HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  hvsubeq0i Structured version   Visualization version   GIF version

Theorem hvsubeq0i 29425
Description: If the difference between two vectors is zero, they are equal. (Contributed by NM, 18-Aug-1999.) (New usage is discouraged.)
Hypotheses
Ref Expression
hvnegdi.1 𝐴 ∈ ℋ
hvnegdi.2 𝐵 ∈ ℋ
Assertion
Ref Expression
hvsubeq0i ((𝐴 𝐵) = 0𝐴 = 𝐵)

Proof of Theorem hvsubeq0i
StepHypRef Expression
1 hvnegdi.1 . . . . . 6 𝐴 ∈ ℋ
2 hvnegdi.2 . . . . . 6 𝐵 ∈ ℋ
31, 2hvsubvali 29382 . . . . 5 (𝐴 𝐵) = (𝐴 + (-1 · 𝐵))
43eqeq1i 2743 . . . 4 ((𝐴 𝐵) = 0 ↔ (𝐴 + (-1 · 𝐵)) = 0)
5 oveq1 7282 . . . 4 ((𝐴 + (-1 · 𝐵)) = 0 → ((𝐴 + (-1 · 𝐵)) + 𝐵) = (0 + 𝐵))
64, 5sylbi 216 . . 3 ((𝐴 𝐵) = 0 → ((𝐴 + (-1 · 𝐵)) + 𝐵) = (0 + 𝐵))
7 neg1cn 12087 . . . . . 6 -1 ∈ ℂ
87, 2hvmulcli 29376 . . . . 5 (-1 · 𝐵) ∈ ℋ
91, 8, 2hvadd32i 29416 . . . 4 ((𝐴 + (-1 · 𝐵)) + 𝐵) = ((𝐴 + 𝐵) + (-1 · 𝐵))
101, 2, 8hvassi 29415 . . . . 5 ((𝐴 + 𝐵) + (-1 · 𝐵)) = (𝐴 + (𝐵 + (-1 · 𝐵)))
112hvnegidi 29392 . . . . . . 7 (𝐵 + (-1 · 𝐵)) = 0
1211oveq2i 7286 . . . . . 6 (𝐴 + (𝐵 + (-1 · 𝐵))) = (𝐴 + 0)
13 ax-hvaddid 29366 . . . . . . 7 (𝐴 ∈ ℋ → (𝐴 + 0) = 𝐴)
141, 13ax-mp 5 . . . . . 6 (𝐴 + 0) = 𝐴
1512, 14eqtri 2766 . . . . 5 (𝐴 + (𝐵 + (-1 · 𝐵))) = 𝐴
1610, 15eqtri 2766 . . . 4 ((𝐴 + 𝐵) + (-1 · 𝐵)) = 𝐴
179, 16eqtri 2766 . . 3 ((𝐴 + (-1 · 𝐵)) + 𝐵) = 𝐴
182hvaddid2i 29391 . . 3 (0 + 𝐵) = 𝐵
196, 17, 183eqtr3g 2801 . 2 ((𝐴 𝐵) = 0𝐴 = 𝐵)
20 oveq1 7282 . . 3 (𝐴 = 𝐵 → (𝐴 𝐵) = (𝐵 𝐵))
21 hvsubid 29388 . . . 4 (𝐵 ∈ ℋ → (𝐵 𝐵) = 0)
222, 21ax-mp 5 . . 3 (𝐵 𝐵) = 0
2320, 22eqtrdi 2794 . 2 (𝐴 = 𝐵 → (𝐴 𝐵) = 0)
2419, 23impbii 208 1 ((𝐴 𝐵) = 0𝐴 = 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wb 205   = wceq 1539  wcel 2106  (class class class)co 7275  1c1 10872  -cneg 11206  chba 29281   + cva 29282   · csm 29283  0c0v 29286   cmv 29287
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-hvcom 29363  ax-hvass 29364  ax-hv0cl 29365  ax-hvaddid 29366  ax-hfvmul 29367  ax-hvmulid 29368  ax-hvdistr2 29371  ax-hvmul0 29372
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-po 5503  df-so 5504  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-er 8498  df-en 8734  df-dom 8735  df-sdom 8736  df-pnf 11011  df-mnf 11012  df-ltxr 11014  df-sub 11207  df-neg 11208  df-hvsub 29333
This theorem is referenced by:  hvsubeq0  29430  bcseqi  29482  normsub0i  29497  pjss2i  30042
  Copyright terms: Public domain W3C validator