Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > HSE Home > Th. List > norm3difi | Structured version Visualization version GIF version |
Description: Norm of differences around common element. Part of Lemma 3.6 of [Beran] p. 101. (Contributed by NM, 16-Aug-1999.) (New usage is discouraged.) |
Ref | Expression |
---|---|
norm3dif.1 | ⊢ 𝐴 ∈ ℋ |
norm3dif.2 | ⊢ 𝐵 ∈ ℋ |
norm3dif.3 | ⊢ 𝐶 ∈ ℋ |
Ref | Expression |
---|---|
norm3difi | ⊢ (normℎ‘(𝐴 −ℎ 𝐵)) ≤ ((normℎ‘(𝐴 −ℎ 𝐶)) + (normℎ‘(𝐶 −ℎ 𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | norm3dif.1 | . . . . 5 ⊢ 𝐴 ∈ ℋ | |
2 | norm3dif.2 | . . . . 5 ⊢ 𝐵 ∈ ℋ | |
3 | 1, 2 | hvsubvali 29283 | . . . 4 ⊢ (𝐴 −ℎ 𝐵) = (𝐴 +ℎ (-1 ·ℎ 𝐵)) |
4 | norm3dif.3 | . . . . . . 7 ⊢ 𝐶 ∈ ℋ | |
5 | 1, 4 | hvsubvali 29283 | . . . . . 6 ⊢ (𝐴 −ℎ 𝐶) = (𝐴 +ℎ (-1 ·ℎ 𝐶)) |
6 | 4, 2 | hvsubvali 29283 | . . . . . 6 ⊢ (𝐶 −ℎ 𝐵) = (𝐶 +ℎ (-1 ·ℎ 𝐵)) |
7 | 5, 6 | oveq12i 7267 | . . . . 5 ⊢ ((𝐴 −ℎ 𝐶) +ℎ (𝐶 −ℎ 𝐵)) = ((𝐴 +ℎ (-1 ·ℎ 𝐶)) +ℎ (𝐶 +ℎ (-1 ·ℎ 𝐵))) |
8 | neg1cn 12017 | . . . . . . 7 ⊢ -1 ∈ ℂ | |
9 | 8, 4 | hvmulcli 29277 | . . . . . 6 ⊢ (-1 ·ℎ 𝐶) ∈ ℋ |
10 | 8, 2 | hvmulcli 29277 | . . . . . . 7 ⊢ (-1 ·ℎ 𝐵) ∈ ℋ |
11 | 4, 10 | hvaddcli 29281 | . . . . . 6 ⊢ (𝐶 +ℎ (-1 ·ℎ 𝐵)) ∈ ℋ |
12 | 1, 9, 11 | hvassi 29316 | . . . . 5 ⊢ ((𝐴 +ℎ (-1 ·ℎ 𝐶)) +ℎ (𝐶 +ℎ (-1 ·ℎ 𝐵))) = (𝐴 +ℎ ((-1 ·ℎ 𝐶) +ℎ (𝐶 +ℎ (-1 ·ℎ 𝐵)))) |
13 | 9, 4, 10 | hvassi 29316 | . . . . . . 7 ⊢ (((-1 ·ℎ 𝐶) +ℎ 𝐶) +ℎ (-1 ·ℎ 𝐵)) = ((-1 ·ℎ 𝐶) +ℎ (𝐶 +ℎ (-1 ·ℎ 𝐵))) |
14 | 9, 4 | hvcomi 29282 | . . . . . . . . . 10 ⊢ ((-1 ·ℎ 𝐶) +ℎ 𝐶) = (𝐶 +ℎ (-1 ·ℎ 𝐶)) |
15 | 4, 4 | hvsubvali 29283 | . . . . . . . . . 10 ⊢ (𝐶 −ℎ 𝐶) = (𝐶 +ℎ (-1 ·ℎ 𝐶)) |
16 | hvsubid 29289 | . . . . . . . . . . 11 ⊢ (𝐶 ∈ ℋ → (𝐶 −ℎ 𝐶) = 0ℎ) | |
17 | 4, 16 | ax-mp 5 | . . . . . . . . . 10 ⊢ (𝐶 −ℎ 𝐶) = 0ℎ |
18 | 14, 15, 17 | 3eqtr2i 2772 | . . . . . . . . 9 ⊢ ((-1 ·ℎ 𝐶) +ℎ 𝐶) = 0ℎ |
19 | 18 | oveq1i 7265 | . . . . . . . 8 ⊢ (((-1 ·ℎ 𝐶) +ℎ 𝐶) +ℎ (-1 ·ℎ 𝐵)) = (0ℎ +ℎ (-1 ·ℎ 𝐵)) |
20 | ax-hv0cl 29266 | . . . . . . . . 9 ⊢ 0ℎ ∈ ℋ | |
21 | 20, 10 | hvcomi 29282 | . . . . . . . 8 ⊢ (0ℎ +ℎ (-1 ·ℎ 𝐵)) = ((-1 ·ℎ 𝐵) +ℎ 0ℎ) |
