| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > norm3difi | Structured version Visualization version GIF version | ||
| Description: Norm of differences around common element. Part of Lemma 3.6 of [Beran] p. 101. (Contributed by NM, 16-Aug-1999.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| norm3dif.1 | ⊢ 𝐴 ∈ ℋ |
| norm3dif.2 | ⊢ 𝐵 ∈ ℋ |
| norm3dif.3 | ⊢ 𝐶 ∈ ℋ |
| Ref | Expression |
|---|---|
| norm3difi | ⊢ (normℎ‘(𝐴 −ℎ 𝐵)) ≤ ((normℎ‘(𝐴 −ℎ 𝐶)) + (normℎ‘(𝐶 −ℎ 𝐵))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | norm3dif.1 | . . . . 5 ⊢ 𝐴 ∈ ℋ | |
| 2 | norm3dif.2 | . . . . 5 ⊢ 𝐵 ∈ ℋ | |
| 3 | 1, 2 | hvsubvali 31039 | . . . 4 ⊢ (𝐴 −ℎ 𝐵) = (𝐴 +ℎ (-1 ·ℎ 𝐵)) |
| 4 | norm3dif.3 | . . . . . . 7 ⊢ 𝐶 ∈ ℋ | |
| 5 | 1, 4 | hvsubvali 31039 | . . . . . 6 ⊢ (𝐴 −ℎ 𝐶) = (𝐴 +ℎ (-1 ·ℎ 𝐶)) |
| 6 | 4, 2 | hvsubvali 31039 | . . . . . 6 ⊢ (𝐶 −ℎ 𝐵) = (𝐶 +ℎ (-1 ·ℎ 𝐵)) |
| 7 | 5, 6 | oveq12i 7443 | . . . . 5 ⊢ ((𝐴 −ℎ 𝐶) +ℎ (𝐶 −ℎ 𝐵)) = ((𝐴 +ℎ (-1 ·ℎ 𝐶)) +ℎ (𝐶 +ℎ (-1 ·ℎ 𝐵))) |
| 8 | neg1cn 12380 | . . . . . . 7 ⊢ -1 ∈ ℂ | |
| 9 | 8, 4 | hvmulcli 31033 | . . . . . 6 ⊢ (-1 ·ℎ 𝐶) ∈ ℋ |
| 10 | 8, 2 | hvmulcli 31033 | . . . . . . 7 ⊢ (-1 ·ℎ 𝐵) ∈ ℋ |
| 11 | 4, 10 | hvaddcli 31037 | . . . . . 6 ⊢ (𝐶 +ℎ (-1 ·ℎ 𝐵)) ∈ ℋ |
| 12 | 1, 9, 11 | hvassi 31072 | . . . . 5 ⊢ ((𝐴 +ℎ (-1 ·ℎ 𝐶)) +ℎ (𝐶 +ℎ (-1 ·ℎ 𝐵))) = (𝐴 +ℎ ((-1 ·ℎ 𝐶) +ℎ (𝐶 +ℎ (-1 ·ℎ 𝐵)))) |
| 13 | 9, 4, 10 | hvassi 31072 | . . . . . . 7 ⊢ (((-1 ·ℎ 𝐶) +ℎ 𝐶) +ℎ (-1 ·ℎ 𝐵)) = ((-1 ·ℎ 𝐶) +ℎ (𝐶 +ℎ (-1 ·ℎ 𝐵))) |
| 14 | 9, 4 | hvcomi 31038 | . . . . . . . . . 10 ⊢ ((-1 ·ℎ 𝐶) +ℎ 𝐶) = (𝐶 +ℎ (-1 ·ℎ 𝐶)) |
| 15 | 4, 4 | hvsubvali 31039 | . . . . . . . . . 10 ⊢ (𝐶 −ℎ 𝐶) = (𝐶 +ℎ (-1 ·ℎ 𝐶)) |
| 16 | hvsubid 31045 | . . . . . . . . . . 11 ⊢ (𝐶 ∈ ℋ → (𝐶 −ℎ 𝐶) = 0ℎ) | |
| 17 | 4, 16 | ax-mp 5 | . . . . . . . . . 10 ⊢ (𝐶 −ℎ 𝐶) = 0ℎ |
| 18 | 14, 15, 17 | 3eqtr2i 2771 | . . . . . . . . 9 ⊢ ((-1 ·ℎ 𝐶) +ℎ 𝐶) = 0ℎ |
| 19 | 18 | oveq1i 7441 | . . . . . . . 8 ⊢ (((-1 ·ℎ 𝐶) +ℎ 𝐶) +ℎ (-1 ·ℎ 𝐵)) = (0ℎ +ℎ (-1 ·ℎ 𝐵)) |
| 20 | ax-hv0cl 31022 | . . . . . . . . 9 ⊢ 0ℎ ∈ ℋ | |
| 21 | 20, 10 | hvcomi 31038 | . . . . . . . 8 ⊢ (0ℎ +ℎ (-1 ·ℎ 𝐵)) = ((-1 ·ℎ 𝐵) +ℎ 0ℎ) |
| 22 | ax-hvaddid 31023 | . . . . . . . . 9 ⊢ ((-1 ·ℎ 𝐵) ∈ ℋ → ((-1 ·ℎ 𝐵) +ℎ 0ℎ) = (-1 ·ℎ 𝐵)) | |
| 23 | 10, 22 | ax-mp 5 | . . . . . . . 8 ⊢ ((-1 ·ℎ 𝐵) +ℎ 0ℎ) = (-1 ·ℎ 𝐵) |
| 24 | 19, 21, 23 | 3eqtri 2769 | . . . . . . 7 ⊢ (((-1 ·ℎ 𝐶) +ℎ 𝐶) +ℎ (-1 ·ℎ 𝐵)) = (-1 ·ℎ 𝐵) |
| 25 | 13, 24 | eqtr3i 2767 | . . . . . 6 ⊢ ((-1 ·ℎ 𝐶) +ℎ (𝐶 +ℎ (-1 ·ℎ 𝐵))) = (-1 ·ℎ 𝐵) |
| 26 | 25 | oveq2i 7442 | . . . . 5 ⊢ (𝐴 +ℎ ((-1 ·ℎ 𝐶) +ℎ (𝐶 +ℎ (-1 ·ℎ 𝐵)))) = (𝐴 +ℎ (-1 ·ℎ 𝐵)) |
| 27 | 7, 12, 26 | 3eqtri 2769 | . . . 4 ⊢ ((𝐴 −ℎ 𝐶) +ℎ (𝐶 −ℎ 𝐵)) = (𝐴 +ℎ (-1 ·ℎ 𝐵)) |
