HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  hvadd12i Structured version   Visualization version   GIF version

Theorem hvadd12i 30866
Description: Hilbert vector space commutative/associative law. (Contributed by NM, 11-Sep-1999.) (New usage is discouraged.)
Hypotheses
Ref Expression
hvass.1 𝐴 ∈ ℋ
hvass.2 𝐵 ∈ ℋ
hvass.3 𝐶 ∈ ℋ
Assertion
Ref Expression
hvadd12i (𝐴 + (𝐵 + 𝐶)) = (𝐵 + (𝐴 + 𝐶))

Proof of Theorem hvadd12i
StepHypRef Expression
1 hvass.1 . . . 4 𝐴 ∈ ℋ
2 hvass.2 . . . 4 𝐵 ∈ ℋ
31, 2hvcomi 30828 . . 3 (𝐴 + 𝐵) = (𝐵 + 𝐴)
43oveq1i 7430 . 2 ((𝐴 + 𝐵) + 𝐶) = ((𝐵 + 𝐴) + 𝐶)
5 hvass.3 . . 3 𝐶 ∈ ℋ
61, 2, 5hvassi 30862 . 2 ((𝐴 + 𝐵) + 𝐶) = (𝐴 + (𝐵 + 𝐶))
72, 1, 5hvassi 30862 . 2 ((𝐵 + 𝐴) + 𝐶) = (𝐵 + (𝐴 + 𝐶))
84, 6, 73eqtr3i 2764 1 (𝐴 + (𝐵 + 𝐶)) = (𝐵 + (𝐴 + 𝐶))
Colors of variables: wff setvar class
Syntax hints:   = wceq 1534  wcel 2099  (class class class)co 7420  chba 30728   + cva 30729
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-ext 2699  ax-hvcom 30810  ax-hvass 30811
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-sb 2061  df-clab 2706  df-cleq 2720  df-clel 2806  df-rab 3430  df-v 3473  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4324  df-if 4530  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4909  df-br 5149  df-iota 6500  df-fv 6556  df-ov 7423
This theorem is referenced by:  hvsubaddi  30875
  Copyright terms: Public domain W3C validator