![]() |
Metamath
Proof Explorer Theorem List (p. 304 of 491) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Color key: | ![]() (1-30946) |
![]() (30947-32469) |
![]() (32470-49035) |
Type | Label | Description |
---|---|---|
Statement | ||
Theorem | frgr3vlem1 30301* | Lemma 1 for frgr3v 30303. (Contributed by Alexander van der Vekens, 4-Oct-2017.) (Revised by AV, 29-Mar-2021.) |
⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐸 = (Edg‘𝐺) ⇒ ⊢ (((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍) ∧ (𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) → ∀𝑥∀𝑦(((𝑥 ∈ {𝐴, 𝐵, 𝐶} ∧ {{𝑥, 𝐴}, {𝑥, 𝐵}} ⊆ 𝐸) ∧ (𝑦 ∈ {𝐴, 𝐵, 𝐶} ∧ {{𝑦, 𝐴}, {𝑦, 𝐵}} ⊆ 𝐸)) → 𝑥 = 𝑦)) | ||
Theorem | frgr3vlem2 30302* | Lemma 2 for frgr3v 30303. (Contributed by Alexander van der Vekens, 4-Oct-2017.) (Revised by AV, 29-Mar-2021.) |
⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐸 = (Edg‘𝐺) ⇒ ⊢ (((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍) ∧ (𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶)) → ((𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph) → (∃!𝑥 ∈ {𝐴, 𝐵, 𝐶} {{𝑥, 𝐴}, {𝑥, 𝐵}} ⊆ 𝐸 ↔ ({𝐶, 𝐴} ∈ 𝐸 ∧ {𝐶, 𝐵} ∈ 𝐸)))) | ||
Theorem | frgr3v 30303 | Any graph with three vertices which are completely connected with each other is a friendship graph. (Contributed by Alexander van der Vekens, 5-Oct-2017.) (Revised by AV, 29-Mar-2021.) |
⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐸 = (Edg‘𝐺) ⇒ ⊢ (((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍) ∧ (𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶)) → ((𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph) → (𝐺 ∈ FriendGraph ↔ ({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸 ∧ {𝐶, 𝐴} ∈ 𝐸)))) | ||
Theorem | 1vwmgr 30304* | Every graph with one vertex (which may be connect with itself by (multiple) loops!) is a windmill graph. (Contributed by Alexander van der Vekens, 5-Oct-2017.) (Revised by AV, 31-Mar-2021.) |
⊢ ((𝐴 ∈ 𝑋 ∧ 𝑉 = {𝐴}) → ∃ℎ ∈ 𝑉 ∀𝑣 ∈ (𝑉 ∖ {ℎ})({𝑣, ℎ} ∈ 𝐸 ∧ ∃!𝑤 ∈ (𝑉 ∖ {ℎ}){𝑣, 𝑤} ∈ 𝐸)) | ||
Theorem | 3vfriswmgrlem 30305* | Lemma for 3vfriswmgr 30306. (Contributed by Alexander van der Vekens, 6-Oct-2017.) (Revised by AV, 31-Mar-2021.) |
⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐸 = (Edg‘𝐺) ⇒ ⊢ (((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐴 ≠ 𝐵) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) → ({𝐴, 𝐵} ∈ 𝐸 → ∃!𝑤 ∈ {𝐴, 𝐵} {𝐴, 𝑤} ∈ 𝐸)) | ||
Theorem | 3vfriswmgr 30306* | Every friendship graph with three (different) vertices is a windmill graph. (Contributed by Alexander van der Vekens, 6-Oct-2017.) (Revised by AV, 31-Mar-2021.) |
⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐸 = (Edg‘𝐺) ⇒ ⊢ (((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍) ∧ (𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶) ∧ 𝑉 = {𝐴, 𝐵, 𝐶}) → (𝐺 ∈ FriendGraph → ∃ℎ ∈ 𝑉 ∀𝑣 ∈ (𝑉 ∖ {ℎ})({𝑣, ℎ} ∈ 𝐸 ∧ ∃!𝑤 ∈ (𝑉 ∖ {ℎ}){𝑣, 𝑤} ∈ 𝐸))) | ||
Theorem | 1to2vfriswmgr 30307* | Every friendship graph with one or two vertices is a windmill graph. (Contributed by Alexander van der Vekens, 6-Oct-2017.) (Revised by AV, 31-Mar-2021.) |
⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐸 = (Edg‘𝐺) ⇒ ⊢ ((𝐴 ∈ 𝑋 ∧ (𝑉 = {𝐴} ∨ 𝑉 = {𝐴, 𝐵})) → (𝐺 ∈ FriendGraph → ∃ℎ ∈ 𝑉 ∀𝑣 ∈ (𝑉 ∖ {ℎ})({𝑣, ℎ} ∈ 𝐸 ∧ ∃!𝑤 ∈ (𝑉 ∖ {ℎ}){𝑣, 𝑤} ∈ 𝐸))) | ||
Theorem | 1to3vfriswmgr 30308* | Every friendship graph with one, two or three vertices is a windmill graph. (Contributed by Alexander van der Vekens, 6-Oct-2017.) (Revised by AV, 31-Mar-2021.) |
⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐸 = (Edg‘𝐺) ⇒ ⊢ ((𝐴 ∈ 𝑋 ∧ (𝑉 = {𝐴} ∨ 𝑉 = {𝐴, 𝐵} ∨ 𝑉 = {𝐴, 𝐵, 𝐶})) → (𝐺 ∈ FriendGraph → ∃ℎ ∈ 𝑉 ∀𝑣 ∈ (𝑉 ∖ {ℎ})({𝑣, ℎ} ∈ 𝐸 ∧ ∃!𝑤 ∈ (𝑉 ∖ {ℎ}){𝑣, 𝑤} ∈ 𝐸))) | ||
Theorem | 1to3vfriendship 30309* | The friendship theorem for small graphs: In every friendship graph with one, two or three vertices, there is a vertex which is adjacent to all other vertices. (Contributed by Alexander van der Vekens, 6-Oct-2017.) (Revised by AV, 31-Mar-2021.) |
⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐸 = (Edg‘𝐺) ⇒ ⊢ ((𝐴 ∈ 𝑋 ∧ (𝑉 = {𝐴} ∨ 𝑉 = {𝐴, 𝐵} ∨ 𝑉 = {𝐴, 𝐵, 𝐶})) → (𝐺 ∈ FriendGraph → ∃𝑣 ∈ 𝑉 ∀𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ 𝐸)) | ||
Theorem | 2pthfrgrrn 30310* | Between any two (different) vertices in a friendship graph is a 2-path (path of length 2), see Proposition 1(b) of [MertziosUnger] p. 153 : "A friendship graph G ..., as well as the distance between any two nodes in G is at most two". (Contributed by Alexander van der Vekens, 15-Nov-2017.) (Revised by AV, 1-Apr-2021.) |
⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐸 = (Edg‘𝐺) ⇒ ⊢ (𝐺 ∈ FriendGraph → ∀𝑎 ∈ 𝑉 ∀𝑐 ∈ (𝑉 ∖ {𝑎})∃𝑏 ∈ 𝑉 ({𝑎, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝑐} ∈ 𝐸)) | ||
Theorem | 2pthfrgrrn2 30311* | Between any two (different) vertices in a friendship graph is a 2-path (path of length 2), see Proposition 1(b) of [MertziosUnger] p. 153 : "A friendship graph G ..., as well as the distance between any two nodes in G is at most two". (Contributed by Alexander van der Vekens, 16-Nov-2017.) (Revised by AV, 1-Apr-2021.) |
⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐸 = (Edg‘𝐺) ⇒ ⊢ (𝐺 ∈ FriendGraph → ∀𝑎 ∈ 𝑉 ∀𝑐 ∈ (𝑉 ∖ {𝑎})∃𝑏 ∈ 𝑉 (({𝑎, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝑐} ∈ 𝐸) ∧ (𝑎 ≠ 𝑏 ∧ 𝑏 ≠ 𝑐))) | ||
Theorem | 2pthfrgr 30312* | Between any two (different) vertices in a friendship graph, tere is a 2-path (simple path of length 2), see Proposition 1(b) of [MertziosUnger] p. 153 : "A friendship graph G ..., as well as the distance between any two nodes in G is at most two". (Contributed by Alexander van der Vekens, 6-Dec-2017.) (Revised by AV, 1-Apr-2021.) |
⊢ 𝑉 = (Vtx‘𝐺) ⇒ ⊢ (𝐺 ∈ FriendGraph → ∀𝑎 ∈ 𝑉 ∀𝑏 ∈ (𝑉 ∖ {𝑎})∃𝑓∃𝑝(𝑓(𝑎(SPathsOn‘𝐺)𝑏)𝑝 ∧ (♯‘𝑓) = 2)) | ||
Theorem | 3cyclfrgrrn1 30313* | Every vertex in a friendship graph (with more than 1 vertex) is part of a 3-cycle. (Contributed by Alexander van der Vekens, 16-Nov-2017.) (Revised by AV, 2-Apr-2021.) |
⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐸 = (Edg‘𝐺) ⇒ ⊢ ((𝐺 ∈ FriendGraph ∧ (𝐴 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉) ∧ 𝐴 ≠ 𝐶) → ∃𝑏 ∈ 𝑉 ∃𝑐 ∈ 𝑉 ({𝐴, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝑐} ∈ 𝐸 ∧ {𝑐, 𝐴} ∈ 𝐸)) | ||
Theorem | 3cyclfrgrrn 30314* | Every vertex in a friendship graph (with more than 1 vertex) is part of a 3-cycle. (Contributed by Alexander van der Vekens, 16-Nov-2017.) (Revised by AV, 2-Apr-2021.) |
⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐸 = (Edg‘𝐺) ⇒ ⊢ ((𝐺 ∈ FriendGraph ∧ 1 < (♯‘𝑉)) → ∀𝑎 ∈ 𝑉 ∃𝑏 ∈ 𝑉 ∃𝑐 ∈ 𝑉 ({𝑎, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝑐} ∈ 𝐸 ∧ {𝑐, 𝑎} ∈ 𝐸)) | ||
