|   | Mathbox for Alexander van der Vekens | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > Mathboxes > ichbidv | Structured version Visualization version GIF version | ||
| Description: Formula building rule for interchangeability (deduction). (Contributed by SN, 4-May-2024.) | 
| Ref | Expression | 
|---|---|
| ichbidv.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | 
| Ref | Expression | 
|---|---|
| ichbidv | ⊢ (𝜑 → ([𝑥⇄𝑦]𝜓 ↔ [𝑥⇄𝑦]𝜒)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | ichbidv.1 | . . . . . . . 8 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
| 2 | 1 | sbbidv 2079 | . . . . . . 7 ⊢ (𝜑 → ([𝑎 / 𝑦]𝜓 ↔ [𝑎 / 𝑦]𝜒)) | 
| 3 | 2 | sbbidv 2079 | . . . . . 6 ⊢ (𝜑 → ([𝑦 / 𝑥][𝑎 / 𝑦]𝜓 ↔ [𝑦 / 𝑥][𝑎 / 𝑦]𝜒)) | 
| 4 | 3 | sbbidv 2079 | . . . . 5 ⊢ (𝜑 → ([𝑥 / 𝑎][𝑦 / 𝑥][𝑎 / 𝑦]𝜓 ↔ [𝑥 / 𝑎][𝑦 / 𝑥][𝑎 / 𝑦]𝜒)) | 
| 5 | 4, 1 | bibi12d 345 | . . . 4 ⊢ (𝜑 → (([𝑥 / 𝑎][𝑦 / 𝑥][𝑎 / 𝑦]𝜓 ↔ 𝜓) ↔ ([𝑥 / 𝑎][𝑦 / 𝑥][𝑎 / 𝑦]𝜒 ↔ 𝜒))) | 
| 6 | 5 | albidv 1920 | . . 3 ⊢ (𝜑 → (∀𝑦([𝑥 / 𝑎][𝑦 / 𝑥][𝑎 / 𝑦]𝜓 ↔ 𝜓) ↔ ∀𝑦([𝑥 / 𝑎][𝑦 / 𝑥][𝑎 / 𝑦]𝜒 ↔ 𝜒))) | 
| 7 | 6 | albidv 1920 | . 2 ⊢ (𝜑 → (∀𝑥∀𝑦([𝑥 / 𝑎][𝑦 / 𝑥][𝑎 / 𝑦]𝜓 ↔ 𝜓) ↔ ∀𝑥∀𝑦([𝑥 / 𝑎][𝑦 / 𝑥][𝑎 / 𝑦]𝜒 ↔ 𝜒))) | 
| 8 | df-ich 47433 | . 2 ⊢ ([𝑥⇄𝑦]𝜓 ↔ ∀𝑥∀𝑦([𝑥 / 𝑎][𝑦 / 𝑥][𝑎 / 𝑦]𝜓 ↔ 𝜓)) | |
| 9 | df-ich 47433 | . 2 ⊢ ([𝑥⇄𝑦]𝜒 ↔ ∀𝑥∀𝑦([𝑥 / 𝑎][𝑦 / 𝑥][𝑎 / 𝑦]𝜒 ↔ 𝜒)) | |
| 10 | 7, 8, 9 | 3bitr4g 314 | 1 ⊢ (𝜑 → ([𝑥⇄𝑦]𝜓 ↔ [𝑥⇄𝑦]𝜒)) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ↔ wb 206 ∀wal 1538 [wsb 2064 [wich 47432 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 | 
| This theorem depends on definitions: df-bi 207 df-sb 2065 df-ich 47433 | 
| This theorem is referenced by: ichim 47444 | 
| Copyright terms: Public domain | W3C validator |