HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  hvadd32i Structured version   Visualization version   GIF version

Theorem hvadd32i 29416
Description: Hilbert vector space commutative/associative law. (Contributed by NM, 18-Aug-1999.) (New usage is discouraged.)
Hypotheses
Ref Expression
hvass.1 𝐴 ∈ ℋ
hvass.2 𝐵 ∈ ℋ
hvass.3 𝐶 ∈ ℋ
Assertion
Ref Expression
hvadd32i ((𝐴 + 𝐵) + 𝐶) = ((𝐴 + 𝐶) + 𝐵)

Proof of Theorem hvadd32i
StepHypRef Expression
1 hvass.1 . 2 𝐴 ∈ ℋ
2 hvass.2 . 2 𝐵 ∈ ℋ
3 hvass.3 . 2 𝐶 ∈ ℋ
4 hvadd32 29396 . 2 ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → ((𝐴 + 𝐵) + 𝐶) = ((𝐴 + 𝐶) + 𝐵))
51, 2, 3, 4mp3an 1460 1 ((𝐴 + 𝐵) + 𝐶) = ((𝐴 + 𝐶) + 𝐵)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1539  wcel 2106  (class class class)co 7275  chba 29281   + cva 29282
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2709  ax-hvcom 29363  ax-hvass 29364
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-iota 6391  df-fv 6441  df-ov 7278
This theorem is referenced by:  hvsubeq0i  29425  hvaddcani  29427  normpar2i  29518
  Copyright terms: Public domain W3C validator