HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  norm3difi Structured version   Visualization version   GIF version

Theorem norm3difi 31166
Description: Norm of differences around common element. Part of Lemma 3.6 of [Beran] p. 101. (Contributed by NM, 16-Aug-1999.) (New usage is discouraged.)
Hypotheses
Ref Expression
norm3dif.1 𝐴 ∈ ℋ
norm3dif.2 𝐵 ∈ ℋ
norm3dif.3 𝐶 ∈ ℋ
Assertion
Ref Expression
norm3difi (norm‘(𝐴 𝐵)) ≤ ((norm‘(𝐴 𝐶)) + (norm‘(𝐶 𝐵)))

Proof of Theorem norm3difi
StepHypRef Expression
1 norm3dif.1 . . . . 5 𝐴 ∈ ℋ
2 norm3dif.2 . . . . 5 𝐵 ∈ ℋ
31, 2hvsubvali 31039 . . . 4 (𝐴 𝐵) = (𝐴 + (-1 · 𝐵))
4 norm3dif.3 . . . . . . 7 𝐶 ∈ ℋ
51, 4hvsubvali 31039 . . . . . 6 (𝐴 𝐶) = (𝐴 + (-1 · 𝐶))
64, 2hvsubvali 31039 . . . . . 6 (𝐶 𝐵) = (𝐶 + (-1 · 𝐵))
75, 6oveq12i 7443 . . . . 5 ((𝐴 𝐶) + (𝐶 𝐵)) = ((𝐴 + (-1 · 𝐶)) + (𝐶 + (-1 · 𝐵)))
8 neg1cn 12380 . . . . . . 7 -1 ∈ ℂ
98, 4hvmulcli 31033 . . . . . 6 (-1 · 𝐶) ∈ ℋ
108, 2hvmulcli 31033 . . . . . . 7 (-1 · 𝐵) ∈ ℋ
114, 10hvaddcli 31037 . . . . . 6 (𝐶 + (-1 · 𝐵)) ∈ ℋ
121, 9, 11hvassi 31072 . . . . 5 ((𝐴 + (-1 · 𝐶)) + (𝐶 + (-1 · 𝐵))) = (𝐴 + ((-1 · 𝐶) + (𝐶 + (-1 · 𝐵))))
139, 4, 10hvassi 31072 . . . . . . 7 (((-1 · 𝐶) + 𝐶) + (-1 · 𝐵)) = ((-1 · 𝐶) + (𝐶 + (-1 · 𝐵)))
149, 4hvcomi 31038 . . . . . . . . . 10 ((-1 · 𝐶) + 𝐶) = (𝐶 + (-1 · 𝐶))
154, 4hvsubvali 31039 . . . . . . . . . 10 (𝐶 𝐶) = (𝐶 + (-1 · 𝐶))
16 hvsubid 31045 . . . . . . . . . . 11 (𝐶 ∈ ℋ → (𝐶 𝐶) = 0)
174, 16ax-mp 5 . . . . . . . . . 10 (𝐶 𝐶) = 0
1814, 15, 173eqtr2i 2771 . . . . . . . . 9 ((-1 · 𝐶) + 𝐶) = 0
1918oveq1i 7441 . . . . . . . 8 (((-1 · 𝐶) + 𝐶) + (-1 · 𝐵)) = (0 + (-1 · 𝐵))
20 ax-hv0cl 31022 . . . . . . . . 9 0 ∈ ℋ
2120, 10hvcomi 31038 . . . . . . . 8 (0 + (-1 · 𝐵)) = ((-1 · 𝐵) + 0)
22 ax-hvaddid 31023 . . . . . . . . 9 ((-1 · 𝐵) ∈ ℋ → ((-1 · 𝐵) + 0) = (-1 · 𝐵))
2310, 22ax-mp 5 . . . . . . . 8 ((-1 · 𝐵) + 0) = (-1 · 𝐵)
2419, 21, 233eqtri 2769 . . . . . . 7 (((-1 · 𝐶) + 𝐶) + (-1 · 𝐵)) = (-1 · 𝐵)
2513, 24eqtr3i 2767 . . . . . 6 ((-1 · 𝐶) + (𝐶 + (-1 · 𝐵))) = (-1 · 𝐵)
2625oveq2i 7442 . . . . 5 (𝐴 + ((-1 · 𝐶) + (𝐶 + (-1 · 𝐵)))) = (𝐴 + (-1 · 𝐵))
277, 12, 263eqtri 2769 . . . 4 ((𝐴 𝐶) + (𝐶 𝐵)) = (𝐴 + (-1 · 𝐵))
283, 27eqtr4i 2768 . . 3 (𝐴 𝐵) = ((𝐴 𝐶) + (𝐶 𝐵))
2928fveq2i 6909 . 2 (norm‘(𝐴 𝐵)) = (norm‘((𝐴 𝐶) + (𝐶 𝐵)))
301, 4hvsubcli 31040 . . 3 (𝐴 𝐶) ∈ ℋ
314, 2hvsubcli 31040 . . 3 (𝐶 𝐵) ∈ ℋ
3230, 31norm-ii-i 31156 . 2 (norm‘((𝐴 𝐶) + (𝐶 𝐵))) ≤ ((norm‘(𝐴 𝐶)) + (norm‘(𝐶 𝐵)))
3329, 32eqbrtri 5164 1 (norm‘(𝐴 𝐵)) ≤ ((norm‘(𝐴 𝐶)) + (norm‘(𝐶 𝐵)))
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  wcel 2108   class class class wbr 5143  cfv 6561  (class class class)co 7431  1c1 11156   + caddc 11158  cle 11296  -cneg 11493  chba 30938   + cva 30939   · csm 30940  normcno 30942  0c0v 30943   cmv 30944
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232  ax-pre-sup 11233  ax-hfvadd 31019  ax-hvcom 31020  ax-hvass 31021  ax-hv0cl 31022  ax-hvaddid 31023  ax-hfvmul 31024  ax-hvmulid 31025  ax-hvmulass 31026  ax-hvdistr2 31028  ax-hvmul0 31029  ax-hfi 31098  ax-his1 31101  ax-his2 31102  ax-his3 31103  ax-his4 31104
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-2nd 8015  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-er 8745  df-en 8986  df-dom 8987  df-sdom 8988  df-sup 9482  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-div 11921  df-nn 12267  df-2 12329  df-3 12330  df-4 12331  df-n0 12527  df-z 12614  df-uz 12879  df-rp 13035  df-seq 14043  df-exp 14103  df-cj 15138  df-re 15139  df-im 15140  df-sqrt 15274  df-abs 15275  df-hnorm 30987  df-hvsub 30990
This theorem is referenced by:  norm3adifii  31167  norm3lem  31168  norm3dif  31169
  Copyright terms: Public domain W3C validator