![]() |
Metamath
Proof Explorer Theorem List (p. 304 of 437) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Color key: | ![]() (1-28351) |
![]() (28352-29876) |
![]() (29877-43667) |
Type | Label | Description |
---|---|---|
Statement | ||
Theorem | isinftm 30301* | Express 𝑥 is infinitesimal with respect to 𝑦 for a structure 𝑊. (Contributed by Thierry Arnoux, 30-Jan-2018.) |
⊢ 𝐵 = (Base‘𝑊) & ⊢ 0 = (0g‘𝑊) & ⊢ · = (.g‘𝑊) & ⊢ < = (lt‘𝑊) ⇒ ⊢ ((𝑊 ∈ 𝑉 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋(⋘‘𝑊)𝑌 ↔ ( 0 < 𝑋 ∧ ∀𝑛 ∈ ℕ (𝑛 · 𝑋) < 𝑌))) | ||
Theorem | isarchi 30302* | Express the predicate "𝑊 is Archimedean ". (Contributed by Thierry Arnoux, 30-Jan-2018.) |
⊢ 𝐵 = (Base‘𝑊) & ⊢ 0 = (0g‘𝑊) & ⊢ < = (⋘‘𝑊) ⇒ ⊢ (𝑊 ∈ 𝑉 → (𝑊 ∈ Archi ↔ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ¬ 𝑥 < 𝑦)) | ||
Theorem | pnfinf 30303 | Plus infinity is an infinite for the completed real line, as any real number is infinitesimal compared to it. (Contributed by Thierry Arnoux, 1-Feb-2018.) |
⊢ (𝐴 ∈ ℝ+ → 𝐴(⋘‘ℝ*𝑠)+∞) | ||
Theorem | xrnarchi 30304 | The completed real line is not Archimedean. (Contributed by Thierry Arnoux, 1-Feb-2018.) |
⊢ ¬ ℝ*𝑠 ∈ Archi | ||
Theorem | isarchi2 30305* | Alternative way to express the predicate "𝑊 is Archimedean ", for Tosets. (Contributed by Thierry Arnoux, 30-Jan-2018.) |
⊢ 𝐵 = (Base‘𝑊) & ⊢ 0 = (0g‘𝑊) & ⊢ · = (.g‘𝑊) & ⊢ ≤ = (le‘𝑊) & ⊢ < = (lt‘𝑊) ⇒ ⊢ ((𝑊 ∈ Toset ∧ 𝑊 ∈ Mnd) → (𝑊 ∈ Archi ↔ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ( 0 < 𝑥 → ∃𝑛 ∈ ℕ 𝑦 ≤ (𝑛 · 𝑥)))) | ||
Theorem | submarchi 30306 | A submonoid is archimedean. (Contributed by Thierry Arnoux, 16-Sep-2018.) |
⊢ (((𝑊 ∈ Toset ∧ 𝑊 ∈ Archi) ∧ 𝐴 ∈ (SubMnd‘𝑊)) → (𝑊 ↾s 𝐴) ∈ Archi) | ||
Theorem | isarchi3 30307* | This is the usual definition of the Archimedean property for an ordered group. (Contributed by Thierry Arnoux, 30-Jan-2018.) |
⊢ 𝐵 = (Base‘𝑊) & ⊢ 0 = (0g‘𝑊) & ⊢ < = (lt‘𝑊) & ⊢ · = (.g‘𝑊) ⇒ ⊢ (𝑊 ∈ oGrp → (𝑊 ∈ Archi ↔ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ( 0 < 𝑥 → ∃𝑛 ∈ ℕ 𝑦 < (𝑛 · 𝑥)))) | ||
Theorem | archirng 30308* | Property of Archimedean ordered groups, framing positive 𝑌 between multiples of 𝑋. (Contributed by Thierry Arnoux, 12-Apr-2018.) |
⊢ 𝐵 = (Base‘𝑊) & ⊢ 0 = (0g‘𝑊) & ⊢ < = (lt‘𝑊) & ⊢ ≤ = (le‘𝑊) & ⊢ · = (.g‘𝑊) & ⊢ (𝜑 → 𝑊 ∈ oGrp) & ⊢ (𝜑 → 𝑊 ∈ Archi) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) & ⊢ (𝜑 → 0 < 𝑋) & ⊢ (𝜑 → 0 < 𝑌) ⇒ ⊢ (𝜑 → ∃𝑛 ∈ ℕ0 ((𝑛 · 𝑋) < 𝑌 ∧ 𝑌 ≤ ((𝑛 + 1) · 𝑋))) | ||
Theorem | archirngz 30309* | Property of Archimedean left and right ordered groups. (Contributed by Thierry Arnoux, 6-May-2018.) |
⊢ 𝐵 = (Base‘𝑊) & ⊢ 0 = (0g‘𝑊) & ⊢ < = (lt‘𝑊) & ⊢ ≤ = (le‘𝑊) & ⊢ · = (.g‘𝑊) & ⊢ (𝜑 → 𝑊 ∈ oGrp) & ⊢ (𝜑 → 𝑊 ∈ Archi) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) & ⊢ (𝜑 → 0 < 𝑋) & ⊢ (𝜑 → (oppg‘𝑊) ∈ oGrp) ⇒ ⊢ (𝜑 → ∃𝑛 ∈ ℤ ((𝑛 · 𝑋) < 𝑌 ∧ 𝑌 ≤ ((𝑛 + 1) · 𝑋))) | ||
Theorem | archiexdiv 30310* | In an Archimedean group, given two positive elements, there exists a "divisor" 𝑛. (Contributed by Thierry Arnoux, 30-Jan-2018.) |
⊢ 𝐵 = (Base‘𝑊) & ⊢ 0 = (0g‘𝑊) & ⊢ < = (lt‘𝑊) & ⊢ · = (.g‘𝑊) ⇒ ⊢ (((𝑊 ∈ oGrp ∧ 𝑊 ∈ Archi) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ 0 < 𝑋) → ∃𝑛 ∈ ℕ 𝑌 < (𝑛 · 𝑋)) | ||
Theorem | archiabllem1a 30311* | Lemma for archiabl 30318: In case an archimedean group 𝑊 admits a smallest positive element 𝑈, then any positive element 𝑋 of 𝑊 can be written as (𝑛 · 𝑈) with 𝑛 ∈ ℕ. Since the reciprocal holds for negative elements, 𝑊 is then isomorphic to ℤ. (Contributed by Thierry Arnoux, 12-Apr-2018.) |
⊢ 𝐵 = (Base‘𝑊) & ⊢ 0 = (0g‘𝑊) & ⊢ ≤ = (le‘𝑊) & ⊢ < = (lt‘𝑊) & ⊢ · = (.g‘𝑊) & ⊢ (𝜑 → 𝑊 ∈ oGrp) & ⊢ (𝜑 → 𝑊 ∈ Archi) & ⊢ (𝜑 → 𝑈 ∈ 𝐵) & ⊢ (𝜑 → 0 < 𝑈) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵 ∧ 0 < 𝑥) → 𝑈 ≤ 𝑥) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 0 < 𝑋) ⇒ ⊢ (𝜑 → ∃𝑛 ∈ ℕ 𝑋 = (𝑛 · 𝑈)) | ||
