Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > ichim | Structured version Visualization version GIF version |
Description: Formula building rule for implication in interchangeability. (Contributed by SN, 4-May-2024.) |
Ref | Expression |
---|---|
ichim | ⊢ (([𝑎⇄𝑏]𝜑 ∧ [𝑎⇄𝑏]𝜓) → [𝑎⇄𝑏](𝜑 → 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ichn 44908 | . . . 4 ⊢ ([𝑎⇄𝑏]𝜓 ↔ [𝑎⇄𝑏] ¬ 𝜓) | |
2 | ichan 44907 | . . . 4 ⊢ (([𝑎⇄𝑏]𝜑 ∧ [𝑎⇄𝑏] ¬ 𝜓) → [𝑎⇄𝑏](𝜑 ∧ ¬ 𝜓)) | |
3 | 1, 2 | sylan2b 594 | . . 3 ⊢ (([𝑎⇄𝑏]𝜑 ∧ [𝑎⇄𝑏]𝜓) → [𝑎⇄𝑏](𝜑 ∧ ¬ 𝜓)) |
4 | ichn 44908 | . . 3 ⊢ ([𝑎⇄𝑏](𝜑 ∧ ¬ 𝜓) ↔ [𝑎⇄𝑏] ¬ (𝜑 ∧ ¬ 𝜓)) | |
5 | 3, 4 | sylib 217 | . 2 ⊢ (([𝑎⇄𝑏]𝜑 ∧ [𝑎⇄𝑏]𝜓) → [𝑎⇄𝑏] ¬ (𝜑 ∧ ¬ 𝜓)) |
6 | iman 402 | . . . . 5 ⊢ ((𝜑 → 𝜓) ↔ ¬ (𝜑 ∧ ¬ 𝜓)) | |
7 | 6 | a1i 11 | . . . 4 ⊢ (⊤ → ((𝜑 → 𝜓) ↔ ¬ (𝜑 ∧ ¬ 𝜓))) |
8 | 7 | ichbidv 44905 | . . 3 ⊢ (⊤ → ([𝑎⇄𝑏](𝜑 → 𝜓) ↔ [𝑎⇄𝑏] ¬ (𝜑 ∧ ¬ 𝜓))) |
9 | 8 | mptru 1546 | . 2 ⊢ ([𝑎⇄𝑏](𝜑 → 𝜓) ↔ [𝑎⇄𝑏] ¬ (𝜑 ∧ ¬ 𝜓)) |
10 | 5, 9 | sylibr 233 | 1 ⊢ (([𝑎⇄𝑏]𝜑 ∧ [𝑎⇄𝑏]𝜓) → [𝑎⇄𝑏](𝜑 → 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 396 ⊤wtru 1540 [wich 44897 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-10 2137 ax-12 2171 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-tru 1542 df-ex 1783 df-nf 1787 df-sb 2068 df-ich 44898 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |