| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > ichim | Structured version Visualization version GIF version | ||
| Description: Formula building rule for implication in interchangeability. (Contributed by SN, 4-May-2024.) |
| Ref | Expression |
|---|---|
| ichim | ⊢ (([𝑎⇄𝑏]𝜑 ∧ [𝑎⇄𝑏]𝜓) → [𝑎⇄𝑏](𝜑 → 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ichn 47493 | . . . 4 ⊢ ([𝑎⇄𝑏]𝜓 ↔ [𝑎⇄𝑏] ¬ 𝜓) | |
| 2 | ichan 47492 | . . . 4 ⊢ (([𝑎⇄𝑏]𝜑 ∧ [𝑎⇄𝑏] ¬ 𝜓) → [𝑎⇄𝑏](𝜑 ∧ ¬ 𝜓)) | |
| 3 | 1, 2 | sylan2b 594 | . . 3 ⊢ (([𝑎⇄𝑏]𝜑 ∧ [𝑎⇄𝑏]𝜓) → [𝑎⇄𝑏](𝜑 ∧ ¬ 𝜓)) |
| 4 | ichn 47493 | . . 3 ⊢ ([𝑎⇄𝑏](𝜑 ∧ ¬ 𝜓) ↔ [𝑎⇄𝑏] ¬ (𝜑 ∧ ¬ 𝜓)) | |
| 5 | 3, 4 | sylib 218 | . 2 ⊢ (([𝑎⇄𝑏]𝜑 ∧ [𝑎⇄𝑏]𝜓) → [𝑎⇄𝑏] ¬ (𝜑 ∧ ¬ 𝜓)) |
| 6 | iman 401 | . . . . 5 ⊢ ((𝜑 → 𝜓) ↔ ¬ (𝜑 ∧ ¬ 𝜓)) | |
| 7 | 6 | a1i 11 | . . . 4 ⊢ (⊤ → ((𝜑 → 𝜓) ↔ ¬ (𝜑 ∧ ¬ 𝜓))) |
| 8 | 7 | ichbidv 47490 | . . 3 ⊢ (⊤ → ([𝑎⇄𝑏](𝜑 → 𝜓) ↔ [𝑎⇄𝑏] ¬ (𝜑 ∧ ¬ 𝜓))) |
| 9 | 8 | mptru 1548 | . 2 ⊢ ([𝑎⇄𝑏](𝜑 → 𝜓) ↔ [𝑎⇄𝑏] ¬ (𝜑 ∧ ¬ 𝜓)) |
| 10 | 5, 9 | sylibr 234 | 1 ⊢ (([𝑎⇄𝑏]𝜑 ∧ [𝑎⇄𝑏]𝜓) → [𝑎⇄𝑏](𝜑 → 𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ⊤wtru 1542 [wich 47482 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-10 2144 ax-12 2180 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1544 df-ex 1781 df-nf 1785 df-sb 2068 df-ich 47483 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |