| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > norm3difi | Structured version Visualization version GIF version | ||
| Description: Norm of differences around common element. Part of Lemma 3.6 of [Beran] p. 101. (Contributed by NM, 16-Aug-1999.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| norm3dif.1 | ⊢ 𝐴 ∈ ℋ |
| norm3dif.2 | ⊢ 𝐵 ∈ ℋ |
| norm3dif.3 | ⊢ 𝐶 ∈ ℋ |
| Ref | Expression |
|---|---|
| norm3difi | ⊢ (normℎ‘(𝐴 −ℎ 𝐵)) ≤ ((normℎ‘(𝐴 −ℎ 𝐶)) + (normℎ‘(𝐶 −ℎ 𝐵))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | norm3dif.1 | . . . . 5 ⊢ 𝐴 ∈ ℋ | |
| 2 | norm3dif.2 | . . . . 5 ⊢ 𝐵 ∈ ℋ | |
| 3 | 1, 2 | hvsubvali 31001 | . . . 4 ⊢ (𝐴 −ℎ 𝐵) = (𝐴 +ℎ (-1 ·ℎ 𝐵)) |
| 4 | norm3dif.3 | . . . . . . 7 ⊢ 𝐶 ∈ ℋ | |
| 5 | 1, 4 | hvsubvali 31001 | . . . . . 6 ⊢ (𝐴 −ℎ 𝐶) = (𝐴 +ℎ (-1 ·ℎ 𝐶)) |
| 6 | 4, 2 | hvsubvali 31001 | . . . . . 6 ⊢ (𝐶 −ℎ 𝐵) = (𝐶 +ℎ (-1 ·ℎ 𝐵)) |
| 7 | 5, 6 | oveq12i 7417 | . . . . 5 ⊢ ((𝐴 −ℎ 𝐶) +ℎ (𝐶 −ℎ 𝐵)) = ((𝐴 +ℎ (-1 ·ℎ 𝐶)) +ℎ (𝐶 +ℎ (-1 ·ℎ 𝐵))) |
| 8 | neg1cn 12354 | . . . . . . 7 ⊢ -1 ∈ ℂ | |
| 9 | 8, 4 | hvmulcli 30995 | . . . . . 6 ⊢ (-1 ·ℎ 𝐶) ∈ ℋ |
| 10 | 8, 2 | hvmulcli 30995 | . . . . . . 7 ⊢ (-1 ·ℎ 𝐵) ∈ ℋ |
| 11 | 4, 10 | hvaddcli 30999 | . . . . . 6 ⊢ (𝐶 +ℎ (-1 ·ℎ 𝐵)) ∈ ℋ |
| 12 | 1, 9, 11 | hvassi 31034 | . . . . 5 ⊢ ((𝐴 +ℎ (-1 ·ℎ 𝐶)) +ℎ (𝐶 +ℎ (-1 ·ℎ 𝐵))) = (𝐴 +ℎ ((-1 ·ℎ 𝐶) +ℎ (𝐶 +ℎ (-1 ·ℎ 𝐵)))) |
| 13 | 9, 4, 10 | hvassi 31034 | . . . . . . 7 ⊢ (((-1 ·ℎ 𝐶) +ℎ 𝐶) +ℎ (-1 ·ℎ 𝐵)) = ((-1 ·ℎ 𝐶) +ℎ (𝐶 +ℎ (-1 ·ℎ 𝐵))) |
| 14 | 9, 4 | hvcomi 31000 | . . . . . . . . . 10 ⊢ ((-1 ·ℎ 𝐶) +ℎ 𝐶) = (𝐶 +ℎ (-1 ·ℎ 𝐶)) |
| 15 | 4, 4 | hvsubvali 31001 | . . . . . . . . . 10 ⊢ (𝐶 −ℎ 𝐶) = (𝐶 +ℎ (-1 ·ℎ 𝐶)) |
| 16 | hvsubid 31007 | . . . . . . . . . . 11 ⊢ (𝐶 ∈ ℋ → (𝐶 −ℎ 𝐶) = 0ℎ) | |
| 17 | 4, 16 | ax-mp 5 | . . . . . . . . . 10 ⊢ (𝐶 −ℎ 𝐶) = 0ℎ |
| 18 | 14, 15, 17 | 3eqtr2i 2764 | . . . . . . . . 9 ⊢ ((-1 ·ℎ 𝐶) +ℎ 𝐶) = 0ℎ |
| 19 | 18 | oveq1i 7415 | . . . . . . . 8 ⊢ (((-1 ·ℎ 𝐶) +ℎ 𝐶) +ℎ (-1 ·ℎ 𝐵)) = (0ℎ +ℎ (-1 ·ℎ 𝐵)) |
| 20 | ax-hv0cl 30984 | . . . . . . . . 9 ⊢ 0ℎ ∈ ℋ | |
| 21 | 20, 10 | hvcomi 31000 | . . . . . . . 8 ⊢ (0ℎ +ℎ (-1 ·ℎ 𝐵)) = ((-1 ·ℎ 𝐵) +ℎ 0ℎ) |
| 22 | ax-hvaddid 30985 | . . . . . . . . 9 ⊢ ((-1 ·ℎ 𝐵) ∈ ℋ → ((-1 ·ℎ 𝐵) +ℎ 0ℎ) = (-1 ·ℎ 𝐵)) | |
| 23 | 10, 22 | ax-mp 5 | . . . . . . . 8 ⊢ ((-1 ·ℎ 𝐵) +ℎ 0ℎ) = (-1 ·ℎ 𝐵) |
| 24 | 19, 21, 23 | 3eqtri 2762 | . . . . . . 7 ⊢ (((-1 ·ℎ 𝐶) +ℎ 𝐶) +ℎ (-1 ·ℎ 𝐵)) = (-1 ·ℎ 𝐵) |
| 25 | 13, 24 | eqtr3i 2760 | . . . . . 6 ⊢ ((-1 ·ℎ 𝐶) +ℎ (𝐶 +ℎ (-1 ·ℎ 𝐵))) = (-1 ·ℎ 𝐵) |
| 26 | 25 | oveq2i 7416 | . . . . 5 ⊢ (𝐴 +ℎ ((-1 ·ℎ 𝐶) +ℎ (𝐶 +ℎ (-1 ·ℎ 𝐵)))) = (𝐴 +ℎ (-1 ·ℎ 𝐵)) |
| 27 | 7, 12, 26 | 3eqtri 2762 | . . . 4 ⊢ ((𝐴 −ℎ 𝐶) +ℎ (𝐶 −ℎ 𝐵)) = (𝐴 +ℎ (-1 ·ℎ 𝐵)) |
| 28 | 3, 27 | eqtr4i 2761 | . . 3 ⊢ (𝐴 −ℎ 𝐵) = ((𝐴 −ℎ 𝐶) +ℎ (𝐶 −ℎ 𝐵)) |
| 29 | 28 | fveq2i 6879 | . 2 ⊢ (normℎ‘(𝐴 −ℎ 𝐵)) = (normℎ‘((𝐴 −ℎ 𝐶) +ℎ (𝐶 −ℎ 𝐵))) |
| 30 | 1, 4 | hvsubcli 31002 | . . 3 ⊢ (𝐴 −ℎ 𝐶) ∈ ℋ |
| 31 | 4, 2 | hvsubcli 31002 | . . 3 ⊢ (𝐶 −ℎ 𝐵) ∈ ℋ |
| 32 | 30, 31 | norm-ii-i 31118 | . 2 ⊢ (normℎ‘((𝐴 −ℎ 𝐶) +ℎ (𝐶 −ℎ 𝐵))) ≤ ((normℎ‘(𝐴 −ℎ 𝐶)) + (normℎ‘(𝐶 −ℎ 𝐵))) |
| 33 | 29, 32 | eqbrtri 5140 | 1 ⊢ (normℎ‘(𝐴 −ℎ 𝐵)) ≤ ((normℎ‘(𝐴 −ℎ 𝐶)) + (normℎ‘(𝐶 −ℎ 𝐵))) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∈ wcel 2108 class class class wbr 5119 ‘cfv 6531 (class class class)co 7405 1c1 11130 + caddc 11132 ≤ cle 11270 -cneg 11467 ℋchba 30900 +ℎ cva 30901 ·ℎ csm 30902 normℎcno 30904 0ℎc0v 30905 −ℎ cmv 30906 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 ax-cnex 11185 ax-resscn 11186 ax-1cn 11187 ax-icn 11188 ax-addcl 11189 ax-addrcl 11190 ax-mulcl 11191 ax-mulrcl 11192 ax-mulcom 11193 ax-addass 11194 ax-mulass 11195 ax-distr 11196 ax-i2m1 11197 ax-1ne0 11198 ax-1rid 11199 ax-rnegex 11200 ax-rrecex 11201 ax-cnre 11202 ax-pre-lttri 11203 ax-pre-lttrn 11204 ax-pre-ltadd 11205 ax-pre-mulgt0 11206 ax-pre-sup 11207 ax-hfvadd 30981 ax-hvcom 30982 ax-hvass 30983 ax-hv0cl 30984 ax-hvaddid 30985 ax-hfvmul 30986 ax-hvmulid 30987 ax-hvmulass 30988 ax-hvdistr2 30990 ax-hvmul0 30991 ax-hfi 31060 ax-his1 31063 ax-his2 31064 ax-his3 31065 ax-his4 31066 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3359 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-riota 7362 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7862 df-2nd 7989 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-er 8719 df-en 8960 df-dom 8961 df-sdom 8962 df-sup 9454 df-pnf 11271 df-mnf 11272 df-xr 11273 df-ltxr 11274 df-le 11275 df-sub 11468 df-neg 11469 df-div 11895 df-nn 12241 df-2 12303 df-3 12304 df-4 12305 df-n0 12502 df-z 12589 df-uz 12853 df-rp 13009 df-seq 14020 df-exp 14080 df-cj 15118 df-re 15119 df-im 15120 df-sqrt 15254 df-abs 15255 df-hnorm 30949 df-hvsub 30952 |
| This theorem is referenced by: norm3adifii 31129 norm3lem 31130 norm3dif 31131 |
| Copyright terms: Public domain | W3C validator |