HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  norm3difi Structured version   Visualization version   GIF version

Theorem norm3difi 31127
Description: Norm of differences around common element. Part of Lemma 3.6 of [Beran] p. 101. (Contributed by NM, 16-Aug-1999.) (New usage is discouraged.)
Hypotheses
Ref Expression
norm3dif.1 𝐴 ∈ ℋ
norm3dif.2 𝐵 ∈ ℋ
norm3dif.3 𝐶 ∈ ℋ
Assertion
Ref Expression
norm3difi (norm‘(𝐴 𝐵)) ≤ ((norm‘(𝐴 𝐶)) + (norm‘(𝐶 𝐵)))

Proof of Theorem norm3difi
StepHypRef Expression
1 norm3dif.1 . . . . 5 𝐴 ∈ ℋ
2 norm3dif.2 . . . . 5 𝐵 ∈ ℋ
31, 2hvsubvali 31000 . . . 4 (𝐴 𝐵) = (𝐴 + (-1 · 𝐵))
4 norm3dif.3 . . . . . . 7 𝐶 ∈ ℋ
51, 4hvsubvali 31000 . . . . . 6 (𝐴 𝐶) = (𝐴 + (-1 · 𝐶))
64, 2hvsubvali 31000 . . . . . 6 (𝐶 𝐵) = (𝐶 + (-1 · 𝐵))
75, 6oveq12i 7358 . . . . 5 ((𝐴 𝐶) + (𝐶 𝐵)) = ((𝐴 + (-1 · 𝐶)) + (𝐶 + (-1 · 𝐵)))
8 neg1cn 12110 . . . . . . 7 -1 ∈ ℂ
98, 4hvmulcli 30994 . . . . . 6 (-1 · 𝐶) ∈ ℋ
108, 2hvmulcli 30994 . . . . . . 7 (-1 · 𝐵) ∈ ℋ
114, 10hvaddcli 30998 . . . . . 6 (𝐶 + (-1 · 𝐵)) ∈ ℋ
121, 9, 11hvassi 31033 . . . . 5 ((𝐴 + (-1 · 𝐶)) + (𝐶 + (-1 · 𝐵))) = (𝐴 + ((-1 · 𝐶) + (𝐶 + (-1 · 𝐵))))
139, 4, 10hvassi 31033 . . . . . . 7 (((-1 · 𝐶) + 𝐶) + (-1 · 𝐵)) = ((-1 · 𝐶) + (𝐶 + (-1 · 𝐵)))
149, 4hvcomi 30999 . . . . . . . . . 10 ((-1 · 𝐶) + 𝐶) = (𝐶 + (-1 · 𝐶))
154, 4hvsubvali 31000 . . . . . . . . . 10 (𝐶 𝐶) = (𝐶 + (-1 · 𝐶))
16 hvsubid 31006 . . . . . . . . . . 11 (𝐶 ∈ ℋ → (𝐶 𝐶) = 0)
174, 16ax-mp 5 . . . . . . . . . 10 (𝐶 𝐶) = 0
1814, 15, 173eqtr2i 2760 . . . . . . . . 9 ((-1 · 𝐶) + 𝐶) = 0
1918oveq1i 7356 . . . . . . . 8 (((-1 · 𝐶) + 𝐶) + (-1 · 𝐵)) = (0 + (-1 · 𝐵))
20 ax-hv0cl 30983 . . . . . . . . 9 0 ∈ ℋ
2120, 10hvcomi 30999 . . . . . . . 8 (0 + (-1 · 𝐵)) = ((-1 · 𝐵) + 0)
22 ax-hvaddid 30984 . . . . . . . . 9 ((-1 · 𝐵) ∈ ℋ → ((-1 · 𝐵) + 0) = (-1 · 𝐵))
2310, 22ax-mp 5 . . . . . . . 8 ((-1 · 𝐵) + 0) = (-1 · 𝐵)
2419, 21, 233eqtri 2758 . . . . . . 7 (((-1 · 𝐶) + 𝐶) + (-1 · 𝐵)) = (-1 · 𝐵)
2513, 24eqtr3i 2756 . . . . . 6 ((-1 · 𝐶) + (𝐶 + (-1 · 𝐵))) = (-1 · 𝐵)
2625oveq2i 7357 . . . . 5 (𝐴 + ((-1 · 𝐶) + (𝐶 + (-1 · 𝐵)))) = (𝐴 + (-1 · 𝐵))
277, 12, 263eqtri 2758 . . . 4 ((𝐴 𝐶) + (𝐶 𝐵)) = (𝐴 + (-1 · 𝐵))
283, 27eqtr4i 2757 . . 3 (𝐴 𝐵) = ((𝐴 𝐶) + (𝐶 𝐵))
2928fveq2i 6825 . 2 (norm‘(𝐴 𝐵)) = (norm‘((𝐴 𝐶) + (𝐶 𝐵)))
301, 4hvsubcli 31001 . . 3 (𝐴 𝐶) ∈ ℋ
314, 2hvsubcli 31001 . . 3 (𝐶 𝐵) ∈ ℋ
3230, 31norm-ii-i 31117 . 2 (norm‘((𝐴 𝐶) + (𝐶 𝐵))) ≤ ((norm‘(𝐴 𝐶)) + (norm‘(𝐶 𝐵)))
3329, 32eqbrtri 5110 1 (norm‘(𝐴 𝐵)) ≤ ((norm‘(𝐴 𝐶)) + (norm‘(𝐶 𝐵)))
Colors of variables: wff setvar class
Syntax hints:   = wceq 1541  wcel 2111   class class class wbr 5089  cfv 6481  (class class class)co 7346  1c1 11007   + caddc 11009  cle 11147  -cneg 11345  chba 30899   + cva 30900   · csm 30901  normcno 30903  0c0v 30904   cmv 30905
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083  ax-pre-sup 11084  ax-hfvadd 30980  ax-hvcom 30981  ax-hvass 30982  ax-hv0cl 30983  ax-hvaddid 30984  ax-hfvmul 30985  ax-hvmulid 30986  ax-hvmulass 30987  ax-hvdistr2 30989  ax-hvmul0 30990  ax-hfi 31059  ax-his1 31062  ax-his2 31063  ax-his3 31064  ax-his4 31065
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-er 8622  df-en 8870  df-dom 8871  df-sdom 8872  df-sup 9326  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-div 11775  df-nn 12126  df-2 12188  df-3 12189  df-4 12190  df-n0 12382  df-z 12469  df-uz 12733  df-rp 12891  df-seq 13909  df-exp 13969  df-cj 15006  df-re 15007  df-im 15008  df-sqrt 15142  df-abs 15143  df-hnorm 30948  df-hvsub 30951
This theorem is referenced by:  norm3adifii  31128  norm3lem  31129  norm3dif  31130
  Copyright terms: Public domain W3C validator