![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > ichim | Structured version Visualization version GIF version |
Description: Formula building rule for implication in interchangeability. (Contributed by SN, 4-May-2024.) |
Ref | Expression |
---|---|
ichim | ⊢ (([𝑎⇄𝑏]𝜑 ∧ [𝑎⇄𝑏]𝜓) → [𝑎⇄𝑏](𝜑 → 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ichn 47330 | . . . 4 ⊢ ([𝑎⇄𝑏]𝜓 ↔ [𝑎⇄𝑏] ¬ 𝜓) | |
2 | ichan 47329 | . . . 4 ⊢ (([𝑎⇄𝑏]𝜑 ∧ [𝑎⇄𝑏] ¬ 𝜓) → [𝑎⇄𝑏](𝜑 ∧ ¬ 𝜓)) | |
3 | 1, 2 | sylan2b 593 | . . 3 ⊢ (([𝑎⇄𝑏]𝜑 ∧ [𝑎⇄𝑏]𝜓) → [𝑎⇄𝑏](𝜑 ∧ ¬ 𝜓)) |
4 | ichn 47330 | . . 3 ⊢ ([𝑎⇄𝑏](𝜑 ∧ ¬ 𝜓) ↔ [𝑎⇄𝑏] ¬ (𝜑 ∧ ¬ 𝜓)) | |
5 | 3, 4 | sylib 218 | . 2 ⊢ (([𝑎⇄𝑏]𝜑 ∧ [𝑎⇄𝑏]𝜓) → [𝑎⇄𝑏] ¬ (𝜑 ∧ ¬ 𝜓)) |
6 | iman 401 | . . . . 5 ⊢ ((𝜑 → 𝜓) ↔ ¬ (𝜑 ∧ ¬ 𝜓)) | |
7 | 6 | a1i 11 | . . . 4 ⊢ (⊤ → ((𝜑 → 𝜓) ↔ ¬ (𝜑 ∧ ¬ 𝜓))) |
8 | 7 | ichbidv 47327 | . . 3 ⊢ (⊤ → ([𝑎⇄𝑏](𝜑 → 𝜓) ↔ [𝑎⇄𝑏] ¬ (𝜑 ∧ ¬ 𝜓))) |
9 | 8 | mptru 1544 | . 2 ⊢ ([𝑎⇄𝑏](𝜑 → 𝜓) ↔ [𝑎⇄𝑏] ¬ (𝜑 ∧ ¬ 𝜓)) |
10 | 5, 9 | sylibr 234 | 1 ⊢ (([𝑎⇄𝑏]𝜑 ∧ [𝑎⇄𝑏]𝜓) → [𝑎⇄𝑏](𝜑 → 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ⊤wtru 1538 [wich 47319 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-10 2141 ax-12 2178 |
This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1540 df-ex 1778 df-nf 1782 df-sb 2065 df-ich 47320 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |