Hilbert Space Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  HSE Home  >  Th. List  >  ax-hvass Structured version   Visualization version   GIF version

Axiom ax-hvass 28695
 Description: Vector addition is associative. (Contributed by NM, 3-Sep-1999.) (New usage is discouraged.)
Assertion
Ref Expression
ax-hvass ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → ((𝐴 + 𝐵) + 𝐶) = (𝐴 + (𝐵 + 𝐶)))

Detailed syntax breakdown of Axiom ax-hvass
StepHypRef Expression
1 cA . . . 4 class 𝐴
2 chba 28612 . . . 4 class
31, 2wcel 2107 . . 3 wff 𝐴 ∈ ℋ
4 cB . . . 4 class 𝐵
54, 2wcel 2107 . . 3 wff 𝐵 ∈ ℋ
6 cC . . . 4 class 𝐶
76, 2wcel 2107 . . 3 wff 𝐶 ∈ ℋ
83, 5, 7w3a 1081 . 2 wff (𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ)
9 cva 28613 . . . . 5 class +
101, 4, 9co 7151 . . . 4 class (𝐴 + 𝐵)
1110, 6, 9co 7151 . . 3 class ((𝐴 + 𝐵) + 𝐶)
124, 6, 9co 7151 . . . 4 class (𝐵 + 𝐶)
131, 12, 9co 7151 . . 3 class (𝐴 + (𝐵 + 𝐶))
1411, 13wceq 1530 . 2 wff ((𝐴 + 𝐵) + 𝐶) = (𝐴 + (𝐵 + 𝐶))
158, 14wi 4 1 wff ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → ((𝐴 + 𝐵) + 𝐶) = (𝐴 + (𝐵 + 𝐶)))
 Colors of variables: wff setvar class This axiom is referenced by:  hvadd32  28727  hvadd12  28728  hvadd4  28729  hvpncan  28732  hvaddsubass  28734  hvassi  28746  hilablo  28853  spanunsni  29272  hoaddassi  29469
 Copyright terms: Public domain W3C validator