![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > hvadd12i | Structured version Visualization version GIF version |
Description: Hilbert vector space commutative/associative law. (Contributed by NM, 11-Sep-1999.) (New usage is discouraged.) |
Ref | Expression |
---|---|
hvass.1 | ⊢ 𝐴 ∈ ℋ |
hvass.2 | ⊢ 𝐵 ∈ ℋ |
hvass.3 | ⊢ 𝐶 ∈ ℋ |
Ref | Expression |
---|---|
hvadd12i | ⊢ (𝐴 +ℎ (𝐵 +ℎ 𝐶)) = (𝐵 +ℎ (𝐴 +ℎ 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hvass.1 | . . . 4 ⊢ 𝐴 ∈ ℋ | |
2 | hvass.2 | . . . 4 ⊢ 𝐵 ∈ ℋ | |
3 | 1, 2 | hvcomi 31048 | . . 3 ⊢ (𝐴 +ℎ 𝐵) = (𝐵 +ℎ 𝐴) |
4 | 3 | oveq1i 7441 | . 2 ⊢ ((𝐴 +ℎ 𝐵) +ℎ 𝐶) = ((𝐵 +ℎ 𝐴) +ℎ 𝐶) |
5 | hvass.3 | . . 3 ⊢ 𝐶 ∈ ℋ | |
6 | 1, 2, 5 | hvassi 31082 | . 2 ⊢ ((𝐴 +ℎ 𝐵) +ℎ 𝐶) = (𝐴 +ℎ (𝐵 +ℎ 𝐶)) |
7 | 2, 1, 5 | hvassi 31082 | . 2 ⊢ ((𝐵 +ℎ 𝐴) +ℎ 𝐶) = (𝐵 +ℎ (𝐴 +ℎ 𝐶)) |
8 | 4, 6, 7 | 3eqtr3i 2771 | 1 ⊢ (𝐴 +ℎ (𝐵 +ℎ 𝐶)) = (𝐵 +ℎ (𝐴 +ℎ 𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1537 ∈ wcel 2106 (class class class)co 7431 ℋchba 30948 +ℎ cva 30949 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-ext 2706 ax-hvcom 31030 ax-hvass 31031 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-sb 2063 df-clab 2713 df-cleq 2727 df-clel 2814 df-rab 3434 df-v 3480 df-dif 3966 df-un 3968 df-ss 3980 df-nul 4340 df-if 4532 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-br 5149 df-iota 6516 df-fv 6571 df-ov 7434 |
This theorem is referenced by: hvsubaddi 31095 |
Copyright terms: Public domain | W3C validator |