Theorem | 3cyclfrgrrn2 30315* | Every vertex in a friendship graph (with more than 1 vertex) is part of a 3-cycle. (Contributed by Alexander van der Vekens, 10-Dec-2017.) (Revised by AV, 2-Apr-2021.) |
⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐸 = (Edg‘𝐺) ⇒ ⊢ ((𝐺 ∈ FriendGraph ∧ 1 < (♯‘𝑉)) → ∀𝑎 ∈ 𝑉 ∃𝑏 ∈ 𝑉 ∃𝑐 ∈ 𝑉 (𝑏 ≠ 𝑐 ∧ ({𝑎, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝑐} ∈ 𝐸 ∧ {𝑐, 𝑎} ∈ 𝐸))) | ||
Theorem | 3cyclfrgr 30316* | Every vertex in a friendship graph (with more than 1 vertex) is part of a 3-cycle. (Contributed by Alexander van der Vekens, 19-Nov-2017.) (Revised by AV, 2-Apr-2021.) |
⊢ 𝑉 = (Vtx‘𝐺) ⇒ ⊢ ((𝐺 ∈ FriendGraph ∧ 1 < (♯‘𝑉)) → ∀𝑣 ∈ 𝑉 ∃𝑓∃𝑝(𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑓) = 3 ∧ (𝑝‘0) = 𝑣)) | ||
Theorem | 4cycl2v2nb 30317 | In a (maybe degenerate) 4-cycle, two vertice have two (maybe not different) common neighbors. (Contributed by Alexander van der Vekens, 19-Nov-2017.) (Revised by AV, 2-Apr-2021.) |
⊢ ((({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸) ∧ ({𝐶, 𝐷} ∈ 𝐸 ∧ {𝐷, 𝐴} ∈ 𝐸)) → ({{𝐴, 𝐵}, {𝐵, 𝐶}} ⊆ 𝐸 ∧ {{𝐴, 𝐷}, {𝐷, 𝐶}} ⊆ 𝐸)) | ||
Theorem | 4cycl2vnunb 30318* | In a 4-cycle, two distinct vertices have not a unique common neighbor. (Contributed by Alexander van der Vekens, 19-Nov-2017.) (Revised by AV, 2-Apr-2021.) |
⊢ ((({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸) ∧ ({𝐶, 𝐷} ∈ 𝐸 ∧ {𝐷, 𝐴} ∈ 𝐸) ∧ (𝐵 ∈ 𝑉 ∧ 𝐷 ∈ 𝑉 ∧ 𝐵 ≠ 𝐷)) → ¬ ∃!𝑥 ∈ 𝑉 {{𝐴, 𝑥}, {𝑥, 𝐶}} ⊆ 𝐸) | ||
Theorem | n4cyclfrgr 30319 | There is no 4-cycle in a friendship graph, see Proposition 1(a) of [MertziosUnger] p. 153 : "A friendship graph G contains no C4 as a subgraph ...". (Contributed by Alexander van der Vekens, 19-Nov-2017.) (Revised by AV, 2-Apr-2021.) |
⊢ ((𝐺 ∈ FriendGraph ∧ 𝐹(Cycles‘𝐺)𝑃) → (♯‘𝐹) ≠ 4) | ||
Theorem | 4cyclusnfrgr 30320 | A graph with a 4-cycle is not a friendhip graph. (Contributed by Alexander van der Vekens, 19-Dec-2017.) (Revised by AV, 2-Apr-2021.) |
⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐸 = (Edg‘𝐺) ⇒ ⊢ ((𝐺 ∈ USGraph ∧ (𝐴 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ∧ 𝐴 ≠ 𝐶) ∧ (𝐵 ∈ 𝑉 ∧ 𝐷 ∈ 𝑉 ∧ 𝐵 ≠ 𝐷)) → ((({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸) ∧ ({𝐶, 𝐷} ∈ 𝐸 ∧ {𝐷, 𝐴} ∈ 𝐸)) → 𝐺 ∉ FriendGraph )) | ||
Theorem | frgrnbnb 30321 | If two neighbors 𝑈 and 𝑊 of a vertex 𝑋 have a common neighbor 𝐴 in a friendship graph, then this common neighbor 𝐴 must be the vertex 𝑋. (Contributed by Alexander van der Vekens, 19-Dec-2017.) (Revised by AV, 2-Apr-2021.) (Proof shortened by AV, 13-Feb-2022.) |
⊢ 𝐸 = (Edg‘𝐺) & ⊢ 𝐷 = (𝐺 NeighbVtx 𝑋) ⇒ ⊢ ((𝐺 ∈ FriendGraph ∧ (𝑈 ∈ 𝐷 ∧ 𝑊 ∈ 𝐷) ∧ 𝑈 ≠ 𝑊) → (({𝑈, 𝐴} ∈ 𝐸 ∧ {𝑊, 𝐴} ∈ 𝐸) → 𝐴 = 𝑋)) | ||
Theorem | frgrconngr 30322 | A friendship graph is connected, see remark 1 in [MertziosUnger] p. 153 (after Proposition 1): "An arbitrary friendship graph has to be connected, ... ". (Contributed by Alexander van der Vekens, 6-Dec-2017.) (Revised by AV, 1-Apr-2021.) |
⊢ (𝐺 ∈ FriendGraph → 𝐺 ∈ ConnGraph) | ||
Theorem | vdgn0frgrv2 30323 | A vertex in a friendship graph with more than one vertex cannot have degree 0. (Contributed by Alexander van der Vekens, 9-Dec-2017.) (Revised by AV, 4-Apr-2021.) |
⊢ 𝑉 = (Vtx‘𝐺) ⇒ ⊢ ((𝐺 ∈ FriendGraph ∧ 𝑁 ∈ 𝑉) → (1 < (♯‘𝑉) → ((VtxDeg‘𝐺)‘𝑁) ≠ 0)) | ||
Theorem | vdgn1frgrv2 30324 | Any vertex in a friendship graph does not have degree 1, see remark 2 in [MertziosUnger] p. 153 (after Proposition 1): "... no node v of it [a friendship graph] may have deg(v) = 1.". (Contributed by Alexander van der Vekens, 10-Dec-2017.) (Revised by AV, 4-Apr-2021.) |
⊢ 𝑉 = (Vtx‘𝐺) ⇒ ⊢ ((𝐺 ∈ FriendGraph ∧ 𝑁 ∈ 𝑉) → (1 < (♯‘𝑉) → ((VtxDeg‘𝐺)‘𝑁) ≠ 1)) | ||
Theorem | vdgn1frgrv3 30325* | Any vertex in a friendship graph does not have degree 1, see remark 2 in [MertziosUnger] p. 153 (after Proposition 1): "... no node v of it [a friendship graph] may have deg(v) = 1.". (Contributed by Alexander van der Vekens, 4-Sep-2018.) (Revised by AV, 4-Apr-2021.) |
⊢ 𝑉 = (Vtx‘𝐺) ⇒ ⊢ ((𝐺 ∈ FriendGraph ∧ 1 < (♯‘𝑉)) → ∀𝑣 ∈ 𝑉 ((VtxDeg‘𝐺)‘𝑣) ≠ 1) | ||
Theorem | vdgfrgrgt2 30326 | Any vertex in a friendship graph (with more than one vertex - then, actually, the graph must have at least three vertices, because otherwise, it would not be a friendship graph) has at least degree 2, see remark 3 in [MertziosUnger] p. 153 (after Proposition 1): "It follows that deg(v) >= 2 for every node v of a friendship graph". (Contributed by Alexander van der Vekens, 21-Dec-2017.) (Revised by AV, 5-Apr-2021.) |
⊢ 𝑉 = (Vtx‘𝐺) ⇒ ⊢ ((𝐺 ∈ FriendGraph ∧ 𝑁 ∈ 𝑉) → (1 < (♯‘𝑉) → 2 ≤ ((VtxDeg‘𝐺)‘𝑁))) | ||
In this section, the friendship theorem friendship 30427 is proven by formalizing Huneke's proof, see [Huneke] pp. 1-2. The three claims (see frgrncvvdeq 30337, frgrregorufr 30353 and frrusgrord0 30368) and additional statements (numbered in the order of their occurrence in the paper) in Huneke's proof are cited in the corresponding theorems. | ||
Theorem | frgrncvvdeqlem1 30327 | Lemma 1 for frgrncvvdeq 30337. (Contributed by Alexander van der Vekens, 23-Dec-2017.) (Revised by AV, 8-May-2021.) (Proof shortened by AV, 12-Feb-2022.) |
⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐸 = (Edg‘𝐺) & ⊢ 𝐷 = (𝐺 NeighbVtx 𝑋) & ⊢ 𝑁 = (𝐺 NeighbVtx 𝑌) & ⊢ (𝜑 → 𝑋 ∈ 𝑉) & ⊢ (𝜑 → 𝑌 ∈ 𝑉) & ⊢ (𝜑 → 𝑋 ≠ 𝑌) & ⊢ (𝜑 → 𝑌 ∉ 𝐷) & ⊢ (𝜑 → 𝐺 ∈ FriendGraph ) & ⊢ 𝐴 = (𝑥 ∈ 𝐷 ↦ (℩𝑦 ∈ 𝑁 {𝑥, 𝑦} ∈ 𝐸)) ⇒ ⊢ (𝜑 → 𝑋 ∉ 𝑁) | ||
Theorem | frgrncvvdeqlem2 30328* | Lemma 2 for frgrncvvdeq 30337. In a friendship graph, for each neighbor of a vertex there is exactly one neighbor of another vertex so that there is an edge between these two neighbors. (Contributed by Alexander van der Vekens, 22-Dec-2017.) (Revised by AV, 10-May-2021.) (Proof shortened by AV, 12-Feb-2022.) |
⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐸 = (Edg‘𝐺) & ⊢ 𝐷 = (𝐺 NeighbVtx 𝑋) & ⊢ 𝑁 = (𝐺 NeighbVtx 𝑌) & ⊢ (𝜑 → 𝑋 ∈ 𝑉) & ⊢ (𝜑 → 𝑌 ∈ 𝑉) & ⊢ (𝜑 → 𝑋 ≠ 𝑌) & ⊢ (𝜑 → 𝑌 ∉ 𝐷) & ⊢ (𝜑 → 𝐺 ∈ FriendGraph ) & ⊢ 𝐴 = (𝑥 ∈ 𝐷 ↦ (℩𝑦 ∈ 𝑁 {𝑥, 𝑦} ∈ 𝐸)) ⇒ ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐷) → ∃!𝑦 ∈ 𝑁 {𝑥, 𝑦} ∈ 𝐸) | ||
Theorem | frgrncvvdeqlem3 30329* | Lemma 3 for frgrncvvdeq 30337. The unique neighbor of a vertex (expressed by a restricted iota) is the intersection of the corresponding neighborhoods. (Contributed by Alexander van der Vekens, 18-Dec-2017.) (Revised by AV, 10-May-2021.) (Proof shortened by AV, 12-Feb-2022.) |
⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐸 = (Edg‘𝐺) & ⊢ 𝐷 = (𝐺 NeighbVtx 𝑋) & ⊢ 𝑁 = (𝐺 NeighbVtx 𝑌) & ⊢ (𝜑 → 𝑋 ∈ 𝑉) & ⊢ (𝜑 → 𝑌 ∈ 𝑉) & ⊢ (𝜑 → 𝑋 ≠ 𝑌) & ⊢ (𝜑 → 𝑌 ∉ 𝐷) & ⊢ (𝜑 → 𝐺 ∈ FriendGraph ) & ⊢ 𝐴 = (𝑥 ∈ 𝐷 ↦ (℩𝑦 ∈ 𝑁 {𝑥, 𝑦} ∈ 𝐸)) ⇒ ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐷) → {(℩𝑦 ∈ 𝑁 {𝑥, 𝑦} ∈ 𝐸)} = ((𝐺 NeighbVtx 𝑥) ∩ 𝑁)) | ||
Theorem | frgrncvvdeqlem4 30330* | Lemma 4 for frgrncvvdeq 30337. The mapping of neighbors to neighbors is a function. (Contributed by Alexander van der Vekens, 22-Dec-2017.) (Revised by AV, 10-May-2021.) |
⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐸 = (Edg‘𝐺) & ⊢ 𝐷 = (𝐺 NeighbVtx 𝑋) & ⊢ 𝑁 = (𝐺 NeighbVtx 𝑌) & ⊢ (𝜑 → 𝑋 ∈ 𝑉) & ⊢ (𝜑 → 𝑌 ∈ 𝑉) & ⊢ (𝜑 → 𝑋 ≠ 𝑌) & ⊢ (𝜑 → 𝑌 ∉ 𝐷) & ⊢ (𝜑 → 𝐺 ∈ FriendGraph ) & ⊢ 𝐴 = (𝑥 ∈ 𝐷 ↦ (℩𝑦 ∈ 𝑁 {𝑥, 𝑦} ∈ 𝐸)) ⇒ ⊢ (𝜑 → 𝐴:𝐷⟶𝑁) | ||
Theorem | frgrncvvdeqlem5 30331* | Lemma 5 for frgrncvvdeq 30337. The mapping of neighbors to neighbors applied on a vertex is the intersection of the corresponding neighborhoods. (Contributed by Alexander van der Vekens, 23-Dec-2017.) (Revised by AV, 10-May-2021.) |
⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐸 = (Edg‘𝐺) & ⊢ 𝐷 = (𝐺 NeighbVtx 𝑋) & ⊢ 𝑁 = (𝐺 NeighbVtx 𝑌) & ⊢ (𝜑 → 𝑋 ∈ 𝑉) & ⊢ (𝜑 → 𝑌 ∈ 𝑉) & ⊢ (𝜑 → 𝑋 ≠ 𝑌) & ⊢ (𝜑 → 𝑌 ∉ 𝐷) & ⊢ (𝜑 → 𝐺 ∈ FriendGraph ) & ⊢ 𝐴 = (𝑥 ∈ 𝐷 ↦ (℩𝑦 ∈ 𝑁 {𝑥, 𝑦} ∈ 𝐸)) ⇒ ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐷) → {(𝐴‘𝑥)} = ((𝐺 NeighbVtx 𝑥) ∩ 𝑁)) | ||
Theorem | frgrncvvdeqlem6 30332* | Lemma 6 for frgrncvvdeq 30337. (Contributed by Alexander van der Vekens, 23-Dec-2017.) (Revised by AV, 10-May-2021.) (Proof shortened by AV, 30-Dec-2021.) |
⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐸 = (Edg‘𝐺) & ⊢ 𝐷 = (𝐺 NeighbVtx 𝑋) & ⊢ 𝑁 = (𝐺 NeighbVtx 𝑌) & ⊢ (𝜑 → 𝑋 ∈ 𝑉) & ⊢ (𝜑 → 𝑌 ∈ 𝑉) & ⊢ (𝜑 → 𝑋 ≠ 𝑌) & ⊢ (𝜑 → 𝑌 ∉ 𝐷) & ⊢ (𝜑 → 𝐺 ∈ FriendGraph ) & ⊢ 𝐴 = (𝑥 ∈ 𝐷 ↦ (℩𝑦 ∈ 𝑁 {𝑥, 𝑦} ∈ 𝐸)) ⇒ ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐷) → {𝑥, (𝐴‘𝑥)} ∈ 𝐸) | ||
Theorem | frgrncvvdeqlem7 30333* | Lemma 7 for frgrncvvdeq 30337. This corresponds to statement 1 in [Huneke] p. 1: "This common neighbor cannot be x, as x and y are not adjacent.". This is only an observation, which is not required to proof the friendship theorem. (Contributed by Alexander van der Vekens, 23-Dec-2017.) (Revised by AV, 10-May-2021.) |
⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐸 = (Edg‘𝐺) & ⊢ 𝐷 = (𝐺 NeighbVtx 𝑋) & ⊢ 𝑁 = (𝐺 NeighbVtx 𝑌) & ⊢ (𝜑 → 𝑋 ∈ 𝑉) & ⊢ (𝜑 → 𝑌 ∈ 𝑉) & ⊢ (𝜑 → 𝑋 ≠ 𝑌) & ⊢ (𝜑 → 𝑌 ∉ 𝐷) & ⊢ (𝜑 → 𝐺 ∈ FriendGraph ) & ⊢ 𝐴 = (𝑥 ∈ 𝐷 ↦ (℩𝑦 ∈ 𝑁 {𝑥, 𝑦} ∈ 𝐸)) ⇒ ⊢ (𝜑 → ∀𝑥 ∈ 𝐷 (𝐴‘𝑥) ≠ 𝑋) | ||
Theorem | frgrncvvdeqlem8 30334* | Lemma 8 for frgrncvvdeq 30337. This corresponds to statement 2 in [Huneke] p. 1: "The map is one-to-one since z in N(x) is uniquely determined as the common neighbor of x and a(x)". (Contributed by Alexander van der Vekens, 23-Dec-2017.) (Revised by AV, 10-May-2021.) (Revised by AV, 30-Dec-2021.) |
⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐸 = (Edg‘𝐺) & ⊢ 𝐷 = (𝐺 NeighbVtx 𝑋) & ⊢ 𝑁 = (𝐺 NeighbVtx 𝑌) & ⊢ (𝜑 → 𝑋 ∈ 𝑉) & ⊢ (𝜑 → 𝑌 ∈ 𝑉) & ⊢ (𝜑 → 𝑋 ≠ 𝑌) & ⊢ (𝜑 → 𝑌 ∉ 𝐷) & ⊢ (𝜑 → 𝐺 ∈ FriendGraph ) & ⊢ 𝐴 = (𝑥 ∈ 𝐷 ↦ (℩𝑦 ∈ 𝑁 {𝑥, 𝑦} ∈ 𝐸)) ⇒ ⊢ (𝜑 → 𝐴:𝐷–1-1→𝑁) | ||
Theorem | frgrncvvdeqlem9 30335* | Lemma 9 for frgrncvvdeq 30337. This corresponds to statement 3 in [Huneke] p. 1: "By symmetry the map is onto". (Contributed by Alexander van der Vekens, 24-Dec-2017.) (Revised by AV, 10-May-2021.) (Proof shortened by AV, 12-Feb-2022.) |
⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐸 = (Edg‘𝐺) & ⊢ 𝐷 = (𝐺 NeighbVtx 𝑋) & ⊢ 𝑁 = (𝐺 NeighbVtx 𝑌) & ⊢ (𝜑 → 𝑋 ∈ 𝑉) & ⊢ (𝜑 → 𝑌 ∈ 𝑉) & ⊢ (𝜑 → 𝑋 ≠ 𝑌) & ⊢ (𝜑 → 𝑌 ∉ 𝐷) & ⊢ (𝜑 → 𝐺 ∈ FriendGraph ) & ⊢ 𝐴 = (𝑥 ∈ 𝐷 ↦ (℩𝑦 ∈ 𝑁 {𝑥, 𝑦} ∈ 𝐸)) ⇒ ⊢ (𝜑 → 𝐴:𝐷–onto→𝑁) | ||
Theorem | frgrncvvdeqlem10 30336* | Lemma 10 for frgrncvvdeq 30337. (Contributed by Alexander van der Vekens, 24-Dec-2017.) (Revised by AV, 10-May-2021.) (Proof shortened by AV, 30-Dec-2021.) |
⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐸 = (Edg‘𝐺) & ⊢ 𝐷 = (𝐺 NeighbVtx 𝑋) & ⊢ 𝑁 = (𝐺 NeighbVtx 𝑌) & ⊢ (𝜑 → 𝑋 ∈ 𝑉) & ⊢ (𝜑 → 𝑌 ∈ 𝑉) & ⊢ (𝜑 → 𝑋 ≠ 𝑌) & ⊢ (𝜑 → 𝑌 ∉ 𝐷) & ⊢ (𝜑 → 𝐺 ∈ FriendGraph ) & ⊢ 𝐴 = (𝑥 ∈ 𝐷 ↦ (℩𝑦 ∈ 𝑁 {𝑥, 𝑦} ∈ 𝐸)) ⇒ ⊢ (𝜑 → 𝐴:𝐷–1-1-onto→𝑁) | ||
Theorem | frgrncvvdeq 30337* | In a friendship graph, two vertices which are not connected by an edge have the same degree. This corresponds to claim 1 in [Huneke] p. 1: "If x,y are elements of (the friendship graph) G and are not adjacent, then they have the same degree (i.e., the same number of adjacent vertices).". (Contributed by Alexander van der Vekens, 19-Dec-2017.) (Revised by AV, 10-May-2021.) |
⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐷 = (VtxDeg‘𝐺) ⇒ ⊢ (𝐺 ∈ FriendGraph → ∀𝑥 ∈ 𝑉 ∀𝑦 ∈ (𝑉 ∖ {𝑥})(𝑦 ∉ (𝐺 NeighbVtx 𝑥) → (𝐷‘𝑥) = (𝐷‘𝑦))) | ||
Theorem | frgrwopreglem4a 30338 | In a friendship graph any two vertices with different degrees are connected. Alternate version of frgrwopreglem4 30343 without a fixed degree and without using the sets 𝐴 and 𝐵. (Contributed by Alexander van der Vekens, 30-Dec-2017.) (Revised by AV, 4-Feb-2022.) |
⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐷 = (VtxDeg‘𝐺) & ⊢ 𝐸 = (Edg‘𝐺) ⇒ ⊢ ((𝐺 ∈ FriendGraph ∧ (𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉) ∧ (𝐷‘𝑋) ≠ (𝐷‘𝑌)) → {𝑋, 𝑌} ∈ 𝐸) | ||
Theorem | frgrwopreglem5a 30339 | If a friendship graph has two vertices with the same degree and two other vertices with different degrees, then there is a 4-cycle in the graph. Alternate version of frgrwopreglem5 30349 without a fixed degree and without using the sets 𝐴 and 𝐵. (Contributed by Alexander van der Vekens, 31-Dec-2017.) (Revised by AV, 4-Feb-2022.) |
⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐷 = (VtxDeg‘𝐺) & ⊢ 𝐸 = (Edg‘𝐺) ⇒ ⊢ ((𝐺 ∈ FriendGraph ∧ ((𝐴 ∈ 𝑉 ∧ 𝑋 ∈ 𝑉) ∧ (𝐵 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉)) ∧ ((𝐷‘𝐴) = (𝐷‘𝑋) ∧ (𝐷‘𝐴) ≠ (𝐷‘𝐵) ∧ (𝐷‘𝑋) ≠ (𝐷‘𝑌))) → (({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝑋} ∈ 𝐸) ∧ ({𝑋, 𝑌} ∈ 𝐸 ∧ {𝑌, 𝐴} ∈ 𝐸))) | ||
Theorem | frgrwopreglem1 30340* | Lemma 1 for frgrwopreg 30351: the classes 𝐴 and 𝐵 are sets. The definition of 𝐴 and 𝐵 corresponds to definition 3 in [Huneke] p. 2: "Let A be the set of all vertices of degree k, let B be the set of all vertices of degree different from k, ..." (Contributed by Alexander van der Vekens, 31-Dec-2017.) (Revised by AV, 10-May-2021.) |
⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐷 = (VtxDeg‘𝐺) & ⊢ 𝐴 = {𝑥 ∈ 𝑉 ∣ (𝐷‘𝑥) = 𝐾} & ⊢ 𝐵 = (𝑉 ∖ 𝐴) ⇒ ⊢ (𝐴 ∈ V ∧ 𝐵 ∈ V) | ||
Theorem | frgrwopreglem2 30341* | Lemma 2 for frgrwopreg 30351. If the set 𝐴 of vertices of degree 𝐾 is not empty in a friendship graph with at least two vertices, then 𝐾 must be greater than 1 . This is only an observation, which is not required for the proof the friendship theorem. (Contributed by Alexander van der Vekens, 30-Dec-2017.) (Revised by AV, 2-Jan-2022.) |
⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐷 = (VtxDeg‘𝐺) & ⊢ 𝐴 = {𝑥 ∈ 𝑉 ∣ (𝐷‘𝑥) = 𝐾} & ⊢ 𝐵 = (𝑉 ∖ 𝐴) ⇒ ⊢ ((𝐺 ∈ FriendGraph ∧ 1 < (♯‘𝑉) ∧ 𝐴 ≠ ∅) → 2 ≤ 𝐾) | ||
Theorem | frgrwopreglem3 30342* | Lemma 3 for frgrwopreg 30351. The vertices in the sets 𝐴 and 𝐵 have different degrees. (Contributed by Alexander van der Vekens, 30-Dec-2017.) (Revised by AV, 10-May-2021.) (Proof shortened by AV, 2-Jan-2022.) |
⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐷 = (VtxDeg‘𝐺) & ⊢ 𝐴 = {𝑥 ∈ 𝑉 ∣ (𝐷‘𝑥) = 𝐾} & ⊢ 𝐵 = (𝑉 ∖ 𝐴) ⇒ ⊢ ((𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵) → (𝐷‘𝑋) ≠ (𝐷‘𝑌)) | ||
Theorem | frgrwopreglem4 30343* | Lemma 4 for frgrwopreg 30351. In a friendship graph each vertex with degree 𝐾 is connected with any vertex with degree other than 𝐾. This corresponds to statement 4 in [Huneke] p. 2: "By the first claim, every vertex in A is adjacent to every vertex in B.". (Contributed by Alexander van der Vekens, 30-Dec-2017.) (Revised by AV, 10-May-2021.) (Proof shortened by AV, 4-Feb-2022.) |
⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐷 = (VtxDeg‘𝐺) & ⊢ 𝐴 = {𝑥 ∈ 𝑉 ∣ (𝐷‘𝑥) = 𝐾} & ⊢ 𝐵 = (𝑉 ∖ 𝐴) & ⊢ 𝐸 = (Edg‘𝐺) ⇒ ⊢ (𝐺 ∈ FriendGraph → ∀𝑎 ∈ 𝐴 ∀𝑏 ∈ 𝐵 {𝑎, 𝑏} ∈ 𝐸) | ||
Theorem | frgrwopregasn 30344* | According to statement 5 in [Huneke] p. 2: "If A ... is a singleton, then that singleton is a universal friend". This version of frgrwopreg1 30346 is stricter (claiming that the singleton itself is a universal friend instead of claiming the existence of a universal friend only) and therefore closer to Huneke's statement. This strict variant, however, is not required for the proof of the friendship theorem. (Contributed by Alexander van der Vekens, 1-Jan-2018.) (Revised by AV, 4-Feb-2022.) |
⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐷 = (VtxDeg‘𝐺) & ⊢ 𝐴 = {𝑥 ∈ 𝑉 ∣ (𝐷‘𝑥) = 𝐾} & ⊢ 𝐵 = (𝑉 ∖ 𝐴) & ⊢ 𝐸 = (Edg‘𝐺) ⇒ ⊢ ((𝐺 ∈ FriendGraph ∧ 𝑋 ∈ 𝑉 ∧ 𝐴 = {𝑋}) → ∀𝑤 ∈ (𝑉 ∖ {𝑋}){𝑋, 𝑤} ∈ 𝐸) | ||
Theorem | frgrwopregbsn 30345* | According to statement 5 in [Huneke] p. 2: "If ... B is a singleton, then that singleton is a universal friend". This version of frgrwopreg2 30347 is stricter (claiming that the singleton itself is a universal friend instead of claiming the existence of a universal friend only) and therefore closer to Huneke's statement. This strict variant, however, is not required for the proof of the friendship theorem. (Contributed by AV, 4-Feb-2022.) |
⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐷 = (VtxDeg‘𝐺) & ⊢ 𝐴 = {𝑥 ∈ 𝑉 ∣ (𝐷‘𝑥) = 𝐾} & ⊢ 𝐵 = (𝑉 ∖ 𝐴) & ⊢ 𝐸 = (Edg‘𝐺) ⇒ ⊢ ((𝐺 ∈ FriendGraph ∧ 𝑋 ∈ 𝑉 ∧ 𝐵 = {𝑋}) → ∀𝑤 ∈ (𝑉 ∖ {𝑋}){𝑋, 𝑤} ∈ 𝐸) | ||
Theorem | frgrwopreg1 30346* | According to statement 5 in [Huneke] p. 2: "If A ... is a singleton, then that singleton is a universal friend". (Contributed by Alexander van der Vekens, 1-Jan-2018.) (Proof shortened by AV, 4-Feb-2022.) |
⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐷 = (VtxDeg‘𝐺) & ⊢ 𝐴 = {𝑥 ∈ 𝑉 ∣ (𝐷‘𝑥) = 𝐾} & ⊢ 𝐵 = (𝑉 ∖ 𝐴) & ⊢ 𝐸 = (Edg‘𝐺) ⇒ ⊢ ((𝐺 ∈ FriendGraph ∧ (♯‘𝐴) = 1) → ∃𝑣 ∈ 𝑉 ∀𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ 𝐸) | ||
Theorem | frgrwopreg2 30347* | According to statement 5 in [Huneke] p. 2: "If ... B is a singleton, then that singleton is a universal friend". (Contributed by Alexander van der Vekens, 1-Jan-2018.) (Proof shortened by AV, 4-Feb-2022.) |
⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐷 = (VtxDeg‘𝐺) & ⊢ 𝐴 = {𝑥 ∈ 𝑉 ∣ (𝐷‘𝑥) = 𝐾} & ⊢ 𝐵 = (𝑉 ∖ 𝐴) & ⊢ 𝐸 = (Edg‘𝐺) ⇒ ⊢ ((𝐺 ∈ FriendGraph ∧ (♯‘𝐵) = 1) → ∃𝑣 ∈ 𝑉 ∀𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ 𝐸) | ||
Theorem | frgrwopreglem5lem 30348* | Lemma for frgrwopreglem5 30349. (Contributed by AV, 5-Feb-2022.) |
⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐷 = (VtxDeg‘𝐺) & ⊢ 𝐴 = {𝑥 ∈ 𝑉 ∣ (𝐷‘𝑥) = 𝐾} & ⊢ 𝐵 = (𝑉 ∖ 𝐴) & ⊢ 𝐸 = (Edg‘𝐺) ⇒ ⊢ (((𝑎 ∈ 𝐴 ∧ 𝑥 ∈ 𝐴) ∧ (𝑏 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → ((𝐷‘𝑎) = (𝐷‘𝑥) ∧ (𝐷‘𝑎) ≠ (𝐷‘𝑏) ∧ (𝐷‘𝑥) ≠ (𝐷‘𝑦))) | ||
Theorem | frgrwopreglem5 30349* | Lemma 5 for frgrwopreg 30351. If 𝐴 as well as 𝐵 contain at least two vertices, there is a 4-cycle in a friendship graph. This corresponds to statement 6 in [Huneke] p. 2: "... otherwise, there are two different vertices in A, and they have two common neighbors in B, ...". (Contributed by Alexander van der Vekens, 31-Dec-2017.) (Proof shortened by AV, 5-Feb-2022.) |
⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐷 = (VtxDeg‘𝐺) & ⊢ 𝐴 = {𝑥 ∈ 𝑉 ∣ (𝐷‘𝑥) = 𝐾} & ⊢ 𝐵 = (𝑉 ∖ 𝐴) & ⊢ 𝐸 = (Edg‘𝐺) ⇒ ⊢ ((𝐺 ∈ FriendGraph ∧ 1 < (♯‘𝐴) ∧ 1 < (♯‘𝐵)) → ∃𝑎 ∈ 𝐴 ∃𝑥 ∈ 𝐴 ∃𝑏 ∈ 𝐵 ∃𝑦 ∈ 𝐵 ((𝑎 ≠ 𝑥 ∧ 𝑏 ≠ 𝑦) ∧ ({𝑎, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝑥} ∈ 𝐸) ∧ ({𝑥, 𝑦} ∈ 𝐸 ∧ {𝑦, 𝑎} ∈ 𝐸))) | ||
Theorem | frgrwopreglem5ALT 30350* | Alternate direct proof of frgrwopreglem5 30349, not using frgrwopreglem5a 30339. This proof would be even a little bit shorter than the proof of frgrwopreglem5 30349 without using frgrwopreglem5lem 30348. (Contributed by Alexander van der Vekens, 31-Dec-2017.) (Revised by AV, 3-Jan-2022.) (Proof shortened by AV, 5-Feb-2022.) (New usage is discouraged.) (Proof modification is discouraged.) |
⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐷 = (VtxDeg‘𝐺) & ⊢ 𝐴 = {𝑥 ∈ 𝑉 ∣ (𝐷‘𝑥) = 𝐾} & ⊢ 𝐵 = (𝑉 ∖ 𝐴) & ⊢ 𝐸 = (Edg‘𝐺) ⇒ ⊢ ((𝐺 ∈ FriendGraph ∧ 1 < (♯‘𝐴) ∧ 1 < (♯‘𝐵)) → ∃𝑎 ∈ 𝐴 ∃𝑥 ∈ 𝐴 ∃𝑏 ∈ 𝐵 ∃𝑦 ∈ 𝐵 ((𝑎 ≠ 𝑥 ∧ 𝑏 ≠ 𝑦) ∧ ({𝑎, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝑥} ∈ 𝐸) ∧ ({𝑥, 𝑦} ∈ 𝐸 ∧ {𝑦, 𝑎} ∈ 𝐸))) | ||
Theorem | frgrwopreg 30351* | In a friendship graph there are either no vertices (𝐴 = ∅) or exactly one vertex ((♯‘𝐴) = 1) having degree 𝐾, or all (𝐵 = ∅) or all except one vertices ((♯‘𝐵) = 1) have degree 𝐾. (Contributed by Alexander van der Vekens, 31-Dec-2017.) (Revised by AV, 10-May-2021.) (Proof shortened by AV, 3-Jan-2022.) |
⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐷 = (VtxDeg‘𝐺) & ⊢ 𝐴 = {𝑥 ∈ 𝑉 ∣ (𝐷‘𝑥) = 𝐾} & ⊢ 𝐵 = (𝑉 ∖ 𝐴) ⇒ ⊢ (𝐺 ∈ FriendGraph → (((♯‘𝐴) = 1 ∨ 𝐴 = ∅) ∨ ((♯‘𝐵) = 1 ∨ 𝐵 = ∅))) | ||
Theorem | frgrregorufr0 30352* | In a friendship graph there are either no vertices having degree 𝐾, or all vertices have degree 𝐾 for any (nonnegative integer) 𝐾, unless there is a universal friend. This corresponds to claim 2 in [Huneke] p. 2: "... all vertices have degree k, unless there is a universal friend." (Contributed by Alexander van der Vekens, 1-Jan-2018.) (Revised by AV, 11-May-2021.) (Proof shortened by AV, 3-Jan-2022.) |
⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐸 = (Edg‘𝐺) & ⊢ 𝐷 = (VtxDeg‘𝐺) ⇒ ⊢ (𝐺 ∈ FriendGraph → (∀𝑣 ∈ 𝑉 (𝐷‘𝑣) = 𝐾 ∨ ∀𝑣 ∈ 𝑉 (𝐷‘𝑣) ≠ 𝐾 ∨ ∃𝑣 ∈ 𝑉 ∀𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ 𝐸)) | ||
Theorem | frgrregorufr 30353* | If there is a vertex having degree 𝐾 for each (nonnegative integer) 𝐾 in a friendship graph, then either all vertices have degree 𝐾 or there is a universal friend. This corresponds to claim 2 in [Huneke] p. 2: "Suppose there is a vertex of degree k > 1. ... all vertices have degree k, unless there is a universal friend. ... It follows that G is k-regular, i.e., the degree of every vertex is k". (Contributed by Alexander van der Vekens, 1-Jan-2018.) |
⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐸 = (Edg‘𝐺) & ⊢ 𝐷 = (VtxDeg‘𝐺) ⇒ ⊢ (𝐺 ∈ FriendGraph → (∃𝑎 ∈ 𝑉 (𝐷‘𝑎) = 𝐾 → (∀𝑣 ∈ 𝑉 (𝐷‘𝑣) = 𝐾 ∨ ∃𝑣 ∈ 𝑉 ∀𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ 𝐸))) | ||
Theorem | frgrregorufrg 30354* | If there is a vertex having degree 𝑘 for each nonnegative integer 𝑘 in a friendship graph, then there is a universal friend. This corresponds to claim 2 in [Huneke] p. 2: "Suppose there is a vertex of degree k > 1. ... all vertices have degree k, unless there is a universal friend. ... It follows that G is k-regular, i.e., the degree of every vertex is k". Variant of frgrregorufr 30353 with generalization. (Contributed by Alexander van der Vekens, 6-Sep-2018.) (Revised by AV, 26-May-2021.) (Proof shortened by AV, 12-Jan-2022.) |
⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐸 = (Edg‘𝐺) ⇒ ⊢ (𝐺 ∈ FriendGraph → ∀𝑘 ∈ ℕ0 (∃𝑎 ∈ 𝑉 ((VtxDeg‘𝐺)‘𝑎) = 𝑘 → (𝐺 RegUSGraph 𝑘 ∨ ∃𝑣 ∈ 𝑉 ∀𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ 𝐸))) | ||
Theorem | frgr2wwlkeu 30355* | For two different vertices in a friendship graph, there is exactly one third vertex being the middle vertex of a (simple) path/walk of length 2 between the two vertices. (Contributed by Alexander van der Vekens, 18-Feb-2018.) (Revised by AV, 12-May-2021.) (Proof shortened by AV, 4-Jan-2022.) |
⊢ 𝑉 = (Vtx‘𝐺) ⇒ ⊢ ((𝐺 ∈ FriendGraph ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) ∧ 𝐴 ≠ 𝐵) → ∃!𝑐 ∈ 𝑉 〈“𝐴𝑐𝐵”〉 ∈ (𝐴(2 WWalksNOn 𝐺)𝐵)) | ||
Theorem | frgr2wwlkn0 30356 | In a friendship graph, there is always a path/walk of length 2 between two different vertices. (Contributed by Alexander van der Vekens, 18-Feb-2018.) (Revised by AV, 12-May-2021.) |
⊢ 𝑉 = (Vtx‘𝐺) ⇒ ⊢ ((𝐺 ∈ FriendGraph ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) ∧ 𝐴 ≠ 𝐵) → (𝐴(2 WWalksNOn 𝐺)𝐵) ≠ ∅) | ||
Theorem | frgr2wwlk1 30357 | In a friendship graph, there is exactly one walk of length 2 between two different vertices. (Contributed by Alexander van der Vekens, 19-Feb-2018.) (Revised by AV, 13-May-2021.) (Proof shortened by AV, 16-Mar-2022.) |
⊢ 𝑉 = (Vtx‘𝐺) ⇒ ⊢ ((𝐺 ∈ FriendGraph ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) ∧ 𝐴 ≠ 𝐵) → (♯‘(𝐴(2 WWalksNOn 𝐺)𝐵)) = 1) | ||
Theorem | frgr2wsp1 30358 | In a friendship graph, there is exactly one simple path of length 2 between two different vertices. (Contributed by Alexander van der Vekens, 3-Mar-2018.) (Revised by AV, 13-May-2021.) |
⊢ 𝑉 = (Vtx‘𝐺) ⇒ ⊢ ((𝐺 ∈ FriendGraph ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) ∧ 𝐴 ≠ 𝐵) → (♯‘(𝐴(2 WSPathsNOn 𝐺)𝐵)) = 1) | ||
Theorem | frgr2wwlkeqm 30359 | If there is a (simple) path of length 2 from one vertex to another vertex and a (simple) path of length 2 from the other vertex back to the first vertex in a friendship graph, then the middle vertex is the same. This is only an observation, which is not required to proof the friendship theorem. (Contributed by Alexander van der Vekens, 20-Feb-2018.) (Revised by AV, 13-May-2021.) (Proof shortened by AV, 7-Jan-2022.) |
⊢ ((𝐺 ∈ FriendGraph ∧ 𝐴 ≠ 𝐵 ∧ (𝑃 ∈ 𝑋 ∧ 𝑄 ∈ 𝑌)) → ((〈“𝐴𝑃𝐵”〉 ∈ (𝐴(2 WWalksNOn 𝐺)𝐵) ∧ 〈“𝐵𝑄𝐴”〉 ∈ (𝐵(2 WWalksNOn 𝐺)𝐴)) → 𝑄 = 𝑃)) | ||
Theorem | frgrhash2wsp 30360 | The number of simple paths of length 2 is n*(n-1) in a friendship graph with n vertices. This corresponds to the proof of claim 3 in [Huneke] p. 2: "... the paths of length two in G: by assumption there are ( n 2 ) such paths.". However, Huneke counts undirected paths, so obtains the result ((𝑛C2) = ((𝑛 · (𝑛 − 1)) / 2)), whereas we count directed paths, obtaining twice that number. (Contributed by Alexander van der Vekens, 6-Mar-2018.) (Revised by AV, 10-Jan-2022.) |
⊢ 𝑉 = (Vtx‘𝐺) ⇒ ⊢ ((𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) → (♯‘(2 WSPathsN 𝐺)) = ((♯‘𝑉) · ((♯‘𝑉) − 1))) | ||
Theorem | fusgreg2wsplem 30361* | Lemma for fusgreg2wsp 30364 and related theorems. (Contributed by AV, 8-Jan-2022.) |
⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝑀 = (𝑎 ∈ 𝑉 ↦ {𝑤 ∈ (2 WSPathsN 𝐺) ∣ (𝑤‘1) = 𝑎}) ⇒ ⊢ (𝑁 ∈ 𝑉 → (𝑝 ∈ (𝑀‘𝑁) ↔ (𝑝 ∈ (2 WSPathsN 𝐺) ∧ (𝑝‘1) = 𝑁))) | ||
Theorem | fusgr2wsp2nb 30362* | The set of paths of length 2 with a given vertex in the middle for a finite simple graph is the union of all paths of length 2 from one neighbor to another neighbor of this vertex via this vertex. (Contributed by Alexander van der Vekens, 9-Mar-2018.) (Revised by AV, 17-May-2021.) (Proof shortened by AV, 16-Mar-2022.) |
⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝑀 = (𝑎 ∈ 𝑉 ↦ {𝑤 ∈ (2 WSPathsN 𝐺) ∣ (𝑤‘1) = 𝑎}) ⇒ ⊢ ((𝐺 ∈ FinUSGraph ∧ 𝑁 ∈ 𝑉) → (𝑀‘𝑁) = ∪ 𝑥 ∈ (𝐺 NeighbVtx 𝑁)∪ 𝑦 ∈ ((𝐺 NeighbVtx 𝑁) ∖ {𝑥}){〈“𝑥𝑁𝑦”〉}) | ||
Theorem | fusgreghash2wspv 30363* | According to statement 7 in [Huneke] p. 2: "For each vertex v, there are exactly ( k 2 ) paths with length two having v in the middle, ..." in a finite k-regular graph. For directed simple paths of length 2 represented by length 3 strings, we have again k*(k-1) such paths, see also comment of frgrhash2wsp 30360. (Contributed by Alexander van der Vekens, 10-Mar-2018.) (Revised by AV, 17-May-2021.) (Proof shortened by AV, 12-Feb-2022.) |
⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝑀 = (𝑎 ∈ 𝑉 ↦ {𝑤 ∈ (2 WSPathsN 𝐺) ∣ (𝑤‘1) = 𝑎}) ⇒ ⊢ (𝐺 ∈ FinUSGraph → ∀𝑣 ∈ 𝑉 (((VtxDeg‘𝐺)‘𝑣) = 𝐾 → (♯‘(𝑀‘𝑣)) = (𝐾 · (𝐾 − 1)))) | ||
Theorem | fusgreg2wsp 30364* | In a finite simple graph, the set of all paths of length 2 is the union of all the paths of length 2 over the vertices which are in the middle of such a path. (Contributed by Alexander van der Vekens, 10-Mar-2018.) (Revised by AV, 18-May-2021.) (Proof shortened by AV, 10-Jan-2022.) |
⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝑀 = (𝑎 ∈ 𝑉 ↦ {𝑤 ∈ (2 WSPathsN 𝐺) ∣ (𝑤‘1) = 𝑎}) ⇒ ⊢ (𝐺 ∈ FinUSGraph → (2 WSPathsN 𝐺) = ∪ 𝑥 ∈ 𝑉 (𝑀‘𝑥)) | ||
