| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > norm3difi | Structured version Visualization version GIF version | ||
| Description: Norm of differences around common element. Part of Lemma 3.6 of [Beran] p. 101. (Contributed by NM, 16-Aug-1999.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| norm3dif.1 | ⊢ 𝐴 ∈ ℋ |
| norm3dif.2 | ⊢ 𝐵 ∈ ℋ |
| norm3dif.3 | ⊢ 𝐶 ∈ ℋ |
| Ref | Expression |
|---|---|
| norm3difi | ⊢ (normℎ‘(𝐴 −ℎ 𝐵)) ≤ ((normℎ‘(𝐴 −ℎ 𝐶)) + (normℎ‘(𝐶 −ℎ 𝐵))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | norm3dif.1 | . . . . 5 ⊢ 𝐴 ∈ ℋ | |
| 2 | norm3dif.2 | . . . . 5 ⊢ 𝐵 ∈ ℋ | |
| 3 | 1, 2 | hvsubvali 31000 | . . . 4 ⊢ (𝐴 −ℎ 𝐵) = (𝐴 +ℎ (-1 ·ℎ 𝐵)) |
| 4 | norm3dif.3 | . . . . . . 7 ⊢ 𝐶 ∈ ℋ | |
| 5 | 1, 4 | hvsubvali 31000 | . . . . . 6 ⊢ (𝐴 −ℎ 𝐶) = (𝐴 +ℎ (-1 ·ℎ 𝐶)) |
| 6 | 4, 2 | hvsubvali 31000 | . . . . . 6 ⊢ (𝐶 −ℎ 𝐵) = (𝐶 +ℎ (-1 ·ℎ 𝐵)) |
| 7 | 5, 6 | oveq12i 7358 | . . . . 5 ⊢ ((𝐴 −ℎ 𝐶) +ℎ (𝐶 −ℎ 𝐵)) = ((𝐴 +ℎ (-1 ·ℎ 𝐶)) +ℎ (𝐶 +ℎ (-1 ·ℎ 𝐵))) |
| 8 | neg1cn 12110 | . . . . . . 7 ⊢ -1 ∈ ℂ | |
| 9 | 8, 4 | hvmulcli 30994 | . . . . . 6 ⊢ (-1 ·ℎ 𝐶) ∈ ℋ |
| 10 | 8, 2 | hvmulcli 30994 | . . . . . . 7 ⊢ (-1 ·ℎ 𝐵) ∈ ℋ |
| 11 | 4, 10 | hvaddcli 30998 | . . . . . 6 ⊢ (𝐶 +ℎ (-1 ·ℎ 𝐵)) ∈ ℋ |
| 12 | 1, 9, 11 | hvassi 31033 | . . . . 5 ⊢ ((𝐴 +ℎ (-1 ·ℎ 𝐶)) +ℎ (𝐶 +ℎ (-1 ·ℎ 𝐵))) = (𝐴 +ℎ ((-1 ·ℎ 𝐶) +ℎ (𝐶 +ℎ (-1 ·ℎ 𝐵)))) |
| 13 | 9, 4, 10 | hvassi 31033 | . . . . . . 7 ⊢ (((-1 ·ℎ 𝐶) +ℎ 𝐶) +ℎ (-1 ·ℎ 𝐵)) = ((-1 ·ℎ 𝐶) +ℎ (𝐶 +ℎ (-1 ·ℎ 𝐵))) |
| 14 | 9, 4 | hvcomi 30999 | . . . . . . . . . 10 ⊢ ((-1 ·ℎ 𝐶) +ℎ 𝐶) = (𝐶 +ℎ (-1 ·ℎ 𝐶)) |
| 15 | 4, 4 | hvsubvali 31000 | . . . . . . . . . 10 ⊢ (𝐶 −ℎ 𝐶) = (𝐶 +ℎ (-1 ·ℎ 𝐶)) |
| 16 | hvsubid 31006 | . . . . . . . . . . 11 ⊢ (𝐶 ∈ ℋ → (𝐶 −ℎ 𝐶) = 0ℎ) | |
| 17 | 4, 16 | ax-mp 5 | . . . . . . . . . 10 ⊢ (𝐶 −ℎ 𝐶) = 0ℎ |
| 18 | 14, 15, 17 | 3eqtr2i 2760 | . . . . . . . . 9 ⊢ ((-1 ·ℎ 𝐶) +ℎ 𝐶) = 0ℎ |
| 19 | 18 | oveq1i 7356 | . . . . . . . 8 ⊢ (((-1 ·ℎ 𝐶) +ℎ 𝐶) +ℎ (-1 ·ℎ 𝐵)) = (0ℎ +ℎ (-1 ·ℎ 𝐵)) |
| 20 | ax-hv0cl 30983 | . . . . . . . . 9 ⊢ 0ℎ ∈ ℋ | |
| 21 | 20, 10 | hvcomi 30999 | . . . . . . . 8 ⊢ (0ℎ +ℎ (-1 ·ℎ 𝐵)) = ((-1 ·ℎ 𝐵) +ℎ 0ℎ) |
| 22 | ax-hvaddid 30984 | . . . . . . . . 9 ⊢ ((-1 ·ℎ 𝐵) ∈ ℋ → ((-1 ·ℎ 𝐵) +ℎ 0ℎ) = (-1 ·ℎ 𝐵)) | |
| 23 | 10, 22 | ax-mp 5 | . . . . . . . 8 ⊢ ((-1 ·ℎ 𝐵) +ℎ 0ℎ) = (-1 ·ℎ 𝐵) |