| 28 | 3, 27 | eqtr4i 2768 | . . 3 ⊢ (𝐴 −ℎ 𝐵) = ((𝐴 −ℎ 𝐶) +ℎ (𝐶 −ℎ 𝐵)) |
| 29 | 28 | fveq2i 6909 | . 2 ⊢ (normℎ‘(𝐴 −ℎ 𝐵)) = (normℎ‘((𝐴 −ℎ 𝐶) +ℎ (𝐶 −ℎ 𝐵))) |
| 30 | 1, 4 | hvsubcli 31040 | . . 3 ⊢ (𝐴 −ℎ 𝐶) ∈ ℋ |
| 31 | 4, 2 | hvsubcli 31040 | . . 3 ⊢ (𝐶 −ℎ 𝐵) ∈ ℋ |
| 32 | 30, 31 | norm-ii-i 31156 | . 2 ⊢ (normℎ‘((𝐴 −ℎ 𝐶) +ℎ (𝐶 −ℎ 𝐵))) ≤ ((normℎ‘(𝐴 −ℎ 𝐶)) + (normℎ‘(𝐶 −ℎ 𝐵))) |
| 33 | 29, 32 | eqbrtri 5164 | 1 ⊢ (normℎ‘(𝐴 −ℎ 𝐵)) ≤ ((normℎ‘(𝐴 −ℎ 𝐶)) + (normℎ‘(𝐶 −ℎ 𝐵))) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∈ wcel 2108 class class class wbr 5143 ‘cfv 6561 (class class class)co 7431 1c1 11156 + caddc 11158 ≤ cle 11296 -cneg 11493 ℋchba 30938 +ℎ cva 30939 ·ℎ csm 30940 normℎcno 30942 0ℎc0v 30943 −ℎ cmv 30944 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-sep 5296 ax-nul 5306 ax-pow 5365 ax-pr 5432 ax-un 7755 ax-cnex 11211 ax-resscn 11212 ax-1cn 11213 ax-icn 11214 ax-addcl 11215 ax-addrcl 11216 ax-mulcl 11217 ax-mulrcl 11218 ax-mulcom 11219 ax-addass 11220 ax-mulass 11221 ax-distr 11222 ax-i2m1 11223 ax-1ne0 11224 ax-1rid 11225 ax-rnegex 11226 ax-rrecex 11227 ax-cnre 11228 ax-pre-lttri 11229 ax-pre-lttrn 11230 ax-pre-ltadd 11231 ax-pre-mulgt0 11232 ax-pre-sup 11233 ax-hfvadd 31019 ax-hvcom 31020 ax-hvass 31021 ax-hv0cl 31022 ax-hvaddid 31023 ax-hfvmul 31024 ax-hvmulid 31025 ax-hvmulass 31026 ax-hvdistr2 31028 ax-hvmul0 31029 ax-hfi 31098 ax-his1 31101 ax-his2 31102 ax-his3 31103 ax-his4 31104 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3380 df-reu 3381 df-rab 3437 df-v 3482 df-sbc 3789 df-csb 3900 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-pss 3971 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-iun 4993 df-br 5144 df-opab 5206 df-mpt 5226 df-tr 5260 df-id 5578 df-eprel 5584 df-po 5592 df-so 5593 df-fr 5637 df-we 5639 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-res 5697 df-ima 5698 df-pred 6321 df-ord 6387 df-on 6388 df-lim 6389 df-suc 6390 df-iota 6514 df-fun 6563 df-fn 6564 df-f 6565 df-f1 6566 df-fo 6567 df-f1o 6568 df-fv 6569 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-om 7888 df-2nd 8015 df-frecs 8306 df-wrecs 8337 df-recs 8411 df-rdg 8450 df-er 8745 df-en 8986 df-dom 8987 df-sdom 8988 df-sup 9482 df-pnf 11297 df-mnf 11298 df-xr 11299 df-ltxr 11300 df-le 11301 df-sub 11494 df-neg 11495 df-div 11921 df-nn 12267 df-2 12329 df-3 12330 df-4 12331 df-n0 12527 df-z 12614 df-uz 12879 df-rp 13035 df-seq 14043 df-exp 14103 df-cj 15138 df-re 15139 df-im 15140 df-sqrt 15274 df-abs 15275 df-hnorm 30987 df-hvsub 30990 |
| This theorem is referenced by: norm3adifii 31167 norm3lem 31168 norm3dif 31169 |
| Copyright terms: Public domain | W3C validator |