Theorem | archiabllem1b 30312* | Lemma for archiabl 30318. (Contributed by Thierry Arnoux, 13-Apr-2018.) |
⊢ 𝐵 = (Base‘𝑊) & ⊢ 0 = (0g‘𝑊) & ⊢ ≤ = (le‘𝑊) & ⊢ < = (lt‘𝑊) & ⊢ · = (.g‘𝑊) & ⊢ (𝜑 → 𝑊 ∈ oGrp) & ⊢ (𝜑 → 𝑊 ∈ Archi) & ⊢ (𝜑 → 𝑈 ∈ 𝐵) & ⊢ (𝜑 → 0 < 𝑈) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵 ∧ 0 < 𝑥) → 𝑈 ≤ 𝑥) ⇒ ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐵) → ∃𝑛 ∈ ℤ 𝑦 = (𝑛 · 𝑈)) | ||
Theorem | archiabllem1 30313* | Archimedean ordered groups with a minimal positive value are abelian. (Contributed by Thierry Arnoux, 13-Apr-2018.) |
⊢ 𝐵 = (Base‘𝑊) & ⊢ 0 = (0g‘𝑊) & ⊢ ≤ = (le‘𝑊) & ⊢ < = (lt‘𝑊) & ⊢ · = (.g‘𝑊) & ⊢ (𝜑 → 𝑊 ∈ oGrp) & ⊢ (𝜑 → 𝑊 ∈ Archi) & ⊢ (𝜑 → 𝑈 ∈ 𝐵) & ⊢ (𝜑 → 0 < 𝑈) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵 ∧ 0 < 𝑥) → 𝑈 ≤ 𝑥) ⇒ ⊢ (𝜑 → 𝑊 ∈ Abel) | ||
Theorem | archiabllem2a 30314* | Lemma for archiabl 30318, which requires the group to be both left- and right-ordered. (Contributed by Thierry Arnoux, 13-Apr-2018.) |
⊢ 𝐵 = (Base‘𝑊) & ⊢ 0 = (0g‘𝑊) & ⊢ ≤ = (le‘𝑊) & ⊢ < = (lt‘𝑊) & ⊢ · = (.g‘𝑊) & ⊢ (𝜑 → 𝑊 ∈ oGrp) & ⊢ (𝜑 → 𝑊 ∈ Archi) & ⊢ + = (+g‘𝑊) & ⊢ (𝜑 → (oppg‘𝑊) ∈ oGrp) & ⊢ ((𝜑 ∧ 𝑎 ∈ 𝐵 ∧ 0 < 𝑎) → ∃𝑏 ∈ 𝐵 ( 0 < 𝑏 ∧ 𝑏 < 𝑎)) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 0 < 𝑋) ⇒ ⊢ (𝜑 → ∃𝑐 ∈ 𝐵 ( 0 < 𝑐 ∧ (𝑐 + 𝑐) ≤ 𝑋)) | ||
Theorem | archiabllem2c 30315* | Lemma for archiabl 30318. (Contributed by Thierry Arnoux, 1-May-2018.) |
⊢ 𝐵 = (Base‘𝑊) & ⊢ 0 = (0g‘𝑊) & ⊢ ≤ = (le‘𝑊) & ⊢ < = (lt‘𝑊) & ⊢ · = (.g‘𝑊) & ⊢ (𝜑 → 𝑊 ∈ oGrp) & ⊢ (𝜑 → 𝑊 ∈ Archi) & ⊢ + = (+g‘𝑊) & ⊢ (𝜑 → (oppg‘𝑊) ∈ oGrp) & ⊢ ((𝜑 ∧ 𝑎 ∈ 𝐵 ∧ 0 < 𝑎) → ∃𝑏 ∈ 𝐵 ( 0 < 𝑏 ∧ 𝑏 < 𝑎)) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) ⇒ ⊢ (𝜑 → ¬ (𝑋 + 𝑌) < (𝑌 + 𝑋)) | ||
Theorem | archiabllem2b 30316* | Lemma for archiabl 30318. (Contributed by Thierry Arnoux, 1-May-2018.) |
⊢ 𝐵 = (Base‘𝑊) & ⊢ 0 = (0g‘𝑊) & ⊢ ≤ = (le‘𝑊) & ⊢ < = (lt‘𝑊) & ⊢ · = (.g‘𝑊) & ⊢ (𝜑 → 𝑊 ∈ oGrp) & ⊢ (𝜑 → 𝑊 ∈ Archi) & ⊢ + = (+g‘𝑊) & ⊢ (𝜑 → (oppg‘𝑊) ∈ oGrp) & ⊢ ((𝜑 ∧ 𝑎 ∈ 𝐵 ∧ 0 < 𝑎) → ∃𝑏 ∈ 𝐵 ( 0 < 𝑏 ∧ 𝑏 < 𝑎)) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) ⇒ ⊢ (𝜑 → (𝑋 + 𝑌) = (𝑌 + 𝑋)) | ||
Theorem | archiabllem2 30317* | Archimedean ordered groups with no minimal positive value are abelian. (Contributed by Thierry Arnoux, 1-May-2018.) |
⊢ 𝐵 = (Base‘𝑊) & ⊢ 0 = (0g‘𝑊) & ⊢ ≤ = (le‘𝑊) & ⊢ < = (lt‘𝑊) & ⊢ · = (.g‘𝑊) & ⊢ (𝜑 → 𝑊 ∈ oGrp) & ⊢ (𝜑 → 𝑊 ∈ Archi) & ⊢ + = (+g‘𝑊) & ⊢ (𝜑 → (oppg‘𝑊) ∈ oGrp) & ⊢ ((𝜑 ∧ 𝑎 ∈ 𝐵 ∧ 0 < 𝑎) → ∃𝑏 ∈ 𝐵 ( 0 < 𝑏 ∧ 𝑏 < 𝑎)) ⇒ ⊢ (𝜑 → 𝑊 ∈ Abel) | ||
Theorem | archiabl 30318 | Archimedean left- and right- ordered groups are Abelian. (Contributed by Thierry Arnoux, 1-May-2018.) |
⊢ ((𝑊 ∈ oGrp ∧ (oppg‘𝑊) ∈ oGrp ∧ 𝑊 ∈ Archi) → 𝑊 ∈ Abel) | ||
Syntax | cslmd 30319 | Extend class notation with class of all semimodules. |
class SLMod | ||
Definition | df-slmd 30320* | Define the class of all (left) modules over semirings, i.e. semimodules, which are generalizations of left modules. A semimodule is a commutative monoid (=vectors) together with a semiring (=scalars) and a left scalar product connecting them. (0[,]+∞) for example is not a full fledged left module, but is a semimodule. Definition of [Golan] p. 149. (Contributed by Thierry Arnoux, 21-Mar-2018.) |
⊢ SLMod = {𝑔 ∈ CMnd ∣ [(Base‘𝑔) / 𝑣][(+g‘𝑔) / 𝑎][( ·𝑠 ‘𝑔) / 𝑠][(Scalar‘𝑔) / 𝑓][(Base‘𝑓) / 𝑘][(+g‘𝑓) / 𝑝][(.r‘𝑓) / 𝑡](𝑓 ∈ SRing ∧ ∀𝑞 ∈ 𝑘 ∀𝑟 ∈ 𝑘 ∀𝑥 ∈ 𝑣 ∀𝑤 ∈ 𝑣 (((𝑟𝑠𝑤) ∈ 𝑣 ∧ (𝑟𝑠(𝑤𝑎𝑥)) = ((𝑟𝑠𝑤)𝑎(𝑟𝑠𝑥)) ∧ ((𝑞𝑝𝑟)𝑠𝑤) = ((𝑞𝑠𝑤)𝑎(𝑟𝑠𝑤))) ∧ (((𝑞𝑡𝑟)𝑠𝑤) = (𝑞𝑠(𝑟𝑠𝑤)) ∧ ((1r‘𝑓)𝑠𝑤) = 𝑤 ∧ ((0g‘𝑓)𝑠𝑤) = (0g‘𝑔))))} | ||
Theorem | isslmd 30321* | The predicate "is a semimodule". (Contributed by NM, 4-Nov-2013.) (Revised by Mario Carneiro, 19-Jun-2014.) (Revised by Thierry Arnoux, 1-Apr-2018.) |
