Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ichim Structured version   Visualization version   GIF version

Theorem ichim 44797
Description: Formula building rule for implication in interchangeability. (Contributed by SN, 4-May-2024.)
Assertion
Ref Expression
ichim (([𝑎𝑏]𝜑 ∧ [𝑎𝑏]𝜓) → [𝑎𝑏](𝜑𝜓))

Proof of Theorem ichim
StepHypRef Expression
1 ichn 44796 . . . 4 ([𝑎𝑏]𝜓 ↔ [𝑎𝑏] ¬ 𝜓)
2 ichan 44795 . . . 4 (([𝑎𝑏]𝜑 ∧ [𝑎𝑏] ¬ 𝜓) → [𝑎𝑏](𝜑 ∧ ¬ 𝜓))
31, 2sylan2b 593 . . 3 (([𝑎𝑏]𝜑 ∧ [𝑎𝑏]𝜓) → [𝑎𝑏](𝜑 ∧ ¬ 𝜓))
4 ichn 44796 . . 3 ([𝑎𝑏](𝜑 ∧ ¬ 𝜓) ↔ [𝑎𝑏] ¬ (𝜑 ∧ ¬ 𝜓))
53, 4sylib 217 . 2 (([𝑎𝑏]𝜑 ∧ [𝑎𝑏]𝜓) → [𝑎𝑏] ¬ (𝜑 ∧ ¬ 𝜓))
6 iman 401 . . . . 5 ((𝜑𝜓) ↔ ¬ (𝜑 ∧ ¬ 𝜓))
76a1i 11 . . . 4 (⊤ → ((𝜑𝜓) ↔ ¬ (𝜑 ∧ ¬ 𝜓)))
87ichbidv 44793 . . 3 (⊤ → ([𝑎𝑏](𝜑𝜓) ↔ [𝑎𝑏] ¬ (𝜑 ∧ ¬ 𝜓)))
98mptru 1546 . 2 ([𝑎𝑏](𝜑𝜓) ↔ [𝑎𝑏] ¬ (𝜑 ∧ ¬ 𝜓))
105, 9sylibr 233 1 (([𝑎𝑏]𝜑 ∧ [𝑎𝑏]𝜓) → [𝑎𝑏](𝜑𝜓))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395  wtru 1540  [wich 44785
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-10 2139  ax-12 2173
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-tru 1542  df-ex 1784  df-nf 1788  df-sb 2069  df-ich 44786
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator