HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  hvadd12i Structured version   Visualization version   GIF version

Theorem hvadd12i 31029
Description: Hilbert vector space commutative/associative law. (Contributed by NM, 11-Sep-1999.) (New usage is discouraged.)
Hypotheses
Ref Expression
hvass.1 𝐴 ∈ ℋ
hvass.2 𝐵 ∈ ℋ
hvass.3 𝐶 ∈ ℋ
Assertion
Ref Expression
hvadd12i (𝐴 + (𝐵 + 𝐶)) = (𝐵 + (𝐴 + 𝐶))

Proof of Theorem hvadd12i
StepHypRef Expression
1 hvass.1 . . . 4 𝐴 ∈ ℋ
2 hvass.2 . . . 4 𝐵 ∈ ℋ
31, 2hvcomi 30991 . . 3 (𝐴 + 𝐵) = (𝐵 + 𝐴)
43oveq1i 7351 . 2 ((𝐴 + 𝐵) + 𝐶) = ((𝐵 + 𝐴) + 𝐶)
5 hvass.3 . . 3 𝐶 ∈ ℋ
61, 2, 5hvassi 31025 . 2 ((𝐴 + 𝐵) + 𝐶) = (𝐴 + (𝐵 + 𝐶))
72, 1, 5hvassi 31025 . 2 ((𝐵 + 𝐴) + 𝐶) = (𝐵 + (𝐴 + 𝐶))
84, 6, 73eqtr3i 2762 1 (𝐴 + (𝐵 + 𝐶)) = (𝐵 + (𝐴 + 𝐶))
Colors of variables: wff setvar class
Syntax hints:   = wceq 1541  wcel 2111  (class class class)co 7341  chba 30891   + cva 30892
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703  ax-hvcom 30973  ax-hvass 30974
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-rab 3396  df-v 3438  df-dif 3900  df-un 3902  df-ss 3914  df-nul 4279  df-if 4471  df-sn 4572  df-pr 4574  df-op 4578  df-uni 4855  df-br 5087  df-iota 6432  df-fv 6484  df-ov 7344
This theorem is referenced by:  hvsubaddi  31038
  Copyright terms: Public domain W3C validator