⊢ 𝑉 = (Base‘𝑊) & ⊢ + = (+g‘𝑊) & ⊢ · = ( ·𝑠 ‘𝑊) & ⊢ 0 = (0g‘𝑊) & ⊢ 𝐹 = (Scalar‘𝑊) & ⊢ 𝐾 = (Base‘𝐹) & ⊢ ⨣ = (+g‘𝐹) & ⊢ × = (.r‘𝐹) & ⊢ 1 = (1r‘𝐹) & ⊢ 𝑂 = (0g‘𝐹) ⇒ ⊢ (𝑊 ∈ SLMod ↔ (𝑊 ∈ CMnd ∧ 𝐹 ∈ SRing ∧ ∀𝑞 ∈ 𝐾 ∀𝑟 ∈ 𝐾 ∀𝑥 ∈ 𝑉 ∀𝑤 ∈ 𝑉 (((𝑟 · 𝑤) ∈ 𝑉 ∧ (𝑟 · (𝑤 + 𝑥)) = ((𝑟 · 𝑤) + (𝑟 · 𝑥)) ∧ ((𝑞 ⨣ 𝑟) · 𝑤) = ((𝑞 · 𝑤) + (𝑟 · 𝑤))) ∧ (((𝑞 × 𝑟) · 𝑤) = (𝑞 · (𝑟 · 𝑤)) ∧ ( 1 · 𝑤) = 𝑤 ∧ (𝑂 · 𝑤) = 0 )))) | ||
Theorem | slmdlema 30322 | Lemma for properties of a semimodule. (Contributed by NM, 8-Dec-2013.) (Revised by Mario Carneiro, 19-Jun-2014.) (Revised by Thierry Arnoux, 1-Apr-2018.) |
⊢ 𝑉 = (Base‘𝑊) & ⊢ + = (+g‘𝑊) & ⊢ · = ( ·𝑠 ‘𝑊) & ⊢ 0 = (0g‘𝑊) & ⊢ 𝐹 = (Scalar‘𝑊) & ⊢ 𝐾 = (Base‘𝐹) & ⊢ ⨣ = (+g‘𝐹) & ⊢ × = (.r‘𝐹) & ⊢ 1 = (1r‘𝐹) & ⊢ 𝑂 = (0g‘𝐹) ⇒ ⊢ ((𝑊 ∈ SLMod ∧ (𝑄 ∈ 𝐾 ∧ 𝑅 ∈ 𝐾) ∧ (𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉)) → (((𝑅 · 𝑌) ∈ 𝑉 ∧ (𝑅 · (𝑌 + 𝑋)) = ((𝑅 · 𝑌) + (𝑅 · 𝑋)) ∧ ((𝑄 ⨣ 𝑅) · 𝑌) = ((𝑄 · 𝑌) + (𝑅 · 𝑌))) ∧ (((𝑄 × 𝑅) · 𝑌) = (𝑄 · (𝑅 · 𝑌)) ∧ ( 1 · 𝑌) = 𝑌 ∧ (𝑂 · 𝑌) = 0 ))) | ||
Theorem | lmodslmd 30323 | Left semimodules generalize the notion of left modules. (Contributed by Thierry Arnoux, 1-Apr-2018.) |
⊢ (𝑊 ∈ LMod → 𝑊 ∈ SLMod) | ||
Theorem | slmdcmn 30324 | A semimodule is a commutative monoid. (Contributed by Thierry Arnoux, 1-Apr-2018.) |
⊢ (𝑊 ∈ SLMod → 𝑊 ∈ CMnd) | ||
Theorem | slmdmnd 30325 | A semimodule is a monoid. (Contributed by Thierry Arnoux, 1-Apr-2018.) |
⊢ (𝑊 ∈ SLMod → 𝑊 ∈ Mnd) | ||
Theorem | slmdsrg 30326 | The scalar component of a semimodule is a semiring. (Contributed by NM, 8-Dec-2013.) (Revised by Mario Carneiro, 19-Jun-2014.) (Revised by Thierry Arnoux, 1-Apr-2018.) |
⊢ 𝐹 = (Scalar‘𝑊) ⇒ ⊢ (𝑊 ∈ SLMod → 𝐹 ∈ SRing) | ||
Theorem | slmdbn0 30327 | The base set of a semimodule is nonempty. (Contributed by Thierry Arnoux, 1-Apr-2018.) |
⊢ 𝐵 = (Base‘𝑊) ⇒ ⊢ (𝑊 ∈ SLMod → 𝐵 ≠ ∅) | ||
Theorem | slmdacl 30328 | Closure of ring addition for a semimodule. (Contributed by Thierry Arnoux, 1-Apr-2018.) |
⊢ 𝐹 = (Scalar‘𝑊) & ⊢ 𝐾 = (Base‘𝐹) & ⊢ + = (+g‘𝐹) ⇒ ⊢ ((𝑊 ∈ SLMod ∧ 𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐾) → (𝑋 + 𝑌) ∈ 𝐾) | ||
Theorem | slmdmcl 30329 | Closure of ring multiplication for a semimodule. (Contributed by NM, 14-Jan-2014.) (Revised by Mario Carneiro, 19-Jun-2014.) (Revised by Thierry Arnoux, 1-Apr-2018.) |
⊢ 𝐹 = (Scalar‘𝑊) & ⊢ 𝐾 = (Base‘𝐹) & ⊢ · = (.r‘𝐹) ⇒ ⊢ ((𝑊 ∈ SLMod ∧ 𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐾) → (𝑋 · 𝑌) ∈ 𝐾) | ||
Theorem | slmdsn0 30330 | The set of scalars in a semimodule is nonempty. (Contributed by Thierry Arnoux, 1-Apr-2018.) |
⊢ 𝐹 = (Scalar‘𝑊) & ⊢ 𝐵 = (Base‘𝐹) ⇒ ⊢ (𝑊 ∈ SLMod → 𝐵 ≠ ∅) | ||
Theorem | slmdvacl 30331 | Closure of vector addition for a semiring left module. (Contributed by NM, 8-Dec-2013.) (Revised by Mario Carneiro, 19-Jun-2014.) (Revised by Thierry Arnoux, 1-Apr-2018.) |
⊢ 𝑉 = (Base‘𝑊) & ⊢ + = (+g‘𝑊) ⇒ ⊢ ((𝑊 ∈ SLMod ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉) → (𝑋 + 𝑌) ∈ 𝑉) | ||
Theorem | slmdass 30332 | Semiring left module vector sum is associative. (Contributed by NM, 10-Jan-2014.) (Revised by Mario Carneiro, 19-Jun-2014.) (Revised by Thierry Arnoux, 1-Apr-2018.) |
⊢ 𝑉 = (Base‘𝑊) & ⊢ + = (+g‘𝑊) ⇒ ⊢ ((𝑊 ∈ SLMod ∧ (𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ∧ 𝑍 ∈ 𝑉)) → ((𝑋 + 𝑌) + 𝑍) = (𝑋 + (𝑌 + 𝑍))) | ||
Theorem | slmdvscl 30333 | Closure of scalar product for a semiring left module. (hvmulcl 28446 analog.) (Contributed by NM, 8-Dec-2013.) (Revised by Mario Carneiro, 19-Jun-2014.) (Revised by Thierry Arnoux, 1-Apr-2018.) |
⊢ 𝑉 = (Base‘𝑊) & ⊢ 𝐹 = (Scalar‘𝑊) & ⊢ · = ( ·𝑠 ‘𝑊) & ⊢ 𝐾 = (Base‘𝐹) ⇒ ⊢ ((𝑊 ∈ SLMod ∧ 𝑅 ∈ 𝐾 ∧ 𝑋 ∈ 𝑉) → (𝑅 · 𝑋) ∈ 𝑉) | ||
Theorem | slmdvsdi 30334 | Distributive law for scalar product. (ax-hvdistr1 28441 analog.) (Contributed by NM, 10-Jan-2014.) (Revised by Mario Carneiro, 22-Sep-2015.) (Revised by Thierry Arnoux, 1-Apr-2018.) |
