-44100 442 44101-44200 443 44201-44300 444 44301-44400 445 44401-44500 446 44501-44600 447 44601-44700 448 44701-44800 449 44801-44900 450 44901-45000 451 45001-45100 452 45101-45200 453 45201-45300 454 45301-45400 455 45401-45500 456 45501-45600 457 45601-45700 458 45701-45800 459 45801-45900 460 45901-46000 461 46001-46100 462 46101-46200 463 46201-46300 464 46301-46400 465 46401-46500 466 46501-46600 467 46601-46700 468 46701-46800 469 46801-46900 470 46901-47000 471 47001-47100 472 47101-47200 473 47201-47300 474 47301-47400 475 47401-47500 476 47501-47600 477 47601-47700 478 47701-47800 479 47801-47900 480 47901-47941
  Copyright terms: Public domain < Previous  Next >