| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > norm3difi | Structured version Visualization version GIF version | ||
| Description: Norm of differences around common element. Part of Lemma 3.6 of [Beran] p. 101. (Contributed by NM, 16-Aug-1999.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| norm3dif.1 | ⊢ 𝐴 ∈ ℋ |
| norm3dif.2 | ⊢ 𝐵 ∈ ℋ |
| norm3dif.3 | ⊢ 𝐶 ∈ ℋ |
| Ref | Expression |
|---|---|
| norm3difi | ⊢ (normℎ‘(𝐴 −ℎ 𝐵)) ≤ ((normℎ‘(𝐴 −ℎ 𝐶)) + (normℎ‘(𝐶 −ℎ 𝐵))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | norm3dif.1 | . . . . 5 ⊢ 𝐴 ∈ ℋ | |
| 2 | norm3dif.2 | . . . . 5 ⊢ 𝐵 ∈ ℋ | |
| 3 | 1, 2 | hvsubvali 30949 | . . . 4 ⊢ (𝐴 −ℎ 𝐵) = (𝐴 +ℎ (-1 ·ℎ 𝐵)) |
| 4 | norm3dif.3 | . . . . . . 7 ⊢ 𝐶 ∈ ℋ | |
| 5 | 1, 4 | hvsubvali 30949 | . . . . . 6 ⊢ (𝐴 −ℎ 𝐶) = (𝐴 +ℎ (-1 ·ℎ 𝐶)) |
| 6 | 4, 2 | hvsubvali 30949 | . . . . . 6 ⊢ (𝐶 −ℎ 𝐵) = (𝐶 +ℎ (-1 ·ℎ 𝐵)) |
| 7 | 5, 6 | oveq12i 7399 | . . . . 5 ⊢ ((𝐴 −ℎ 𝐶) +ℎ (𝐶 −ℎ 𝐵)) = ((𝐴 +ℎ (-1 ·ℎ 𝐶)) +ℎ (𝐶 +ℎ (-1 ·ℎ 𝐵))) |
| 8 | neg1cn 12171 | . . . . . . 7 ⊢ -1 ∈ ℂ | |
| 9 | 8, 4 | hvmulcli 30943 | . . . . . 6 ⊢ (-1 ·ℎ 𝐶) ∈ ℋ |
| 10 | 8, 2 | hvmulcli 30943 | . . . . . . 7 ⊢ (-1 ·ℎ 𝐵) ∈ ℋ |
| 11 | 4, 10 | hvaddcli 30947 | . . . . . 6 ⊢ (𝐶 +ℎ (-1 ·ℎ 𝐵)) ∈ ℋ |
| 12 | 1, 9, 11 | hvassi 30982 | . . . . 5 ⊢ ((𝐴 +ℎ (-1 ·ℎ 𝐶)) +ℎ (𝐶 +ℎ (-1 ·ℎ 𝐵))) = (𝐴 +ℎ ((-1 ·ℎ 𝐶) +ℎ (𝐶 +ℎ (-1 ·ℎ 𝐵)))) |
| 13 | 9, 4, 10 | hvassi 30982 | . . . . . . 7 ⊢ (((-1 ·ℎ 𝐶) +ℎ 𝐶) +ℎ (-1 ·ℎ 𝐵)) = ((-1 ·ℎ 𝐶) +ℎ (𝐶 +ℎ (-1 ·ℎ 𝐵))) |
| 14 | 9, 4 | hvcomi 30948 | . . . . . . . . . 10 ⊢ ((-1 ·ℎ 𝐶) +ℎ 𝐶) = (𝐶 +ℎ (-1 ·ℎ 𝐶)) |
| 15 | 4, 4 | hvsubvali 30949 | . . . . . . . . . 10 ⊢ (𝐶 −ℎ 𝐶) = (𝐶 +ℎ (-1 ·ℎ 𝐶)) |
| 16 | hvsubid 30955 | . . . . . . . . . . 11 ⊢ (𝐶 ∈ ℋ → (𝐶 −ℎ 𝐶) = 0ℎ) | |
| 17 | 4, 16 | ax-mp 5 | . . . . . . . . . 10 ⊢ (𝐶 −ℎ 𝐶) = 0ℎ |
| 18 | 14, 15, 17 | 3eqtr2i 2758 | . . . . . . . . 9 ⊢ ((-1 ·ℎ 𝐶) +ℎ 𝐶) = 0ℎ |
| 19 | 18 | oveq1i 7397 | . . . . . . . 8 ⊢ (((-1 ·ℎ 𝐶) +ℎ 𝐶) +ℎ (-1 ·ℎ 𝐵)) = (0ℎ +ℎ (-1 ·ℎ 𝐵)) |
| 20 | ax-hv0cl 30932 | . . . . . . . . 9 ⊢ 0ℎ ∈ ℋ | |
| 21 | 20, 10 | hvcomi 30948 | . . . . . . . 8 ⊢ (0ℎ +ℎ (-1 ·ℎ 𝐵)) = ((-1 ·ℎ 𝐵) +ℎ 0ℎ) |
| 22 | ax-hvaddid 30933 | . . . . . . . . 9 ⊢ ((-1 ·ℎ 𝐵) ∈ ℋ → ((-1 ·ℎ 𝐵) +ℎ 0ℎ) = (-1 ·ℎ 𝐵)) | |
