| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > hvadd12i | Structured version Visualization version GIF version | ||
| Description: Hilbert vector space commutative/associative law. (Contributed by NM, 11-Sep-1999.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| hvass.1 | ⊢ 𝐴 ∈ ℋ |
| hvass.2 | ⊢ 𝐵 ∈ ℋ |
| hvass.3 | ⊢ 𝐶 ∈ ℋ |
| Ref | Expression |
|---|---|
| hvadd12i | ⊢ (𝐴 +ℎ (𝐵 +ℎ 𝐶)) = (𝐵 +ℎ (𝐴 +ℎ 𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hvass.1 | . . . 4 ⊢ 𝐴 ∈ ℋ | |
| 2 | hvass.2 | . . . 4 ⊢ 𝐵 ∈ ℋ | |
| 3 | 1, 2 | hvcomi 30991 | . . 3 ⊢ (𝐴 +ℎ 𝐵) = (𝐵 +ℎ 𝐴) |
| 4 | 3 | oveq1i 7351 | . 2 ⊢ ((𝐴 +ℎ 𝐵) +ℎ 𝐶) = ((𝐵 +ℎ 𝐴) +ℎ 𝐶) |
| 5 | hvass.3 | . . 3 ⊢ 𝐶 ∈ ℋ | |
| 6 | 1, 2, 5 | hvassi 31025 | . 2 ⊢ ((𝐴 +ℎ 𝐵) +ℎ 𝐶) = (𝐴 +ℎ (𝐵 +ℎ 𝐶)) |
| 7 | 2, 1, 5 | hvassi 31025 | . 2 ⊢ ((𝐵 +ℎ 𝐴) +ℎ 𝐶) = (𝐵 +ℎ (𝐴 +ℎ 𝐶)) |
| 8 | 4, 6, 7 | 3eqtr3i 2762 | 1 ⊢ (𝐴 +ℎ (𝐵 +ℎ 𝐶)) = (𝐵 +ℎ (𝐴 +ℎ 𝐶)) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1541 ∈ wcel 2111 (class class class)co 7341 ℋchba 30891 +ℎ cva 30892 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-hvcom 30973 ax-hvass 30974 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-ss 3914 df-nul 4279 df-if 4471 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4855 df-br 5087 df-iota 6432 df-fv 6484 df-ov 7344 |
| This theorem is referenced by: hvsubaddi 31038 |
| Copyright terms: Public domain | W3C validator |