Theorem | 2wspmdisj 30365* | The sets of paths of length 2 with a given vertex in the middle are distinct for different vertices in the middle. (Contributed by Alexander van der Vekens, 11-Mar-2018.) (Revised by AV, 18-May-2021.) (Proof shortened by AV, 10-Jan-2022.) |
⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝑀 = (𝑎 ∈ 𝑉 ↦ {𝑤 ∈ (2 WSPathsN 𝐺) ∣ (𝑤‘1) = 𝑎}) ⇒ ⊢ Disj 𝑥 ∈ 𝑉 (𝑀‘𝑥) | ||
Theorem | fusgreghash2wsp 30366* | In a finite k-regular graph with N vertices there are N times "k choose 2" paths with length 2, according to statement 8 in [Huneke] p. 2: "... giving n * ( k 2 ) total paths of length two.", if the direction of traversing the path is not respected. For simple paths of length 2 represented by length 3 strings, however, we have again n*k*(k-1) such paths. (Contributed by Alexander van der Vekens, 11-Mar-2018.) (Revised by AV, 19-May-2021.) (Proof shortened by AV, 12-Jan-2022.) |
⊢ 𝑉 = (Vtx‘𝐺) ⇒ ⊢ ((𝐺 ∈ FinUSGraph ∧ 𝑉 ≠ ∅) → (∀𝑣 ∈ 𝑉 ((VtxDeg‘𝐺)‘𝑣) = 𝐾 → (♯‘(2 WSPathsN 𝐺)) = ((♯‘𝑉) · (𝐾 · (𝐾 − 1))))) | ||
Theorem | frrusgrord0lem 30367* | Lemma for frrusgrord0 30368. (Contributed by AV, 12-Jan-2022.) |
⊢ 𝑉 = (Vtx‘𝐺) ⇒ ⊢ (((𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) ∧ ∀𝑣 ∈ 𝑉 ((VtxDeg‘𝐺)‘𝑣) = 𝐾) → (𝐾 ∈ ℂ ∧ (♯‘𝑉) ∈ ℂ ∧ (♯‘𝑉) ≠ 0)) | ||
Theorem | frrusgrord0 30368* | If a nonempty finite friendship graph is k-regular, its order is k(k-1)+1. This corresponds to claim 3 in [Huneke] p. 2: "Next we claim that the number n of vertices in G is exactly k(k-1)+1.". (Contributed by Alexander van der Vekens, 11-Mar-2018.) (Revised by AV, 26-May-2021.) (Proof shortened by AV, 12-Jan-2022.) |
⊢ 𝑉 = (Vtx‘𝐺) ⇒ ⊢ ((𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) → (∀𝑣 ∈ 𝑉 ((VtxDeg‘𝐺)‘𝑣) = 𝐾 → (♯‘𝑉) = ((𝐾 · (𝐾 − 1)) + 1))) | ||
Theorem | frrusgrord 30369 | If a nonempty finite friendship graph is k-regular, its order is k(k-1)+1. This corresponds to claim 3 in [Huneke] p. 2: "Next we claim that the number n of vertices in G is exactly k(k-1)+1.". Variant of frrusgrord0 30368, using the definition RegUSGraph (df-rusgr 29590). (Contributed by Alexander van der Vekens, 25-Aug-2018.) (Revised by AV, 26-May-2021.) (Proof shortened by AV, 12-Jan-2022.) |
⊢ 𝑉 = (Vtx‘𝐺) ⇒ ⊢ ((𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) → ((𝐺 ∈ FriendGraph ∧ 𝐺 RegUSGraph 𝐾) → (♯‘𝑉) = ((𝐾 · (𝐾 − 1)) + 1))) | ||
Theorem | numclwwlk2lem1lem 30370 | Lemma for numclwwlk2lem1 30404. (Contributed by Alexander van der Vekens, 3-Oct-2018.) (Revised by AV, 27-May-2021.) (Revised by AV, 15-Mar-2022.) |
⊢ ((𝑋 ∈ (Vtx‘𝐺) ∧ 𝑊 ∈ (𝑁 WWalksN 𝐺) ∧ (lastS‘𝑊) ≠ (𝑊‘0)) → (((𝑊 ++ 〈“𝑋”〉)‘0) = (𝑊‘0) ∧ ((𝑊 ++ 〈“𝑋”〉)‘𝑁) ≠ (𝑊‘0))) | ||
Theorem | 2clwwlklem 30371 | Lemma for clwwnonrepclwwnon 30373 and extwwlkfab 30380. (Contributed by Alexander van der Vekens, 18-Sep-2018.) (Revised by AV, 10-May-2022.) (Revised by AV, 30-Oct-2022.) |
⊢ ((𝑊 ∈ (𝑁 ClWWalksN 𝐺) ∧ 𝑁 ∈ (ℤ≥‘3)) → ((𝑊 prefix (𝑁 − 2))‘0) = (𝑊‘0)) | ||
Theorem | clwwnrepclwwn 30372 | If the initial vertex of a closed walk occurs another time in the walk, the walk starts with a closed walk. Notice that 3 ≤ 𝑁 is required, because for 𝑁 = 2, (𝑤 prefix (𝑁 − 2)) = (𝑤 prefix 0) = ∅, but ∅ (and anything else) is not a representation of an empty closed walk as word, see clwwlkn0 30056. (Contributed by Alexander van der Vekens, 15-Sep-2018.) (Revised by AV, 28-May-2021.) (Revised by AV, 30-Oct-2022.) |
⊢ ((𝑁 ∈ (ℤ≥‘3) ∧ 𝑊 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑊‘(𝑁 − 2)) = (𝑊‘0)) → (𝑊 prefix (𝑁 − 2)) ∈ ((𝑁 − 2) ClWWalksN 𝐺)) | ||
Theorem | clwwnonrepclwwnon 30373 | If the initial vertex of a closed walk occurs another time in the walk, the walk starts with a closed walk on this vertex. See also the remarks in clwwnrepclwwn 30372. (Contributed by AV, 24-Apr-2022.) (Revised by AV, 10-May-2022.) (Revised by AV, 30-Oct-2022.) |
⊢ ((𝑁 ∈ (ℤ≥‘3) ∧ 𝑊 ∈ (𝑋(ClWWalksNOn‘𝐺)𝑁) ∧ (𝑊‘(𝑁 − 2)) = 𝑋) → (𝑊 prefix (𝑁 − 2)) ∈ (𝑋(ClWWalksNOn‘𝐺)(𝑁 − 2))) | ||
Theorem | 2clwwlk2clwwlklem 30374 | Lemma for 2clwwlk2clwwlk 30378. (Contributed by AV, 27-Apr-2022.) |
⊢ ((𝑁 ∈ (ℤ≥‘3) ∧ 𝑊 ∈ (𝑋(ClWWalksNOn‘𝐺)𝑁) ∧ (𝑊‘(𝑁 − 2)) = (𝑊‘0)) → (𝑊 substr 〈(𝑁 − 2), 𝑁〉) ∈ (𝑋(ClWWalksNOn‘𝐺)2)) | ||
Theorem | 2clwwlk 30375* | Value of operation 𝐶, mapping a vertex v and an integer n greater than 1 to the "closed n-walks v(0) ... v(n-2) v(n-1) v(n) from v = v(0) = v(n) with v(n-2) = v" according to definition 6 in [Huneke] p. 2. Such closed walks are "double loops" consisting of a closed (n-2)-walk v = v(0) ... v(n-2) = v and a closed 2-walk v = v(n-2) v(n-1) v(n) = v, see 2clwwlk2clwwlk 30378. (𝑋𝐶𝑁) is called the "set of double loops of length 𝑁 on vertex 𝑋 " in the following. (Contributed by Alexander van der Vekens, 14-Sep-2018.) (Revised by AV, 29-May-2021.) (Revised by AV, 20-Apr-2022.) |
⊢ 𝐶 = (𝑣 ∈ 𝑉, 𝑛 ∈ (ℤ≥‘2) ↦ {𝑤 ∈ (𝑣(ClWWalksNOn‘𝐺)𝑛) ∣ (𝑤‘(𝑛 − 2)) = 𝑣}) ⇒ ⊢ ((𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (ℤ≥‘2)) → (𝑋𝐶𝑁) = {𝑤 ∈ (𝑋(ClWWalksNOn‘𝐺)𝑁) ∣ (𝑤‘(𝑁 − 2)) = 𝑋}) | ||
Theorem | 2clwwlk2 30376* | The set (𝑋𝐶2) of double loops of length 2 on a vertex 𝑋 is equal to the set of closed walks with length 2 on 𝑋. Considered as "double loops", the first of the two closed walks/loops is degenerated, i.e., has length 0. (Contributed by AV, 18-Feb-2022.) (Revised by AV, 20-Apr-2022.) |
⊢ 𝐶 = (𝑣 ∈ 𝑉, 𝑛 ∈ (ℤ≥‘2) ↦ {𝑤 ∈ (𝑣(ClWWalksNOn‘𝐺)𝑛) ∣ (𝑤‘(𝑛 − 2)) = 𝑣}) ⇒ ⊢ (𝑋 ∈ 𝑉 → (𝑋𝐶2) = (𝑋(ClWWalksNOn‘𝐺)2)) | ||
Theorem | 2clwwlkel 30377* | Characterization of an element of the value of operation 𝐶, i.e., of a word being a double loop of length 𝑁 on vertex 𝑋. (Contributed by Alexander van der Vekens, 24-Sep-2018.) (Revised by AV, 29-May-2021.) (Revised by AV, 20-Apr-2022.) |
⊢ 𝐶 = (𝑣 ∈ 𝑉, 𝑛 ∈ (ℤ≥‘2) ↦ {𝑤 ∈ (𝑣(ClWWalksNOn‘𝐺)𝑛) ∣ (𝑤‘(𝑛 − 2)) = 𝑣}) ⇒ ⊢ ((𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (ℤ≥‘2)) → (𝑊 ∈ (𝑋𝐶𝑁) ↔ (𝑊 ∈ (𝑋(ClWWalksNOn‘𝐺)𝑁) ∧ (𝑊‘(𝑁 − 2)) = 𝑋))) | ||
Theorem | 2clwwlk2clwwlk 30378* | An element of the value of operation 𝐶, i.e., a word being a double loop of length 𝑁 on vertex 𝑋, is composed of two closed walks. (Contributed by AV, 28-Apr-2022.) (Proof shortened by AV, 3-Nov-2022.) |
⊢ 𝐶 = (𝑣 ∈ 𝑉, 𝑛 ∈ (ℤ≥‘2) ↦ {𝑤 ∈ (𝑣(ClWWalksNOn‘𝐺)𝑛) ∣ (𝑤‘(𝑛 − 2)) = 𝑣}) ⇒ ⊢ ((𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (ℤ≥‘3)) → (𝑊 ∈ (𝑋𝐶𝑁) ↔ ∃𝑎 ∈ (𝑋(ClWWalksNOn‘𝐺)(𝑁 − 2))∃𝑏 ∈ (𝑋(ClWWalksNOn‘𝐺)2)𝑊 = (𝑎 ++ 𝑏))) | ||
Theorem | numclwwlk1lem2foalem 30379 | Lemma for numclwwlk1lem2foa 30382. (Contributed by AV, 29-May-2021.) (Revised by AV, 1-Nov-2022.) |