| 24 | 19, 21, 23 | 3eqtri 2758 | . . . . . . 7 ⊢ (((-1 ·ℎ 𝐶) +ℎ 𝐶) +ℎ (-1 ·ℎ 𝐵)) = (-1 ·ℎ 𝐵) |
| 25 | 13, 24 | eqtr3i 2756 | . . . . . 6 ⊢ ((-1 ·ℎ 𝐶) +ℎ (𝐶 +ℎ (-1 ·ℎ 𝐵))) = (-1 ·ℎ 𝐵) |
| 26 | 25 | oveq2i 7357 | . . . . 5 ⊢ (𝐴 +ℎ ((-1 ·ℎ 𝐶) +ℎ (𝐶 +ℎ (-1 ·ℎ 𝐵)))) = (𝐴 +ℎ (-1 ·ℎ 𝐵)) |
| 27 | 7, 12, 26 | 3eqtri 2758 | . . . 4 ⊢ ((𝐴 −ℎ 𝐶) +ℎ (𝐶 −ℎ 𝐵)) = (𝐴 +ℎ (-1 ·ℎ 𝐵)) |
| 28 | 3, 27 | eqtr4i 2757 | . . 3 ⊢ (𝐴 −ℎ 𝐵) = ((𝐴 −ℎ 𝐶) +ℎ (𝐶 −ℎ 𝐵)) |
| 29 | 28 | fveq2i 6825 | . 2 ⊢ (normℎ‘(𝐴 −ℎ 𝐵)) = (normℎ‘((𝐴 −ℎ 𝐶) +ℎ (𝐶 −ℎ 𝐵))) |
| 30 | 1, 4 | hvsubcli 31001 | . . 3 ⊢ (𝐴 −ℎ 𝐶) ∈ ℋ |
| 31 | 4, 2 | hvsubcli 31001 | . . 3 ⊢ (𝐶 −ℎ 𝐵) ∈ ℋ |
| 32 | 30, 31 | norm-ii-i 31117 | . 2 ⊢ (normℎ‘((𝐴 −ℎ 𝐶) +ℎ (𝐶 −ℎ 𝐵))) ≤ ((normℎ‘(𝐴 −ℎ 𝐶)) + (normℎ‘(𝐶 −ℎ 𝐵))) |
| 33 | 29, 32 | eqbrtri 5110 | 1 ⊢ (normℎ‘(𝐴 −ℎ 𝐵)) ≤ ((normℎ‘(𝐴 −ℎ 𝐶)) + (normℎ‘(𝐶 −ℎ 𝐵))) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1541 ∈ wcel 2111 class class class wbr 5089 ‘cfv 6481 (class class class)co 7346 1c1 11007 + caddc 11009 ≤ cle 11147 -cneg 11345 ℋchba 30899 +ℎ cva 30900 ·ℎ csm 30901 normℎcno 30903 0ℎc0v 30904 −ℎ cmv 30905 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 ax-cnex 11062 ax-resscn 11063 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-mulrcl 11069 ax-mulcom 11070 ax-addass 11071 ax-mulass 11072 ax-distr 11073 ax-i2m1 11074 ax-1ne0 11075 ax-1rid 11076 ax-rnegex 11077 ax-rrecex 11078 ax-cnre 11079 ax-pre-lttri 11080 ax-pre-lttrn 11081 ax-pre-ltadd 11082 ax-pre-mulgt0 11083 ax-pre-sup 11084 ax-hfvadd 30980 ax-hvcom 30981 ax-hvass 30982 ax-hv0cl 30983 ax-hvaddid 30984 ax-hfvmul 30985 ax-hvmulid 30986 ax-hvmulass 30987 ax-hvdistr2 30989 ax-hvmul0 30990 ax-hfi 31059 ax-his1 31062 ax-his2 31063 ax-his3 31064 ax-his4 31065 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-er 8622 df-en 8870 df-dom 8871 df-sdom 8872 df-sup 9326 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 df-le 11152 df-sub 11346 df-neg 11347 df-div 11775 df-nn 12126 df-2 12188 df-3 12189 df-4 12190 df-n0 12382 df-z 12469 df-uz 12733 df-rp 12891 df-seq 13909 df-exp 13969 df-cj 15006 df-re 15007 df-im 15008 df-sqrt 15142 df-abs 15143 df-hnorm 30948 df-hvsub 30951 |
| This theorem is referenced by: norm3adifii 31128 norm3lem 31129 norm3dif 31130 |
| Copyright terms: Public domain | W3C validator |