| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > hvadd32i | Structured version Visualization version GIF version | ||
| Description: Hilbert vector space commutative/associative law. (Contributed by NM, 18-Aug-1999.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| hvass.1 | ⊢ 𝐴 ∈ ℋ |
| hvass.2 | ⊢ 𝐵 ∈ ℋ |
| hvass.3 | ⊢ 𝐶 ∈ ℋ |
| Ref | Expression |
|---|---|
| hvadd32i | ⊢ ((𝐴 +ℎ 𝐵) +ℎ 𝐶) = ((𝐴 +ℎ 𝐶) +ℎ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hvass.1 | . 2 ⊢ 𝐴 ∈ ℋ | |
| 2 | hvass.2 | . 2 ⊢ 𝐵 ∈ ℋ | |
| 3 | hvass.3 | . 2 ⊢ 𝐶 ∈ ℋ | |
| 4 | hvadd32 30936 | . 2 ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → ((𝐴 +ℎ 𝐵) +ℎ 𝐶) = ((𝐴 +ℎ 𝐶) +ℎ 𝐵)) | |
| 5 | 1, 2, 3, 4 | mp3an 1463 | 1 ⊢ ((𝐴 +ℎ 𝐵) +ℎ 𝐶) = ((𝐴 +ℎ 𝐶) +ℎ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∈ wcel 2109 (class class class)co 7369 ℋchba 30821 +ℎ cva 30822 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-hvcom 30903 ax-hvass 30904 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rab 3403 df-v 3446 df-dif 3914 df-un 3916 df-ss 3928 df-nul 4293 df-if 4485 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-br 5103 df-iota 6452 df-fv 6507 df-ov 7372 |
| This theorem is referenced by: hvsubeq0i 30965 hvaddcani 30967 normpar2i 31058 |
| Copyright terms: Public domain | W3C validator |