| 23 | 10, 22 | ax-mp 5 | . . . . . . . 8 ⊢ ((-1 ·ℎ 𝐵) +ℎ 0ℎ) = (-1 ·ℎ 𝐵) |
| 24 | 19, 21, 23 | 3eqtri 2756 | . . . . . . 7 ⊢ (((-1 ·ℎ 𝐶) +ℎ 𝐶) +ℎ (-1 ·ℎ 𝐵)) = (-1 ·ℎ 𝐵) |
| 25 | 13, 24 | eqtr3i 2754 | . . . . . 6 ⊢ ((-1 ·ℎ 𝐶) +ℎ (𝐶 +ℎ (-1 ·ℎ 𝐵))) = (-1 ·ℎ 𝐵) |
| 26 | 25 | oveq2i 7398 | . . . . 5 ⊢ (𝐴 +ℎ ((-1 ·ℎ 𝐶) +ℎ (𝐶 +ℎ (-1 ·ℎ 𝐵)))) = (𝐴 +ℎ (-1 ·ℎ 𝐵)) |
| 27 | 7, 12, 26 | 3eqtri 2756 | . . . 4 ⊢ ((𝐴 −ℎ 𝐶) +ℎ (𝐶 −ℎ 𝐵)) = (𝐴 +ℎ (-1 ·ℎ 𝐵)) |
| 28 | 3, 27 | eqtr4i 2755 | . . 3 ⊢ (𝐴 −ℎ 𝐵) = ((𝐴 −ℎ 𝐶) +ℎ (𝐶 −ℎ 𝐵)) |
| 29 | 28 | fveq2i 6861 | . 2 ⊢ (normℎ‘(𝐴 −ℎ 𝐵)) = (normℎ‘((𝐴 −ℎ 𝐶) +ℎ (𝐶 −ℎ 𝐵))) |
| 30 | 1, 4 | hvsubcli 30950 | . . 3 ⊢ (𝐴 −ℎ 𝐶) ∈ ℋ |
| 31 | 4, 2 | hvsubcli 30950 | . . 3 ⊢ (𝐶 −ℎ 𝐵) ∈ ℋ |
| 32 | 30, 31 | norm-ii-i 31066 | . 2 ⊢ (normℎ‘((𝐴 −ℎ 𝐶) +ℎ (𝐶 −ℎ 𝐵))) ≤ ((normℎ‘(𝐴 −ℎ 𝐶)) + (normℎ‘(𝐶 −ℎ 𝐵))) |
| 33 | 29, 32 | eqbrtri 5128 | 1 ⊢ (normℎ‘(𝐴 −ℎ 𝐵)) ≤ ((normℎ‘(𝐴 −ℎ 𝐶)) + (normℎ‘(𝐶 −ℎ 𝐵))) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∈ wcel 2109 class class class wbr 5107 ‘cfv 6511 (class class class)co 7387 1c1 11069 + caddc 11071 ≤ cle 11209 -cneg 11406 ℋchba 30848 +ℎ cva 30849 ·ℎ csm 30850 normℎcno 30852 0ℎc0v 30853 −ℎ cmv 30854 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-cnex 11124 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 ax-pre-sup 11146 ax-hfvadd 30929 ax-hvcom 30930 ax-hvass 30931 ax-hv0cl 30932 ax-hvaddid 30933 ax-hfvmul 30934 ax-hvmulid 30935 ax-hvmulass 30936 ax-hvdistr2 30938 ax-hvmul0 30939 ax-hfi 31008 ax-his1 31011 ax-his2 31012 ax-his3 31013 ax-his4 31014 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-om 7843 df-2nd 7969 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-er 8671 df-en 8919 df-dom 8920 df-sdom 8921 df-sup 9393 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 df-div 11836 df-nn 12187 df-2 12249 df-3 12250 df-4 12251 df-n0 12443 df-z 12530 df-uz 12794 df-rp 12952 df-seq 13967 df-exp 14027 df-cj 15065 df-re 15066 df-im 15067 df-sqrt 15201 df-abs 15202 df-hnorm 30897 df-hvsub 30900 |
| This theorem is referenced by: norm3adifii 31077 norm3lem 31078 norm3dif 31079 |
| Copyright terms: Public domain | W3C validator |