22 | ax-hvaddid 29267 | . . . . . . . . 9 ⊢ ((-1 ·ℎ 𝐵) ∈ ℋ → ((-1 ·ℎ 𝐵) +ℎ 0ℎ) = (-1 ·ℎ 𝐵)) | |
23 | 10, 22 | ax-mp 5 | . . . . . . . 8 ⊢ ((-1 ·ℎ 𝐵) +ℎ 0ℎ) = (-1 ·ℎ 𝐵) |
24 | 19, 21, 23 | 3eqtri 2770 | . . . . . . 7 ⊢ (((-1 ·ℎ 𝐶) +ℎ 𝐶) +ℎ (-1 ·ℎ 𝐵)) = (-1 ·ℎ 𝐵) |
25 | 13, 24 | eqtr3i 2768 | . . . . . 6 ⊢ ((-1 ·ℎ 𝐶) +ℎ (𝐶 +ℎ (-1 ·ℎ 𝐵))) = (-1 ·ℎ 𝐵) |
26 | 25 | oveq2i 7266 | . . . . 5 ⊢ (𝐴 +ℎ ((-1 ·ℎ 𝐶) +ℎ (𝐶 +ℎ (-1 ·ℎ 𝐵)))) = (𝐴 +ℎ (-1 ·ℎ 𝐵)) |
27 | 7, 12, 26 | 3eqtri 2770 | . . . 4 ⊢ ((𝐴 −ℎ 𝐶) +ℎ (𝐶 −ℎ 𝐵)) = (𝐴 +ℎ (-1 ·ℎ 𝐵)) |
28 | 3, 27 | eqtr4i 2769 | . . 3 ⊢ (𝐴 −ℎ 𝐵) = ((𝐴 −ℎ 𝐶) +ℎ (𝐶 −ℎ 𝐵)) |
29 | 28 | fveq2i 6759 | . 2 ⊢ (normℎ‘(𝐴 −ℎ 𝐵)) = (normℎ‘((𝐴 −ℎ 𝐶) +ℎ (𝐶 −ℎ 𝐵))) |
30 | 1, 4 | hvsubcli 29284 | . . 3 ⊢ (𝐴 −ℎ 𝐶) ∈ ℋ |
31 | 4, 2 | hvsubcli 29284 | . . 3 ⊢ (𝐶 −ℎ 𝐵) ∈ ℋ |
32 | 30, 31 | norm-ii-i 29400 | . 2 ⊢ (normℎ‘((𝐴 −ℎ 𝐶) +ℎ (𝐶 −ℎ 𝐵))) ≤ ((normℎ‘(𝐴 −ℎ 𝐶)) + (normℎ‘(𝐶 −ℎ 𝐵))) |
33 | 29, 32 | eqbrtri 5091 | 1 ⊢ (normℎ‘(𝐴 −ℎ 𝐵)) ≤ ((normℎ‘(𝐴 −ℎ 𝐶)) + (normℎ‘(𝐶 −ℎ 𝐵))) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 ∈ wcel 2108 class class class wbr 5070 ‘cfv 6418 (class class class)co 7255 1c1 10803 + caddc 10805 ≤ cle 10941 -cneg 11136 ℋchba 29182 +ℎ cva 29183 ·ℎ csm 29184 normℎcno 29186 0ℎc0v 29187 −ℎ cmv 29188 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 ax-pre-sup 10880 ax-hfvadd 29263 ax-hvcom 29264 ax-hvass 29265 ax-hv0cl 29266 ax-hvaddid 29267 ax-hfvmul 29268 ax-hvmulid 29269 ax-hvmulass 29270 ax-hvdistr2 29272 ax-hvmul0 29273 ax-hfi 29342 ax-his1 29345 ax-his2 29346 ax-his3 29347 ax-his4 29348 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-er 8456 df-en 8692 df-dom 8693 df-sdom 8694 df-sup 9131 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-div 11563 df-nn 11904 df-2 11966 df-3 11967 df-4 11968 df-n0 12164 df-z 12250 df-uz 12512 df-rp 12660 df-seq 13650 df-exp 13711 df-cj 14738 df-re 14739 df-im 14740 df-sqrt 14874 df-abs 14875 df-hnorm 29231 df-hvsub 29234 |
This theorem is referenced by: norm3adifii 29411 norm3lem 29412 norm3dif 29413 |
Copyright terms: Public domain | W3C validator |