HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  norm3difi Structured version   Visualization version   GIF version

Theorem norm3difi 28719
Description: Norm of differences around common element. Part of Lemma 3.6 of [Beran] p. 101. (Contributed by NM, 16-Aug-1999.) (New usage is discouraged.)
Hypotheses
Ref Expression
norm3dif.1 𝐴 ∈ ℋ
norm3dif.2 𝐵 ∈ ℋ
norm3dif.3 𝐶 ∈ ℋ
Assertion
Ref Expression
norm3difi (norm‘(𝐴 𝐵)) ≤ ((norm‘(𝐴 𝐶)) + (norm‘(𝐶 𝐵)))

Proof of Theorem norm3difi
StepHypRef Expression
1 norm3dif.1 . . . . 5 𝐴 ∈ ℋ
2 norm3dif.2 . . . . 5 𝐵 ∈ ℋ
31, 2hvsubvali 28592 . . . 4 (𝐴 𝐵) = (𝐴 + (-1 · 𝐵))
4 norm3dif.3 . . . . . . 7 𝐶 ∈ ℋ
51, 4hvsubvali 28592 . . . . . 6 (𝐴 𝐶) = (𝐴 + (-1 · 𝐶))
64, 2hvsubvali 28592 . . . . . 6 (𝐶 𝐵) = (𝐶 + (-1 · 𝐵))
75, 6oveq12i 6987 . . . . 5 ((𝐴 𝐶) + (𝐶 𝐵)) = ((𝐴 + (-1 · 𝐶)) + (𝐶 + (-1 · 𝐵)))
8 neg1cn 11560 . . . . . . 7 -1 ∈ ℂ
98, 4hvmulcli 28586 . . . . . 6 (-1 · 𝐶) ∈ ℋ
108, 2hvmulcli 28586 . . . . . . 7 (-1 · 𝐵) ∈ ℋ
114, 10hvaddcli 28590 . . . . . 6 (𝐶 + (-1 · 𝐵)) ∈ ℋ
121, 9, 11hvassi 28625 . . . . 5 ((𝐴 + (-1 · 𝐶)) + (𝐶 + (-1 · 𝐵))) = (𝐴 + ((-1 · 𝐶) + (𝐶 + (-1 · 𝐵))))
139, 4, 10hvassi 28625 . . . . . . 7 (((-1 · 𝐶) + 𝐶) + (-1 · 𝐵)) = ((-1 · 𝐶) + (𝐶 + (-1 · 𝐵)))
149, 4hvcomi 28591 . . . . . . . . . 10 ((-1 · 𝐶) + 𝐶) = (𝐶 + (-1 · 𝐶))
154, 4hvsubvali 28592 . . . . . . . . . 10 (𝐶 𝐶) = (𝐶 + (-1 · 𝐶))
16 hvsubid 28598 . . . . . . . . . . 11 (𝐶 ∈ ℋ → (𝐶 𝐶) = 0)
174, 16ax-mp 5 . . . . . . . . . 10 (𝐶 𝐶) = 0
1814, 15, 173eqtr2i 2803 . . . . . . . . 9 ((-1 · 𝐶) + 𝐶) = 0
1918oveq1i 6985 . . . . . . . 8 (((-1 · 𝐶) + 𝐶) + (-1 · 𝐵)) = (0 + (-1 · 𝐵))
20 ax-hv0cl 28575 . . . . . . . . 9 0 ∈ ℋ
2120, 10hvcomi 28591 . . . . . . . 8 (0 + (-1 · 𝐵)) = ((-1 · 𝐵) + 0)
22 ax-hvaddid 28576 . . . . . . . . 9 ((-1 · 𝐵) ∈ ℋ → ((-1 · 𝐵) + 0) = (-1 · 𝐵))
2310, 22ax-mp 5 . . . . . . . 8 ((-1 · 𝐵) + 0) = (-1 · 𝐵)
2419, 21, 233eqtri 2801 . . . . . . 7 (((-1 · 𝐶) + 𝐶) + (-1 · 𝐵)) = (-1 · 𝐵)
2513, 24eqtr3i 2799 . . . . . 6 ((-1 · 𝐶) + (𝐶 + (-1 · 𝐵))) = (-1 · 𝐵)
2625oveq2i 6986 . . . . 5 (𝐴 + ((-1 · 𝐶) + (𝐶 + (-1 · 𝐵)))) = (𝐴 + (-1 · 𝐵))
277, 12, 263eqtri 2801 . . . 4 ((𝐴 𝐶) + (𝐶 𝐵)) = (𝐴 + (-1 · 𝐵))
283, 27eqtr4i 2800 . . 3 (𝐴 𝐵) = ((𝐴 𝐶) + (𝐶 𝐵))
2928fveq2i 6500 . 2 (norm‘(𝐴 𝐵)) = (norm‘((𝐴 𝐶) + (𝐶 𝐵)))
301, 4hvsubcli 28593 . . 3 (𝐴 𝐶) ∈ ℋ
314, 2hvsubcli 28593 . . 3 (𝐶 𝐵) ∈ ℋ
3230, 31norm-ii-i 28709 . 2 (norm‘((𝐴 𝐶) + (𝐶 𝐵))) ≤ ((norm‘(𝐴 𝐶)) + (norm‘(𝐶 𝐵)))
3329, 32eqbrtri 4947 1 (norm‘(𝐴 𝐵)) ≤ ((norm‘(𝐴 𝐶)) + (norm‘(𝐶 𝐵)))
Colors of variables: wff setvar class