⊢ (((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = (𝑁 − 2)) ∧ (𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉) ∧ 𝑁 ∈ (ℤ≥‘3)) → ((((𝑊 ++ 〈“𝑋”〉) ++ 〈“𝑌”〉) prefix (𝑁 − 2)) = 𝑊 ∧ (((𝑊 ++ 〈“𝑋”〉) ++ 〈“𝑌”〉)‘(𝑁 − 1)) = 𝑌 ∧ (((𝑊 ++ 〈“𝑋”〉) ++ 〈“𝑌”〉)‘(𝑁 − 2)) = 𝑋)) | ||
Theorem | extwwlkfab 30380* | The set (𝑋𝐶𝑁) of double loops of length 𝑁 on vertex 𝑋 can be constructed from the set 𝐹 of closed walks on 𝑋 with length smaller by 2 than the fixed length by appending a neighbor of the last vertex and afterwards the last vertex (which is the first vertex) itself ("walking forth and back" from the last vertex). 3 ≤ 𝑁 is required since for 𝑁 = 2: 𝐹 = (𝑋(ClWWalksNOn‘𝐺)0) = ∅ (see clwwlk0on0 30120 stating that a closed walk of length 0 is not represented as word), which would result in an empty set on the right hand side, but (𝑋𝐶𝑁) needs not be empty, see 2clwwlk2 30376. (Contributed by Alexander van der Vekens, 18-Sep-2018.) (Revised by AV, 29-May-2021.) (Revised by AV, 31-Oct-2022.) |
⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐶 = (𝑣 ∈ 𝑉, 𝑛 ∈ (ℤ≥‘2) ↦ {𝑤 ∈ (𝑣(ClWWalksNOn‘𝐺)𝑛) ∣ (𝑤‘(𝑛 − 2)) = 𝑣}) & ⊢ 𝐹 = (𝑋(ClWWalksNOn‘𝐺)(𝑁 − 2)) ⇒ ⊢ ((𝐺 ∈ USGraph ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (ℤ≥‘3)) → (𝑋𝐶𝑁) = {𝑤 ∈ (𝑁 ClWWalksN 𝐺) ∣ ((𝑤 prefix (𝑁 − 2)) ∈ 𝐹 ∧ (𝑤‘(𝑁 − 1)) ∈ (𝐺 NeighbVtx 𝑋) ∧ (𝑤‘(𝑁 − 2)) = 𝑋)}) | ||
Theorem | extwwlkfabel 30381* | Characterization of an element of the set (𝑋𝐶𝑁), i.e., a double loop of length 𝑁 on vertex 𝑋 with a construction from the set 𝐹 of closed walks on 𝑋 with length smaller by 2 than the fixed length by appending a neighbor of the last vertex and afterwards the last vertex (which is the first vertex) itself ("walking forth and back" from the last vertex). (Contributed by AV, 22-Feb-2022.) (Revised by AV, 31-Oct-2022.) |
⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐶 = (𝑣 ∈ 𝑉, 𝑛 ∈ (ℤ≥‘2) ↦ {𝑤 ∈ (𝑣(ClWWalksNOn‘𝐺)𝑛) ∣ (𝑤‘(𝑛 − 2)) = 𝑣}) & ⊢ 𝐹 = (𝑋(ClWWalksNOn‘𝐺)(𝑁 − 2)) ⇒ ⊢ ((𝐺 ∈ USGraph ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (ℤ≥‘3)) → (𝑊 ∈ (𝑋𝐶𝑁) ↔ (𝑊 ∈ (𝑁 ClWWalksN 𝐺) ∧ ((𝑊 prefix (𝑁 − 2)) ∈ 𝐹 ∧ (𝑊‘(𝑁 − 1)) ∈ (𝐺 NeighbVtx 𝑋) ∧ (𝑊‘(𝑁 − 2)) = 𝑋)))) | ||
Theorem | numclwwlk1lem2foa 30382* | Going forth and back from the end of a (closed) walk: 𝑊 represents the closed walk p0, ..., p(n-2), p0 = p(n-2). With 𝑋 = p(n-2) = p0 and 𝑌 = p(n-1), ((𝑊 ++ 〈“𝑋”〉) ++ 〈“𝑌”〉) represents the closed walk p0, ..., p(n-2), p(n-1), pn = p0 which is a double loop of length 𝑁 on vertex 𝑋. (Contributed by Alexander van der Vekens, 22-Sep-2018.) (Revised by AV, 29-May-2021.) (Revised by AV, 5-Mar-2022.) (Proof shortened by AV, 2-Nov-2022.) |
⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐶 = (𝑣 ∈ 𝑉, 𝑛 ∈ (ℤ≥‘2) ↦ {𝑤 ∈ (𝑣(ClWWalksNOn‘𝐺)𝑛) ∣ (𝑤‘(𝑛 − 2)) = 𝑣}) & ⊢ 𝐹 = (𝑋(ClWWalksNOn‘𝐺)(𝑁 − 2)) ⇒ ⊢ ((𝐺 ∈ USGraph ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (ℤ≥‘3)) → ((𝑊 ∈ 𝐹 ∧ 𝑌 ∈ (𝐺 NeighbVtx 𝑋)) → ((𝑊 ++ 〈“𝑋”〉) ++ 〈“𝑌”〉) ∈ (𝑋𝐶𝑁))) | ||
Theorem | numclwwlk1lem2f 30383* | 𝑇 is a function, mapping a double loop of length 𝑁 on vertex 𝑋 to the ordered pair of the first loop and the successor of 𝑋 in the second loop, which must be a neighbor of 𝑋. (Contributed by Alexander van der Vekens, 19-Sep-2018.) (Revised by AV, 29-May-2021.) (Proof shortened by AV, 23-Feb-2022.) (Revised by AV, 31-Oct-2022.) |
⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐶 = (𝑣 ∈ 𝑉, 𝑛 ∈ (ℤ≥‘2) ↦ {𝑤 ∈ (𝑣(ClWWalksNOn‘𝐺)𝑛) ∣ (𝑤‘(𝑛 − 2)) = 𝑣}) & ⊢ 𝐹 = (𝑋(ClWWalksNOn‘𝐺)(𝑁 − 2)) & ⊢ 𝑇 = (𝑢 ∈ (𝑋𝐶𝑁) ↦ 〈(𝑢 prefix (𝑁 − 2)), (𝑢‘(𝑁 − 1))〉) ⇒ ⊢ ((𝐺 ∈ USGraph ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (ℤ≥‘3)) → 𝑇:(𝑋𝐶𝑁)⟶(𝐹 × (𝐺 NeighbVtx 𝑋))) | ||
Theorem | numclwwlk1lem2fv 30384* | Value of the function 𝑇. (Contributed by Alexander van der Vekens, 20-Sep-2018.) (Revised by AV, 29-May-2021.) (Revised by AV, 31-Oct-2022.) |
⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐶 = (𝑣 ∈ 𝑉, 𝑛 ∈ (ℤ≥‘2) ↦ {𝑤 ∈ (𝑣(ClWWalksNOn‘𝐺)𝑛) ∣ (𝑤‘(𝑛 − 2)) = 𝑣}) & ⊢ 𝐹 = (𝑋(ClWWalksNOn‘𝐺)(𝑁 − 2)) & ⊢ 𝑇 = (𝑢 ∈ (𝑋𝐶𝑁) ↦ 〈(𝑢 prefix (𝑁 − 2)), (𝑢‘(𝑁 − 1))〉) ⇒ ⊢ (𝑊 ∈ (𝑋𝐶𝑁) → (𝑇‘𝑊) = 〈(𝑊 prefix (𝑁 − 2)), (𝑊‘(𝑁 − 1))〉) | ||
Theorem | numclwwlk1lem2f1 30385* | 𝑇 is a 1-1 function. (Contributed by AV, 26-Sep-2018.) (Revised by AV, 29-May-2021.) (Proof shortened by AV, 23-Feb-2022.) (Revised by AV, 31-Oct-2022.) |
⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐶 = (𝑣 ∈ 𝑉, 𝑛 ∈ (ℤ≥‘2) ↦ {𝑤 ∈ (𝑣(ClWWalksNOn‘𝐺)𝑛) ∣ (𝑤‘(𝑛 − 2)) = 𝑣}) & ⊢ 𝐹 = (𝑋(ClWWalksNOn‘𝐺)(𝑁 − 2)) & ⊢ 𝑇 = (𝑢 ∈ (𝑋𝐶𝑁) ↦ 〈(𝑢 prefix (𝑁 − 2)), (𝑢‘(𝑁 − 1))〉) ⇒ ⊢ ((𝐺 ∈ USGraph ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (ℤ≥‘3)) → 𝑇:(𝑋𝐶𝑁)–1-1→(𝐹 × (𝐺 NeighbVtx 𝑋))) | ||
Theorem | numclwwlk1lem2fo 30386* | 𝑇 is an onto function. (Contributed by Alexander van der Vekens, 20-Sep-2018.) (Revised by AV, 29-May-2021.) (Proof shortened by AV, 13-Feb-2022.) (Revised by AV, 31-Oct-2022.) |
⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐶 = (𝑣 ∈ 𝑉, 𝑛 ∈ (ℤ≥‘2) ↦ {𝑤 ∈ (𝑣(ClWWalksNOn‘𝐺)𝑛) ∣ (𝑤‘(𝑛 − 2)) = 𝑣}) & ⊢ 𝐹 = (𝑋(ClWWalksNOn‘𝐺)(𝑁 − 2)) & ⊢ 𝑇 = (𝑢 ∈ (𝑋𝐶𝑁) ↦ 〈(𝑢 prefix (𝑁 − 2)), (𝑢‘(𝑁 − 1))〉) ⇒ ⊢ ((𝐺 ∈ USGraph ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (ℤ≥‘3)) → 𝑇:(𝑋𝐶𝑁)–onto→(𝐹 × (𝐺 NeighbVtx 𝑋))) | ||
Theorem | numclwwlk1lem2f1o 30387* | 𝑇 is a 1-1 onto function. (Contributed by Alexander van der Vekens, 26-Sep-2018.) (Revised by AV, 29-May-2021.) (Revised by AV, 6-Mar-2022.) |
⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐶 = (𝑣 ∈ 𝑉, 𝑛 ∈ (ℤ≥‘2) ↦ {𝑤 ∈ (𝑣(ClWWalksNOn‘𝐺)𝑛) ∣ (𝑤‘(𝑛 − 2)) = 𝑣}) & ⊢ 𝐹 = (𝑋(ClWWalksNOn‘𝐺)(𝑁 − 2)) & ⊢ 𝑇 = (𝑢 ∈ (𝑋𝐶𝑁) ↦ 〈(𝑢 prefix (𝑁 − 2)), (𝑢‘(𝑁 − 1))〉) ⇒ ⊢ ((𝐺 ∈ USGraph ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (ℤ≥‘3)) → 𝑇:(𝑋𝐶𝑁)–1-1-onto→(𝐹 × (𝐺 NeighbVtx 𝑋))) | ||
Theorem | numclwwlk1lem2 30388* | The set of double loops of length 𝑁 on vertex 𝑋 and the set of closed walks of length less by 2 on 𝑋 combined with the neighbors of 𝑋 are equinumerous. (Contributed by Alexander van der Vekens, 6-Jul-2018.) (Revised by AV, 29-May-2021.) (Revised by AV, 31-Jul-2022.) (Proof shortened by AV, 3-Nov-2022.) |
⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐶 = (𝑣 ∈ 𝑉, 𝑛 ∈ (ℤ≥‘2) ↦ {𝑤 ∈ (𝑣(ClWWalksNOn‘𝐺)𝑛) ∣ (𝑤‘(𝑛 − 2)) = 𝑣}) & ⊢ 𝐹 = (𝑋(ClWWalksNOn‘𝐺)(𝑁 − 2)) ⇒ ⊢ ((𝐺 ∈ USGraph ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (ℤ≥‘3)) → (𝑋𝐶𝑁) ≈ (𝐹 × (𝐺 NeighbVtx 𝑋))) | ||