⊢ 𝑉 = (Base‘𝑊) & ⊢ + = (+g‘𝑊) & ⊢ 𝐹 = (Scalar‘𝑊) & ⊢ · = ( ·𝑠 ‘𝑊) & ⊢ 𝐾 = (Base‘𝐹) ⇒ ⊢ ((𝑊 ∈ SLMod ∧ (𝑅 ∈ 𝐾 ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉)) → (𝑅 · (𝑋 + 𝑌)) = ((𝑅 · 𝑋) + (𝑅 · 𝑌))) | ||
Theorem | slmdvsdir 30335 | Distributive law for scalar product. (ax-hvdistr1 28441 analog.) (Contributed by NM, 10-Jan-2014.) (Revised by Mario Carneiro, 22-Sep-2015.) (Revised by Thierry Arnoux, 1-Apr-2018.) |
⊢ 𝑉 = (Base‘𝑊) & ⊢ + = (+g‘𝑊) & ⊢ 𝐹 = (Scalar‘𝑊) & ⊢ · = ( ·𝑠 ‘𝑊) & ⊢ 𝐾 = (Base‘𝐹) & ⊢ ⨣ = (+g‘𝐹) ⇒ ⊢ ((𝑊 ∈ SLMod ∧ (𝑄 ∈ 𝐾 ∧ 𝑅 ∈ 𝐾 ∧ 𝑋 ∈ 𝑉)) → ((𝑄 ⨣ 𝑅) · 𝑋) = ((𝑄 · 𝑋) + (𝑅 · 𝑋))) | ||
Theorem | slmdvsass 30336 | Associative law for scalar product. (ax-hvmulass 28440 analog.) (Contributed by NM, 10-Jan-2014.) (Revised by Mario Carneiro, 22-Sep-2015.) (Revised by Thierry Arnoux, 1-Apr-2018.) |
⊢ 𝑉 = (Base‘𝑊) & ⊢ 𝐹 = (Scalar‘𝑊) & ⊢ · = ( ·𝑠 ‘𝑊) & ⊢ 𝐾 = (Base‘𝐹) & ⊢ × = (.r‘𝐹) ⇒ ⊢ ((𝑊 ∈ SLMod ∧ (𝑄 ∈ 𝐾 ∧ 𝑅 ∈ 𝐾 ∧ 𝑋 ∈ 𝑉)) → ((𝑄 × 𝑅) · 𝑋) = (𝑄 · (𝑅 · 𝑋))) | ||
Theorem | slmd0cl 30337 | The ring zero in a semimodule belongs to the ring base set. (Contributed by NM, 11-Jan-2014.) (Revised by Mario Carneiro, 19-Jun-2014.) (Revised by Thierry Arnoux, 1-Apr-2018.) |
⊢ 𝐹 = (Scalar‘𝑊) & ⊢ 𝐾 = (Base‘𝐹) & ⊢ 0 = (0g‘𝐹) ⇒ ⊢ (𝑊 ∈ SLMod → 0 ∈ 𝐾) | ||
Theorem | slmd1cl 30338 | The ring unit in a semiring left module belongs to the ring base set. (Contributed by NM, 11-Jan-2014.) (Revised by Mario Carneiro, 19-Jun-2014.) (Revised by Thierry Arnoux, 1-Apr-2018.) |
⊢ 𝐹 = (Scalar‘𝑊) & ⊢ 𝐾 = (Base‘𝐹) & ⊢ 1 = (1r‘𝐹) ⇒ ⊢ (𝑊 ∈ SLMod → 1 ∈ 𝐾) | ||
Theorem | slmdvs1 30339 | Scalar product with ring unit. (ax-hvmulid 28439 analog.) (Contributed by NM, 10-Jan-2014.) (Revised by Mario Carneiro, 19-Jun-2014.) (Revised by Thierry Arnoux, 1-Apr-2018.) |
⊢ 𝑉 = (Base‘𝑊) & ⊢ 𝐹 = (Scalar‘𝑊) & ⊢ · = ( ·𝑠 ‘𝑊) & ⊢ 1 = (1r‘𝐹) ⇒ ⊢ ((𝑊 ∈ SLMod ∧ 𝑋 ∈ 𝑉) → ( 1 · 𝑋) = 𝑋) | ||
Theorem | slmd0vcl 30340 | The zero vector is a vector. (ax-hv0cl 28436 analog.) (Contributed by NM, 10-Jan-2014.) (Revised by Mario Carneiro, 19-Jun-2014.) (Revised by Thierry Arnoux, 1-Apr-2018.) |
⊢ 𝑉 = (Base‘𝑊) & ⊢ 0 = (0g‘𝑊) ⇒ ⊢ (𝑊 ∈ SLMod → 0 ∈ 𝑉) | ||
Theorem | slmd0vlid 30341 | Left identity law for the zero vector. (hvaddid2 28456 analog.) (Contributed by NM, 10-Jan-2014.) (Revised by Mario Carneiro, 19-Jun-2014.) (Revised by Thierry Arnoux, 1-Apr-2018.) |
⊢ 𝑉 = (Base‘𝑊) & ⊢ + = (+g‘𝑊) & ⊢ 0 = (0g‘𝑊) ⇒ ⊢ ((𝑊 ∈ SLMod ∧ 𝑋 ∈ 𝑉) → ( 0 + 𝑋) = 𝑋) | ||
Theorem | slmd0vrid 30342 | Right identity law for the zero vector. (ax-hvaddid 28437 analog.) (Contributed by NM, 10-Jan-2014.) (Revised by Mario Carneiro, 19-Jun-2014.) (Revised by Thierry Arnoux, 1-Apr-2018.) |
⊢ 𝑉 = (Base‘𝑊) & ⊢ + = (+g‘𝑊) & ⊢ 0 = (0g‘𝑊) ⇒ ⊢ ((𝑊 ∈ SLMod ∧ 𝑋 ∈ 𝑉) → (𝑋 + 0 ) = 𝑋) | ||
Theorem | slmd0vs 30343 | Zero times a vector is the zero vector. Equation 1a of [Kreyszig] p. 51. (ax-hvmul0 28443 analog.) (Contributed by NM, 12-Jan-2014.) (Revised by Mario Carneiro, 19-Jun-2014.) (Revised by Thierry Arnoux, 1-Apr-2018.) |
⊢ 𝑉 = (Base‘𝑊) & ⊢ 𝐹 = (Scalar‘𝑊) & ⊢ · = ( ·𝑠 ‘𝑊) & ⊢ 𝑂 = (0g‘𝐹) & ⊢ 0 = (0g‘𝑊) ⇒ ⊢ ((𝑊 ∈ SLMod ∧ 𝑋 ∈ 𝑉) → (𝑂 · 𝑋) = 0 ) | ||
Theorem | slmdvs0 30344 | Anything times the zero vector is the zero vector. Equation 1b of [Kreyszig] p. 51. (hvmul0 28457 analog.) (Contributed by NM, 12-Jan-2014.) (Revised by Mario Carneiro, 19-Jun-2014.) (Revised by Thierry Arnoux, 1-Apr-2018.) |
⊢ 𝐹 = (Scalar‘𝑊) & ⊢ · = ( ·𝑠 ‘𝑊) & ⊢ 𝐾 = (Base‘𝐹) & ⊢ 0 = (0g‘𝑊) ⇒ ⊢ ((𝑊 ∈ SLMod ∧ 𝑋 ∈ 𝐾) → (𝑋 · 0 ) = 0 ) | ||
Theorem | gsumle 30345 | A finite sum in an ordered monoid is monotonic. This proof would be much easier in an ordered group, where an inverse element would be available. (Contributed by Thierry Arnoux, 13-Mar-2018.) |