Syntax hints:   = wceq 1508  wcel 2051   class class class wbr 4926  cfv 6186  (class class class)co 6975  1c1 10335   + caddc 10337  cle 10474  -cneg 10670  chba 28491   + cva 28492   · csm 28493  normcno 28495  0c0v 28496   cmv 28497
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1759  ax-4 1773  ax-5 1870  ax-6 1929  ax-7 1966  ax-8 2053  ax-9 2060  ax-10 2080  ax-11 2094  ax-12 2107  ax-13 2302  ax-ext 2745  ax-sep 5057  ax-nul 5064  ax-pow 5116  ax-pr 5183  ax-un 7278  ax-cnex 10390  ax-resscn 10391  ax-1cn 10392  ax-icn 10393  ax-addcl 10394  ax-addrcl 10395  ax-mulcl 10396  ax-mulrcl 10397  ax-mulcom 10398  ax-addass 10399  ax-mulass 10400  ax-distr 10401  ax-i2m1 10402  ax-1ne0 10403  ax-1rid 10404  ax-rnegex 10405  ax-rrecex 10406  ax-cnre 10407  ax-pre-lttri 10408  ax-pre-lttrn 10409  ax-pre-ltadd 10410  ax-pre-mulgt0 10411  ax-pre-sup 10412  ax-hfvadd 28572  ax-hvcom 28573  ax-hvass 28574  ax-hv0cl 28575  ax-hvaddid 28576  ax-hfvmul 28577  ax-hvmulid 28578  ax-hvmulass 28579  ax-hvdistr2 28581  ax-hvmul0 28582  ax-hfi 28651  ax-his1 28654  ax-his2 28655  ax-his3 28656  ax-his4 28657
This theorem depends on definitions:  df-bi 199  df-an 388  df-or 835  df-3or 1070  df-3an 1071  df-tru 1511  df-ex 1744  df-nf 1748  df-sb 2017  df-mo 2548  df-eu 2585  df-clab 2754  df-cleq 2766  df-clel 2841  df-nfc 2913  df-ne 2963  df-nel 3069  df-ral 3088  df-rex 3089  df-reu 3090  df-rmo 3091  df-rab 3092  df-v 3412  df-sbc 3677  df-csb 3782  df-dif 3827  df-un 3829  df-in 3831  df-ss 3838  df-pss 3840  df-nul 4174  df-if 4346  df-pw 4419  df-sn 4437  df-pr 4439  df-tp 4441  df-op 4443  df-uni 4710  df-iun 4791  df-br 4927  df-opab 4989  df-mpt 5006  df-tr 5028  df-id 5309  df-eprel 5314  df-po 5323  df-so 5324  df-fr 5363  df-we 5365  df-xp 5410  df-rel 5411  df-cnv 5412  df-co 5413  df-dm 5414  df-rn 5415  df-res 5416  df-ima 5417  df-pred 5984  df-ord 6030  df-on 6031  df-lim 6032  df-suc 6033  df-iota 6150  df-fun 6188  df-fn 6189  df-f 6190  df-f1 6191  df-fo 6192  df-f1o 6193  df-fv 6194  df-riota 6936  df-ov 6978  df-oprab 6979  df-mpo 6980  df-om 7396  df-2nd 7501  df-wrecs 7749  df-recs 7811  df-rdg 7849  df-er 8088  df-en 8306  df-dom 8307  df-sdom 8308  df-sup 8700  df-pnf 10475  df-mnf 10476  df-xr 10477  df-ltxr 10478  df-le 10479  df-sub 10671  df-neg 10672  df-div 11098  df-nn 11439  df-2 11502  df-3 11503  df-4 11504  df-n0 11707  df-z 11793  df-uz 12058  df-rp 12204  df-seq 13184  df-exp 13244  df-cj 14318  df-re 14319  df-im 14320  df-sqrt 14454  df-abs 14455  df-hnorm 28540  df-hvsub 28543
This theorem is referenced by:  norm3adifii  28720  norm3lem  28721  norm3dif  28722
  Copyright terms: Public domain W3C validator