Theorem | numclwwlk1 30389* | Statement 9 in [Huneke] p. 2: "If n > 1, then the number of closed n-walks v(0) ... v(n-2) v(n-1) v(n) from v = v(0) = v(n) with v(n-2) = v is kf(n-2)". Since 𝐺 is k-regular, the vertex v(n-2) = v has k neighbors v(n-1), so there are k walks from v(n-2) = v to v(n) = v (via each of v's neighbors) completing each of the f(n-2) walks from v=v(0) to v(n-2)=v. This theorem holds even for k=0, but not for n=2, since 𝐹 = ∅, but (𝑋𝐶2), the set of closed walks with length 2 on 𝑋, see 2clwwlk2 30376, needs not be ∅ in this case. This is because of the special definition of 𝐹 and the usage of words to represent (closed) walks, and does not contradict Huneke's statement, which would read "the number of closed 2-walks v(0) v(1) v(2) from v = v(0) = v(2) ... is kf(0)", where f(0)=1 is the number of empty closed walks on v, see numclwlk1lem1 30397. If the general representation of (closed) walk is used, Huneke's statement can be proven even for n = 2, see numclwlk1 30399. This case, however, is not required to prove the friendship theorem. (Contributed by Alexander van der Vekens, 26-Sep-2018.) (Revised by AV, 29-May-2021.) (Revised by AV, 6-Mar-2022.) (Proof shortened by AV, 31-Jul-2022.) |
⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐶 = (𝑣 ∈ 𝑉, 𝑛 ∈ (ℤ≥‘2) ↦ {𝑤 ∈ (𝑣(ClWWalksNOn‘𝐺)𝑛) ∣ (𝑤‘(𝑛 − 2)) = 𝑣}) & ⊢ 𝐹 = (𝑋(ClWWalksNOn‘𝐺)(𝑁 − 2)) ⇒ ⊢ (((𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾) ∧ (𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (ℤ≥‘3))) → (♯‘(𝑋𝐶𝑁)) = (𝐾 · (♯‘𝐹))) | ||
Theorem | clwwlknonclwlknonf1o 30390* | 𝐹 is a bijection between the two representations of closed walks of a fixed positive length on a fixed vertex. (Contributed by AV, 26-May-2022.) (Proof shortened by AV, 7-Aug-2022.) (Revised by AV, 1-Nov-2022.) |
⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝑊 = {𝑤 ∈ (ClWalks‘𝐺) ∣ ((♯‘(1st ‘𝑤)) = 𝑁 ∧ ((2nd ‘𝑤)‘0) = 𝑋)} & ⊢ 𝐹 = (𝑐 ∈ 𝑊 ↦ ((2nd ‘𝑐) prefix (♯‘(1st ‘𝑐)))) ⇒ ⊢ ((𝐺 ∈ USPGraph ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ ℕ) → 𝐹:𝑊–1-1-onto→(𝑋(ClWWalksNOn‘𝐺)𝑁)) | ||
Theorem | clwwlknonclwlknonen 30391* | The sets of the two representations of closed walks of a fixed positive length on a fixed vertex are equinumerous. (Contributed by AV, 27-May-2022.) (Proof shortened by AV, 3-Nov-2022.) |
⊢ ((𝐺 ∈ USPGraph ∧ 𝑋 ∈ (Vtx‘𝐺) ∧ 𝑁 ∈ ℕ) → {𝑤 ∈ (ClWalks‘𝐺) ∣ ((♯‘(1st ‘𝑤)) = 𝑁 ∧ ((2nd ‘𝑤)‘0) = 𝑋)} ≈ (𝑋(ClWWalksNOn‘𝐺)𝑁)) | ||
Theorem | dlwwlknondlwlknonf1olem1 30392 | Lemma 1 for dlwwlknondlwlknonf1o 30393. (Contributed by AV, 29-May-2022.) (Revised by AV, 1-Nov-2022.) |
⊢ (((♯‘(1st ‘𝑐)) = 𝑁 ∧ 𝑐 ∈ (ClWalks‘𝐺) ∧ 𝑁 ∈ (ℤ≥‘2)) → (((2nd ‘𝑐) prefix (♯‘(1st ‘𝑐)))‘(𝑁 − 2)) = ((2nd ‘𝑐)‘(𝑁 − 2))) | ||
Theorem | dlwwlknondlwlknonf1o 30393* | 𝐹 is a bijection between the two representations of double loops of a fixed positive length on a fixed vertex. (Contributed by AV, 30-May-2022.) (Revised by AV, 1-Nov-2022.) |
⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝑊 = {𝑤 ∈ (ClWalks‘𝐺) ∣ ((♯‘(1st ‘𝑤)) = 𝑁 ∧ ((2nd ‘𝑤)‘0) = 𝑋 ∧ ((2nd ‘𝑤)‘(𝑁 − 2)) = 𝑋)} & ⊢ 𝐷 = {𝑤 ∈ (𝑋(ClWWalksNOn‘𝐺)𝑁) ∣ (𝑤‘(𝑁 − 2)) = 𝑋} & ⊢ 𝐹 = (𝑐 ∈ 𝑊 ↦ ((2nd ‘𝑐) prefix (♯‘(1st ‘𝑐)))) ⇒ ⊢ ((𝐺 ∈ USPGraph ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (ℤ≥‘2)) → 𝐹:𝑊–1-1-onto→𝐷) | ||
Theorem | dlwwlknondlwlknonen 30394* | The sets of the two representations of double loops of a fixed length on a fixed vertex are equinumerous. (Contributed by AV, 30-May-2022.) (Proof shortened by AV, 3-Nov-2022.) |
⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝑊 = {𝑤 ∈ (ClWalks‘𝐺) ∣ ((♯‘(1st ‘𝑤)) = 𝑁 ∧ ((2nd ‘𝑤)‘0) = 𝑋 ∧ ((2nd ‘𝑤)‘(𝑁 − 2)) = 𝑋)} & ⊢ 𝐷 = {𝑤 ∈ (𝑋(ClWWalksNOn‘𝐺)𝑁) ∣ (𝑤‘(𝑁 − 2)) = 𝑋} ⇒ ⊢ ((𝐺 ∈ USPGraph ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (ℤ≥‘2)) → 𝑊 ≈ 𝐷) | ||
Theorem | wlkl0 30395* | There is exactly one walk of length 0 on each vertex 𝑋. (Contributed by AV, 4-Jun-2022.) |
⊢ 𝑉 = (Vtx‘𝐺) ⇒ ⊢ (𝑋 ∈ 𝑉 → {𝑤 ∈ (ClWalks‘𝐺) ∣ ((♯‘(1st ‘𝑤)) = 0 ∧ ((2nd ‘𝑤)‘0) = 𝑋)} = {〈∅, {〈0, 𝑋〉}〉}) | ||
Theorem | clwlknon2num 30396* | There are k walks of length 2 on each vertex 𝑋 in a k-regular simple graph. Variant of clwwlknon2num 30133, using the general definition of walks instead of walks as words. (Contributed by AV, 4-Jun-2022.) |
⊢ 𝑉 = (Vtx‘𝐺) ⇒ ⊢ ((𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾 ∧ 𝑋 ∈ 𝑉) → (♯‘{𝑤 ∈ (ClWalks‘𝐺) ∣ ((♯‘(1st ‘𝑤)) = 2 ∧ ((2nd ‘𝑤)‘0) = 𝑋)}) = 𝐾) | ||
Theorem | numclwlk1lem1 30397* | Lemma 1 for numclwlk1 30399 (Statement 9 in [Huneke] p. 2 for n=2): "the number of closed 2-walks v(0) v(1) v(2) from v = v(0) = v(2) ... is kf(0)". (Contributed by AV, 23-May-2022.) |
⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐶 = {𝑤 ∈ (ClWalks‘𝐺) ∣ ((♯‘(1st ‘𝑤)) = 𝑁 ∧ ((2nd ‘𝑤)‘0) = 𝑋 ∧ ((2nd ‘𝑤)‘(𝑁 − 2)) = 𝑋)} & ⊢ 𝐹 = {𝑤 ∈ (ClWalks‘𝐺) ∣ ((♯‘(1st ‘𝑤)) = (𝑁 − 2) ∧ ((2nd ‘𝑤)‘0) = 𝑋)} ⇒ ⊢ (((𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾) ∧ (𝑋 ∈ 𝑉 ∧ 𝑁 = 2)) → (♯‘𝐶) = (𝐾 · (♯‘𝐹))) | ||
Theorem | numclwlk1lem2 30398* | Lemma 2 for numclwlk1 30399 (Statement 9 in [Huneke] p. 2 for n>2). This theorem corresponds to numclwwlk1 30389, using the general definition of walks instead of walks as words. (Contributed by AV, 4-Jun-2022.) |
⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐶 = {𝑤 ∈ (ClWalks‘𝐺) ∣ ((♯‘(1st ‘𝑤)) = 𝑁 ∧ ((2nd ‘𝑤)‘0) = 𝑋 ∧ ((2nd ‘𝑤)‘(𝑁 − 2)) = 𝑋)} & ⊢ 𝐹 = {𝑤 ∈ (ClWalks‘𝐺) ∣ ((♯‘(1st ‘𝑤)) = (𝑁 − 2) ∧ ((2nd ‘𝑤)‘0) = 𝑋)} ⇒ ⊢ (((𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾) ∧ (𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (ℤ≥‘3))) → (♯‘𝐶) = (𝐾 · (♯‘𝐹))) | ||
Theorem | numclwlk1 30399* | Statement 9 in [Huneke] p. 2: "If n > 1, then the number of closed n-walks v(0) ... v(n-2) v(n-1) v(n) from v = v(0) = v(n) with v(n-2) = v is kf(n-2)". Since 𝐺 is k-regular, the vertex v(n-2) = v has k neighbors v(n-1), so there are k walks from v(n-2) = v to v(n) = v (via each of v's neighbors) completing each of the f(n-2) walks from v=v(0) to v(n-2)=v. This theorem holds even for k=0. (Contributed by AV, 23-May-2022.) |
⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐶 = {𝑤 ∈ (ClWalks‘𝐺) ∣ ((♯‘(1st ‘𝑤)) = 𝑁 ∧ ((2nd ‘𝑤)‘0) = 𝑋 ∧ ((2nd ‘𝑤)‘(𝑁 − 2)) = 𝑋)} & ⊢ 𝐹 = {𝑤 ∈ (ClWalks‘𝐺) ∣ ((♯‘(1st ‘𝑤)) = (𝑁 − 2) ∧ ((2nd ‘𝑤)‘0) = 𝑋)} ⇒ ⊢ (((𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾) ∧ (𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (ℤ≥‘2))) → (♯‘𝐶) = (𝐾 · (♯‘𝐹))) | ||
Theorem | numclwwlkovh0 30400* | Value of operation 𝐻, mapping a vertex 𝑣 and an integer 𝑛 greater than 1 to the "closed n-walks v(0) ... v(n-2) v(n-1) v(n) from v = v(0) = v(n) ... with v(n-2) =/= v" according to definition 7 in [Huneke] p. 2. (Contributed by AV, 1-May-2022.) |
⊢ 𝐻 = (𝑣 ∈ 𝑉, 𝑛 ∈ (ℤ≥‘2) ↦ {𝑤 ∈ (𝑣(ClWWalksNOn‘𝐺)𝑛) ∣ (𝑤‘(𝑛 − 2)) ≠ 𝑣}) ⇒ ⊢ ((𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (ℤ≥‘2)) → (𝑋𝐻𝑁) = {𝑤 ∈ (𝑋(ClWWalksNOn‘𝐺)𝑁) ∣ (𝑤‘(𝑁 − 2)) ≠ 𝑋}) |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |