![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > hvadd12i | Structured version Visualization version GIF version |
Description: Hilbert vector space commutative/associative law. (Contributed by NM, 11-Sep-1999.) (New usage is discouraged.) |
Ref | Expression |
---|---|
hvass.1 | ⊢ 𝐴 ∈ ℋ |
hvass.2 | ⊢ 𝐵 ∈ ℋ |
hvass.3 | ⊢ 𝐶 ∈ ℋ |
Ref | Expression |
---|---|
hvadd12i | ⊢ (𝐴 +ℎ (𝐵 +ℎ 𝐶)) = (𝐵 +ℎ (𝐴 +ℎ 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hvass.1 | . . . 4 ⊢ 𝐴 ∈ ℋ | |
2 | hvass.2 | . . . 4 ⊢ 𝐵 ∈ ℋ | |
3 | 1, 2 | hvcomi 30766 | . . 3 ⊢ (𝐴 +ℎ 𝐵) = (𝐵 +ℎ 𝐴) |
4 | 3 | oveq1i 7412 | . 2 ⊢ ((𝐴 +ℎ 𝐵) +ℎ 𝐶) = ((𝐵 +ℎ 𝐴) +ℎ 𝐶) |
5 | hvass.3 | . . 3 ⊢ 𝐶 ∈ ℋ | |
6 | 1, 2, 5 | hvassi 30800 | . 2 ⊢ ((𝐴 +ℎ 𝐵) +ℎ 𝐶) = (𝐴 +ℎ (𝐵 +ℎ 𝐶)) |
7 | 2, 1, 5 | hvassi 30800 | . 2 ⊢ ((𝐵 +ℎ 𝐴) +ℎ 𝐶) = (𝐵 +ℎ (𝐴 +ℎ 𝐶)) |
8 | 4, 6, 7 | 3eqtr3i 2760 | 1 ⊢ (𝐴 +ℎ (𝐵 +ℎ 𝐶)) = (𝐵 +ℎ (𝐴 +ℎ 𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1533 ∈ wcel 2098 (class class class)co 7402 ℋchba 30666 +ℎ cva 30667 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-ext 2695 ax-hvcom 30748 ax-hvass 30749 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-sb 2060 df-clab 2702 df-cleq 2716 df-clel 2802 df-rab 3425 df-v 3468 df-dif 3944 df-un 3946 df-in 3948 df-ss 3958 df-nul 4316 df-if 4522 df-sn 4622 df-pr 4624 df-op 4628 df-uni 4901 df-br 5140 df-iota 6486 df-fv 6542 df-ov 7405 |
This theorem is referenced by: hvsubaddi 30813 |
Copyright terms: Public domain | W3C validator |