⊢ 𝐵 = (Base‘𝑀) & ⊢ ≤ = (le‘𝑀) & ⊢ (𝜑 → 𝑀 ∈ oMnd) & ⊢ (𝜑 → 𝑀 ∈ CMnd) & ⊢ (𝜑 → 𝐴 ∈ Fin) & ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) & ⊢ (𝜑 → 𝐺:𝐴⟶𝐵) & ⊢ (𝜑 → 𝐹 ∘𝑟 ≤ 𝐺) ⇒ ⊢ (𝜑 → (𝑀 Σg 𝐹) ≤ (𝑀 Σg 𝐺)) | ||
Theorem | gsummpt2co 30346* | Split a finite sum into a sum of a collection of sums over disjoint subsets. (Contributed by Thierry Arnoux, 27-Mar-2018.) |
⊢ 𝐵 = (Base‘𝑊) & ⊢ 0 = (0g‘𝑊) & ⊢ (𝜑 → 𝑊 ∈ CMnd) & ⊢ (𝜑 → 𝐴 ∈ Fin) & ⊢ (𝜑 → 𝐸 ∈ 𝑉) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐶 ∈ 𝐵) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐷 ∈ 𝐸) & ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐷) ⇒ ⊢ (𝜑 → (𝑊 Σg (𝑥 ∈ 𝐴 ↦ 𝐶)) = (𝑊 Σg (𝑦 ∈ 𝐸 ↦ (𝑊 Σg (𝑥 ∈ (◡𝐹 “ {𝑦}) ↦ 𝐶))))) | ||
Theorem | gsummpt2d 30347* | Express a finite sum over a two-dimensional range as a double sum. See also gsum2d 18761. (Contributed by Thierry Arnoux, 27-Apr-2020.) |
⊢ Ⅎ𝑧𝐶 & ⊢ Ⅎ𝑦𝜑 & ⊢ 𝐵 = (Base‘𝑊) & ⊢ (𝑥 = 〈𝑦, 𝑧〉 → 𝐶 = 𝐷) & ⊢ (𝜑 → Rel 𝐴) & ⊢ (𝜑 → 𝐴 ∈ Fin) & ⊢ (𝜑 → 𝑊 ∈ CMnd) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐶 ∈ 𝐵) ⇒ ⊢ (𝜑 → (𝑊 Σg (𝑥 ∈ 𝐴 ↦ 𝐶)) = (𝑊 Σg (𝑦 ∈ dom 𝐴 ↦ (𝑊 Σg (𝑧 ∈ (𝐴 “ {𝑦}) ↦ 𝐷))))) | ||
Theorem | gsumvsca1 30348* | Scalar product of a finite group sum for a left module over a semiring. (Contributed by Thierry Arnoux, 16-Mar-2018.) |
⊢ 𝐵 = (Base‘𝑊) & ⊢ 𝐺 = (Scalar‘𝑊) & ⊢ 0 = (0g‘𝑊) & ⊢ · = ( ·𝑠 ‘𝑊) & ⊢ + = (+g‘𝑊) & ⊢ (𝜑 → 𝐾 ⊆ (Base‘𝐺)) & ⊢ (𝜑 → 𝐴 ∈ Fin) & ⊢ (𝜑 → 𝑊 ∈ SLMod) & ⊢ (𝜑 → 𝑃 ∈ 𝐾) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝑄 ∈ 𝐵) ⇒ ⊢ (𝜑 → (𝑊 Σg (𝑘 ∈ 𝐴 ↦ (𝑃 · 𝑄))) = (𝑃 · (𝑊 Σg (𝑘 ∈ 𝐴 ↦ 𝑄)))) | ||
Theorem | gsumvsca2 30349* | Scalar product of a finite group sum for a left module over a semiring. (Contributed by Thierry Arnoux, 16-Mar-2018.) (Proof shortened by AV, 12-Dec-2019.) |
⊢ 𝐵 = (Base‘𝑊) & ⊢ 𝐺 = (Scalar‘𝑊) & ⊢ 0 = (0g‘𝑊) & ⊢ · = ( ·𝑠 ‘𝑊) & ⊢ + = (+g‘𝑊) & ⊢ (𝜑 → 𝐾 ⊆ (Base‘𝐺)) & ⊢ (𝜑 → 𝐴 ∈ Fin) & ⊢ (𝜑 → 𝑊 ∈ SLMod) & ⊢ (𝜑 → 𝑄 ∈ 𝐵) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝑃 ∈ 𝐾) ⇒ ⊢ (𝜑 → (𝑊 Σg (𝑘 ∈ 𝐴 ↦ (𝑃 · 𝑄))) = ((𝐺 Σg (𝑘 ∈ 𝐴 ↦ 𝑃)) · 𝑄)) | ||
Theorem | gsummptres 30350* | Extend a finite group sum by padding outside with zeroes. Proof generated using OpenAI's proof assistant. (Contributed by Thierry Arnoux, 11-Jul-2020.) |
⊢ 𝐵 = (Base‘𝐺) & ⊢ 0 = (0g‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ CMnd) & ⊢ (𝜑 → 𝐴 ∈ Fin) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐶 ∈ 𝐵) & ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴 ∖ 𝐷)) → 𝐶 = 0 ) ⇒ ⊢ (𝜑 → (𝐺 Σg (𝑥 ∈ 𝐴 ↦ 𝐶)) = (𝐺 Σg (𝑥 ∈ (𝐴 ∩ 𝐷) ↦ 𝐶))) | ||
Theorem | xrge0tsmsd 30351* | Any finite or infinite sum in the nonnegative extended reals is uniquely convergent to the supremum of all finite sums. (Contributed by Mario Carneiro, 13-Sep-2015.) (Revised by Thierry Arnoux, 30-Jan-2017.) |
⊢ 𝐺 = (ℝ*𝑠 ↾s (0[,]+∞)) & ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝐹:𝐴⟶(0[,]+∞)) & ⊢ (𝜑 → 𝑆 = sup(ran (𝑠 ∈ (𝒫 𝐴 ∩ Fin) ↦ (𝐺 Σg (𝐹 ↾ 𝑠))), ℝ*, < )) ⇒ ⊢ (𝜑 → (𝐺 tsums 𝐹) = {𝑆}) | ||
Theorem | xrge0tsmsbi 30352 | Any limit of a finite or infinite sum in the nonnegative extended reals is the union of the sets limits, since this set is a singleton. (Contributed by Thierry Arnoux, 23-Jun-2017.) |
⊢ 𝐺 = (ℝ*𝑠 ↾s (0[,]+∞)) & ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝐹:𝐴⟶(0[,]+∞)) ⇒ ⊢ (𝜑 → (𝐶 ∈ (𝐺 tsums 𝐹) ↔ 𝐶 = ∪ (𝐺 tsums 𝐹))) | ||
Theorem | xrge0tsmseq 30353 | Any limit of a finite or infinite sum in the nonnegative extended reals is the union of the sets limits, since this set is a singleton. (Contributed by Thierry Arnoux, 24-Mar-2017.) |
⊢ 𝐺 = (ℝ*𝑠 ↾s (0[,]+∞)) & ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝐹:𝐴⟶(0[,]+∞)) & ⊢ (𝜑 → 𝐶 ∈ (𝐺 tsums 𝐹)) ⇒ ⊢ (𝜑 → 𝐶 = ∪ (𝐺 tsums 𝐹)) | ||
Theorem | rngurd 30354* | Deduce the unit of a ring from its properties. (Contributed by Thierry Arnoux, 6-Sep-2016.) |
⊢ (𝜑 → 𝐵 = (Base‘𝑅)) & ⊢ (𝜑 → · = (.r‘𝑅)) & ⊢ (𝜑 → 1 ∈ 𝐵) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → ( 1 · 𝑥) = 𝑥) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → (𝑥 · 1 ) = 𝑥) ⇒ ⊢ (𝜑 → 1 = (1r‘𝑅)) | ||
Theorem | ress1r 30355 | 1r is unaffected by restriction. This is a bit more generic than subrg1 19186. (Contributed by Thierry Arnoux, 6-Sep-2018.) |
⊢ 𝑆 = (𝑅 ↾s 𝐴) & ⊢ 𝐵 = (Base‘𝑅) & ⊢ 1 = (1r‘𝑅) ⇒ ⊢ ((𝑅 ∈ Ring ∧ 1 ∈ 𝐴 ∧ 𝐴 ⊆ 𝐵) → 1 = (1r‘𝑆)) | ||
Theorem | dvrdir 30356 | Distributive law for the division operation of a ring. (Contributed by Thierry Arnoux, 30-Oct-2017.) |
⊢ 𝐵 = (Base‘𝑅) & ⊢ 𝑈 = (Unit‘𝑅) & ⊢ + = (+g‘𝑅) & ⊢ / = (/r‘𝑅) ⇒ ⊢ ((𝑅 ∈ Ring ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝑈)) → ((𝑋 + 𝑌) / 𝑍) = ((𝑋 / 𝑍) + (𝑌 / 𝑍))) | ||
Theorem | rdivmuldivd 30357 | Multiplication of two ratios. Theorem I.14 of [Apostol] p. 18. (Contributed by Thierry Arnoux, 30-Oct-2017.) |
⊢ 𝐵 = (Base‘𝑅) & ⊢ 𝑈 = (Unit‘𝑅) & ⊢ + = (+g‘𝑅) & ⊢ / = (/r‘𝑅) & ⊢ · = (.r‘𝑅) & ⊢ (𝜑 → 𝑅 ∈ CRing) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝑈) & ⊢ (𝜑 → 𝑍 ∈ 𝐵) & ⊢ (𝜑 → 𝑊 ∈ 𝑈) ⇒ ⊢ (𝜑 → ((𝑋 / 𝑌) · (𝑍 / 𝑊)) = ((𝑋 · 𝑍) / (𝑌 · 𝑊))) | ||
Theorem | ringinvval 30358* | The ring inverse expressed in terms of multiplication. (Contributed by Thierry Arnoux, 23-Oct-2017.) |
⊢ 𝐵 = (Base‘𝑅) & ⊢ ∗ = (.r‘𝑅) & ⊢ 1 = (1r‘𝑅) & ⊢ 𝑁 = (invr‘𝑅) & ⊢ 𝑈 = (Unit‘𝑅) ⇒ ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝑈) → (𝑁‘𝑋) = (℩𝑦 ∈ 𝑈 (𝑦 ∗ 𝑋) = 1 )) | ||
Theorem | dvrcan5 30359 | Cancellation law for common factor in ratio. (divcan5 11079 analog.) (Contributed by Thierry Arnoux, 26-Oct-2016.) |
⊢ 𝐵 = (Base‘𝑅) & ⊢ 𝑈 = (Unit‘𝑅) & ⊢ / = (/r‘𝑅) & ⊢ · = (.r‘𝑅) ⇒ ⊢ ((𝑅 ∈ Ring ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑈 ∧ 𝑍 ∈ 𝑈)) → ((𝑋 · 𝑍) / (𝑌 · 𝑍)) = (𝑋 / 𝑌)) | ||
Theorem | subrgchr 30360 | If 𝐴 is a subring of 𝑅, then they have the same characteristic. (Contributed by Thierry Arnoux, 24-Feb-2018.) |
⊢ (𝐴 ∈ (SubRing‘𝑅) → (chr‘(𝑅 ↾s 𝐴)) = (chr‘𝑅)) | ||
Syntax | corng 30361 | Extend class notation with the class of all ordered rings. |
class oRing | ||
Syntax | cofld 30362 | Extend class notation with the class of all ordered fields. |
class oField | ||
Definition | df-orng 30363* | Define class of all ordered rings. An ordered ring is a ring with a total ordering compatible with its operations. (Contributed by Thierry Arnoux, 23-Mar-2018.) |
⊢ oRing = {𝑟 ∈ (Ring ∩ oGrp) ∣ [(Base‘𝑟) / 𝑣][(0g‘𝑟) / 𝑧][(.r‘𝑟) / 𝑡][(le‘𝑟) / 𝑙]∀𝑎 ∈ 𝑣 ∀𝑏 ∈ 𝑣 ((𝑧𝑙𝑎 ∧ 𝑧𝑙𝑏) → 𝑧𝑙(𝑎𝑡𝑏))} | ||
Definition | df-ofld 30364 | Define class of all ordered fields. An ordered field is a field with a total ordering compatible with its operations. (Contributed by Thierry Arnoux, 18-Jan-2018.) |
⊢ oField = (Field ∩ oRing) | ||
Theorem | isorng 30365* | An ordered ring is a ring with a total ordering compatible with its operations. (Contributed by Thierry Arnoux, 18-Jan-2018.) |
⊢ 𝐵 = (Base‘𝑅) & ⊢ 0 = (0g‘𝑅) & ⊢ · = (.r‘𝑅) & ⊢ ≤ = (le‘𝑅) ⇒ ⊢ (𝑅 ∈ oRing ↔ (𝑅 ∈ Ring ∧ 𝑅 ∈ oGrp ∧ ∀𝑎 ∈ 𝐵 ∀𝑏 ∈ 𝐵 (( 0 ≤ 𝑎 ∧ 0 ≤ 𝑏) → 0 ≤ (𝑎 · 𝑏)))) | ||
Theorem | orngring 30366 | An ordered ring is a ring. (Contributed by Thierry Arnoux, 23-Mar-2018.) |
⊢ (𝑅 ∈ oRing → 𝑅 ∈ Ring) | ||
Theorem | orngogrp 30367 | An ordered ring is an ordered group. (Contributed by Thierry Arnoux, 23-Mar-2018.) |
⊢ (𝑅 ∈ oRing → 𝑅 ∈ oGrp) | ||
Theorem | isofld 30368 | An ordered field is a field with a total ordering compatible with its operations. (Contributed by Thierry Arnoux, 23-Mar-2018.) |
⊢ (𝐹 ∈ oField ↔ (𝐹 ∈ Field ∧ 𝐹 ∈ oRing)) | ||
Theorem | orngmul 30369 | In an ordered ring, the ordering is compatible with the ring multiplication operation. (Contributed by Thierry Arnoux, 20-Jan-2018.) |
⊢ 𝐵 = (Base‘𝑅) & ⊢ ≤ = (le‘𝑅) & ⊢ 0 = (0g‘𝑅) & ⊢ · = (.r‘𝑅) ⇒ ⊢ ((𝑅 ∈ oRing ∧ (𝑋 ∈ 𝐵 ∧ 0 ≤ 𝑋) ∧ (𝑌 ∈ 𝐵 ∧ 0 ≤ 𝑌)) → 0 ≤ (𝑋 · 𝑌)) | ||
Theorem | orngsqr 30370 | In an ordered ring, all squares are positive. (Contributed by Thierry Arnoux, 20-Jan-2018.) |
⊢ 𝐵 = (Base‘𝑅) & ⊢ ≤ = (le‘𝑅) & ⊢ 0 = (0g‘𝑅) & ⊢ · = (.r‘𝑅) ⇒ ⊢ ((𝑅 ∈ oRing ∧ 𝑋 ∈ 𝐵) → 0 ≤ (𝑋 · 𝑋)) | ||
Theorem | ornglmulle 30371 | In an ordered ring, multiplication with a positive does not change comparison. (Contributed by Thierry Arnoux, 10-Apr-2018.) |
⊢ 𝐵 = (Base‘𝑅) & ⊢ · = (.r‘𝑅) & ⊢ 0 = (0g‘𝑅) & ⊢ (𝜑 → 𝑅 ∈ oRing) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) & ⊢ (𝜑 → 𝑍 ∈ 𝐵) & ⊢ ≤ = (le‘𝑅) & ⊢ (𝜑 → 𝑋 ≤ 𝑌) & ⊢ (𝜑 → 0 ≤ 𝑍) ⇒ ⊢ (𝜑 → (𝑍 · 𝑋) ≤ (𝑍 · 𝑌)) | ||
Theorem | orngrmulle 30372 | In an ordered ring, multiplication with a positive does not change comparison. (Contributed by Thierry Arnoux, 10-Apr-2018.) |
⊢ 𝐵 = (Base‘𝑅) & ⊢ · = (.r‘𝑅) & ⊢ 0 = (0g‘𝑅) & ⊢ (𝜑 → 𝑅 ∈ oRing) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) & ⊢ (𝜑 → 𝑍 ∈ 𝐵) & ⊢ ≤ = (le‘𝑅) & ⊢ (𝜑 → 𝑋 ≤ 𝑌) & ⊢ (𝜑 → 0 ≤ 𝑍) ⇒ ⊢ (𝜑 → (𝑋 · 𝑍) ≤ (𝑌 · 𝑍)) | ||
Theorem | ornglmullt 30373 | In an ordered ring, multiplication with a positive does not change strict comparison. (Contributed by Thierry Arnoux, 9-Apr-2018.) |
⊢ 𝐵 = (Base‘𝑅) & ⊢ · = (.r‘𝑅) & ⊢ 0 = (0g‘𝑅) & ⊢ (𝜑 → 𝑅 ∈ oRing) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) & ⊢ (𝜑 → 𝑍 ∈ 𝐵) & ⊢ < = (lt‘𝑅) & ⊢ (𝜑 → 𝑅 ∈ DivRing) & ⊢ (𝜑 → 𝑋 < 𝑌) & ⊢ (𝜑 → 0 < 𝑍) ⇒ ⊢ (𝜑 → (𝑍 · 𝑋) < (𝑍 · 𝑌)) | ||
Theorem | orngrmullt 30374 | In an ordered ring, multiplication with a positive does not change strict comparison. (Contributed by Thierry Arnoux, 9-Apr-2018.) |
⊢ 𝐵 = (Base‘𝑅) & ⊢ · = (.r‘𝑅) & ⊢ 0 = (0g‘𝑅) & ⊢ (𝜑 → 𝑅 ∈ oRing) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) & ⊢ (𝜑 → 𝑍 ∈ 𝐵) & ⊢ < = (lt‘𝑅) & ⊢ (𝜑 → 𝑅 ∈ DivRing) & ⊢ (𝜑 → 𝑋 < 𝑌) & ⊢ (𝜑 → 0 < 𝑍) ⇒ ⊢ (𝜑 → (𝑋 · 𝑍) < (𝑌 · 𝑍)) | ||
Theorem | orngmullt 30375 | In an ordered ring, the strict ordering is compatible with the ring multiplication operation. (Contributed by Thierry Arnoux, 9-Sep-2018.) |
⊢ 𝐵 = (Base‘𝑅) & ⊢ · = (.r‘𝑅) & ⊢ 0 = (0g‘𝑅) & ⊢ < = (lt‘𝑅) & ⊢ (𝜑 → 𝑅 ∈ oRing) & ⊢ (𝜑 → 𝑅 ∈ DivRing) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) & ⊢ (𝜑 → 0 < 𝑋) & ⊢ (𝜑 → 0 < 𝑌) ⇒ ⊢ (𝜑 → 0 < (𝑋 · 𝑌)) | ||
Theorem | ofldfld 30376 | An ordered field is a field. (Contributed by Thierry Arnoux, 20-Jan-2018.) |
⊢ (𝐹 ∈ oField → 𝐹 ∈ Field) | ||
Theorem | ofldtos 30377 | An ordered field is a totally ordered set. (Contributed by Thierry Arnoux, 20-Jan-2018.) |
⊢ (𝐹 ∈ oField → 𝐹 ∈ Toset) | ||
Theorem | orng0le1 30378 | In an ordered ring, the ring unit is positive. (Contributed by Thierry Arnoux, 21-Jan-2018.) |
⊢ 0 = (0g‘𝐹) & ⊢ 1 = (1r‘𝐹) & ⊢ ≤ = (le‘𝐹) ⇒ ⊢ (𝐹 ∈ oRing → 0 ≤ 1 ) | ||
Theorem | ofldlt1 30379 | In an ordered field, the ring unit is strictly positive. (Contributed by Thierry Arnoux, 21-Jan-2018.) |
⊢ 0 = (0g‘𝐹) & ⊢ 1 = (1r‘𝐹) & ⊢ < = (lt‘𝐹) ⇒ ⊢ (𝐹 ∈ oField → 0 < 1 ) | ||
Theorem | ofldchr 30380 | The characteristic of an ordered field is zero. (Contributed by Thierry Arnoux, 21-Jan-2018.) (Proof shortened by AV, 6-Oct-2020.) |
⊢ (𝐹 ∈ oField → (chr‘𝐹) = 0) | ||
Theorem | suborng 30381 | Every subring of an ordered ring is also an ordered ring. (Contributed by Thierry Arnoux, 21-Jan-2018.) |
⊢ ((𝑅 ∈ oRing ∧ (𝑅 ↾s 𝐴) ∈ Ring) → (𝑅 ↾s 𝐴) ∈ oRing) | ||
Theorem | subofld 30382 | Every subfield of an ordered field is also an ordered field. (Contributed by Thierry Arnoux, 21-Jan-2018.) |
⊢ ((𝐹 ∈ oField ∧ (𝐹 ↾s 𝐴) ∈ Field) → (𝐹 ↾s 𝐴) ∈ oField) | ||
Theorem | isarchiofld 30383* | Axiom of Archimedes : a characterization of the Archimedean property for ordered fields. (Contributed by Thierry Arnoux, 9-Apr-2018.) |
⊢ 𝐵 = (Base‘𝑊) & ⊢ 𝐻 = (ℤRHom‘𝑊) & ⊢ < = (lt‘𝑊) ⇒ ⊢ (𝑊 ∈ oField → (𝑊 ∈ Archi ↔ ∀𝑥 ∈ 𝐵 ∃𝑛 ∈ ℕ 𝑥 < (𝐻‘𝑛))) | ||
Theorem | rhmdvdsr 30384 | A ring homomorphism preserves the divisibility relation. (Contributed by Thierry Arnoux, 22-Oct-2017.) |
⊢ 𝑋 = (Base‘𝑅) & ⊢ ∥ = (∥r‘𝑅) & ⊢ / = (∥r‘𝑆) ⇒ ⊢ (((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ 𝐴 ∥ 𝐵) → (𝐹‘𝐴) / (𝐹‘𝐵)) | ||
Theorem | rhmopp 30385 | A ring homomorphism is also a ring homomorphism for the opposite rings. (Contributed by Thierry Arnoux, 27-Oct-2017.) |
⊢ (𝐹 ∈ (𝑅 RingHom 𝑆) → 𝐹 ∈ ((oppr‘𝑅) RingHom (oppr‘𝑆))) | ||
Theorem | elrhmunit 30386 | Ring homomorphisms preserve unit elements. (Contributed by Thierry Arnoux, 23-Oct-2017.) |
⊢ ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐴 ∈ (Unit‘𝑅)) → (𝐹‘𝐴) ∈ (Unit‘𝑆)) | ||
Theorem | rhmdvd 30387 | A ring homomorphism preserves ratios. (Contributed by Thierry Arnoux, 22-Oct-2017.) |
⊢ 𝑈 = (Unit‘𝑆) & ⊢ 𝑋 = (Base‘𝑅) & ⊢ / = (/r‘𝑆) & ⊢ · = (.r‘𝑅) ⇒ ⊢ ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋) ∧ ((𝐹‘𝐵) ∈ 𝑈 ∧ (𝐹‘𝐶) ∈ 𝑈)) → ((𝐹‘𝐴) / (𝐹‘𝐵)) = ((𝐹‘(𝐴 · 𝐶)) / (𝐹‘(𝐵 · 𝐶)))) | ||
Theorem | rhmunitinv 30388 | Ring homomorphisms preserve the inverse of unit elements. (Contributed by Thierry Arnoux, 23-Oct-2017.) |
⊢ ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐴 ∈ (Unit‘𝑅)) → (𝐹‘((invr‘𝑅)‘𝐴)) = ((invr‘𝑆)‘(𝐹‘𝐴))) | ||
Theorem | kerunit 30389 | If a unit element lies in the kernel of a ring homomorphism, then 0 = 1, i.e. the target ring is the zero ring. (Contributed by Thierry Arnoux, 24-Oct-2017.) |
⊢ 𝑈 = (Unit‘𝑅) & ⊢ 0 = (0g‘𝑆) & ⊢ 1 = (1r‘𝑆) ⇒ ⊢ ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ (𝑈 ∩ (◡𝐹 “ { 0 })) ≠ ∅) → 1 = 0 ) | ||
Syntax | cresv 30390 | Extend class notation with the scalar restriction operation. |
class ↾v | ||
Definition | df-resv 30391* | Define an operator to restrict the scalar field component of an extended structure. (Contributed by Thierry Arnoux, 5-Sep-2018.) |
⊢ ↾v = (𝑤 ∈ V, 𝑥 ∈ V ↦ if((Base‘(Scalar‘𝑤)) ⊆ 𝑥, 𝑤, (𝑤 sSet 〈(Scalar‘ndx), ((Scalar‘𝑤) ↾s 𝑥)〉))) | ||
Theorem | reldmresv 30392 | The scalar restriction is a proper operator, so it can be used with ovprc1 6962. (Contributed by Thierry Arnoux, 6-Sep-2018.) |
⊢ Rel dom ↾v | ||
Theorem | resvval 30393 | Value of structure restriction. (Contributed by Thierry Arnoux, 6-Sep-2018.) |
⊢ 𝑅 = (𝑊 ↾v 𝐴) & ⊢ 𝐹 = (Scalar‘𝑊) & ⊢ 𝐵 = (Base‘𝐹) ⇒ ⊢ ((𝑊 ∈ 𝑋 ∧ 𝐴 ∈ 𝑌) → 𝑅 = if(𝐵 ⊆ 𝐴, 𝑊, (𝑊 sSet 〈(Scalar‘ndx), (𝐹 ↾s 𝐴)〉))) | ||
Theorem | resvid2 30394 | General behavior of trivial restriction. (Contributed by Thierry Arnoux, 6-Sep-2018.) |
⊢ 𝑅 = (𝑊 ↾v 𝐴) & ⊢ 𝐹 = (Scalar‘𝑊) & ⊢ 𝐵 = (Base‘𝐹) ⇒ ⊢ ((𝐵 ⊆ 𝐴 ∧ 𝑊 ∈ 𝑋 ∧ 𝐴 ∈ 𝑌) → 𝑅 = 𝑊) | ||
Theorem | resvval2 30395 | Value of nontrivial structure restriction. (Contributed by Thierry Arnoux, 6-Sep-2018.) |
⊢ 𝑅 = (𝑊 ↾v 𝐴) & ⊢ 𝐹 = (Scalar‘𝑊) & ⊢ 𝐵 = (Base‘𝐹) ⇒ ⊢ ((¬ 𝐵 ⊆ 𝐴 ∧ 𝑊 ∈ 𝑋 ∧ 𝐴 ∈ 𝑌) → 𝑅 = (𝑊 sSet 〈(Scalar‘ndx), (𝐹 ↾s 𝐴)〉)) | ||
Theorem | resvsca 30396 | Base set of a structure restriction. (Contributed by Thierry Arnoux, 6-Sep-2018.) |
⊢ 𝑅 = (𝑊 ↾v 𝐴) & ⊢ 𝐹 = (Scalar‘𝑊) & ⊢ 𝐵 = (Base‘𝐹) ⇒ ⊢ (𝐴 ∈ 𝑉 → (𝐹 ↾s 𝐴) = (Scalar‘𝑅)) | ||
Theorem | resvlem 30397 | Other elements of a structure restriction. (Contributed by Thierry Arnoux, 6-Sep-2018.) |
⊢ 𝑅 = (𝑊 ↾v 𝐴) & ⊢ 𝐶 = (𝐸‘𝑊) & ⊢ 𝐸 = Slot 𝑁 & ⊢ 𝑁 ∈ ℕ & ⊢ 𝑁 ≠ 5 ⇒ ⊢ (𝐴 ∈ 𝑉 → 𝐶 = (𝐸‘𝑅)) | ||
Theorem | resvbas 30398 | Base is unaffected by scalar restriction. (Contributed by Thierry Arnoux, 6-Sep-2018.) |
⊢ 𝐻 = (𝐺 ↾v 𝐴) & ⊢ 𝐵 = (Base‘𝐺) ⇒ ⊢ (𝐴 ∈ 𝑉 → 𝐵 = (Base‘𝐻)) | ||
Theorem | resvplusg 30399 | +g is unaffected by scalar restriction. (Contributed by Thierry Arnoux, 6-Sep-2018.) |
⊢ 𝐻 = (𝐺 ↾v 𝐴) & ⊢ + = (+g‘𝐺) ⇒ ⊢ (𝐴 ∈ 𝑉 → + = (+g‘𝐻)) | ||
Theorem | resvvsca 30400 | ·𝑠 is unaffected by scalar restriction. (Contributed by Thierry Arnoux, 6-Sep-2018.) |
⊢ 𝐻 = (𝐺 ↾v 𝐴) & ⊢ · = ( ·𝑠 ‘𝐺) ⇒ ⊢ (𝐴 ∈ 𝑉 → · = ( ·𝑠 ‘𝐻)) |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |