HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  hvadd32i Structured version   Visualization version   GIF version

Theorem hvadd32i 30983
Description: Hilbert vector space commutative/associative law. (Contributed by NM, 18-Aug-1999.) (New usage is discouraged.)
Hypotheses
Ref Expression
hvass.1 𝐴 ∈ ℋ
hvass.2 𝐵 ∈ ℋ
hvass.3 𝐶 ∈ ℋ
Assertion
Ref Expression
hvadd32i ((𝐴 + 𝐵) + 𝐶) = ((𝐴 + 𝐶) + 𝐵)

Proof of Theorem hvadd32i
StepHypRef Expression
1 hvass.1 . 2 𝐴 ∈ ℋ
2 hvass.2 . 2 𝐵 ∈ ℋ
3 hvass.3 . 2 𝐶 ∈ ℋ
4 hvadd32 30963 . 2 ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → ((𝐴 + 𝐵) + 𝐶) = ((𝐴 + 𝐶) + 𝐵))
51, 2, 3, 4mp3an 1463 1 ((𝐴 + 𝐵) + 𝐶) = ((𝐴 + 𝐶) + 𝐵)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  wcel 2109  (class class class)co 7387  chba 30848   + cva 30849
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701  ax-hvcom 30930  ax-hvass 30931
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-rab 3406  df-v 3449  df-dif 3917  df-un 3919  df-ss 3931  df-nul 4297  df-if 4489  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-br 5108  df-iota 6464  df-fv 6519  df-ov 7390
This theorem is referenced by:  hvsubeq0i  30992  hvaddcani  30994  normpar2i  31085
  Copyright terms: Public domain W3C validator