| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > albidv | Structured version Visualization version GIF version | ||
| Description: Formula-building rule for universal quantifier (deduction form). See also albidh 1866 and albid 2223. (Contributed by NM, 26-May-1993.) |
| Ref | Expression |
|---|---|
| albidv.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
| Ref | Expression |
|---|---|
| albidv | ⊢ (𝜑 → (∀𝑥𝜓 ↔ ∀𝑥𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-5 1910 | . 2 ⊢ (𝜑 → ∀𝑥𝜑) | |
| 2 | albidv.1 | . 2 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
| 3 | 1, 2 | albidh 1866 | 1 ⊢ (𝜑 → (∀𝑥𝜓 ↔ ∀𝑥𝜒)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∀wal 1538 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 |
| This theorem depends on definitions: df-bi 207 |
| This theorem is referenced by: nfbidv 1922 2albidv 1923 sbjust 2064 sbequ 2084 sb6 2086 ax12wdemo 2136 sb4b 2473 mojust 2532 mof 2556 eujust 2564 eujustALT 2565 eu6lem 2566 euf 2569 axextg 2703 axextmo 2705 eqeq1dALT 2732 nfceqdf 2887 drnfc1 2911 drnfc2 2912 ralbidv2 3152 ralxpxfr2d 3612 alexeqg 3617 pm13.183 3632 elab6g 3635 elabd2 3636 eqeu 3677 mo2icl 3685 euind 3695 reuind 3724 cdeqal 3740 sbcal 3813 sbccomlem 3832 sbcabel 3841 csbiebg 3894 ssconb 4105 reldisj 4416 sbcssg 4483 elint 4916 axrep1 5235 axreplem 5236 axrep2 5237 axrep4OLD 5241 zfrepclf 5246 axsepg 5252 zfauscl 5253 bm1.3iiOLD 5257 al0ssb 5263 eusv1 5346 euotd 5473 freq1 5605 frsn 5726 iota5 6494 dffun2 6521 sbcfung 6540 funimass4 6925 dffo3 7074 dffo3f 7078 eufnfv 7203 dff13 7229 fnssintima 7337 nfriotadw 7352 imaeqalov 7628 tfisi 7835 dfom2 7844 elom 7845 xpord3inddlem 8133 seqomlem2 8419 findcard 9127 findcard2 9128 pssnn 9132 ssfi 9137 findcard3 9229 findcard3OLD 9230 fiint 9277 fiintOLD 9278 inf0 9574 axinf2 9593 ttrclss 9673 ttrclselem2 9679 tz9.1 9682 karden 9848 aceq0 10071 dfac5 10082 zfac 10413 brdom3 10481 axpowndlem3 10552 zfcndrep 10567 zfcndac 10572 elgch 10575 engch 10581 axgroth3 10784 axgroth4 10785 elnp 10940 elnpi 10941 infm3 12142 fz1sbc 13561 uzrdgfni 13923 trclfvcotr 14975 relexpindlem 15029 vdwmc2 16950 ramtlecl 16971 ramval 16979 ramub 16984 rami 16986 ramcl 17000 mreexexd 17609 mplsubglem 21908 mpllsslem 21909 ismhp3 22029 istopg 22782 1stccn 23350 iskgen3 23436 fbfinnfr 23728 cnextfun 23951 metcld 25206 metcld2 25207 noseqrdgfn 28200 chlimi 31163 nmcexi 31955 disjxun0 32503 disjrdx 32520 funcnvmpt 32591 mclsssvlem 35549 mclsval 35550 mclsind 35557 elintfv 35752 dfon2lem6 35776 dfon2lem7 35777 dfon2lem8 35778 dfon2 35780 sscoid 35901 sbequbidv 36202 disjeq12dv 36203 ixpeq12dv 36204 cbvsbdavw 36242 cbvsbdavw2 36243 cbvdisjdavw 36256 cbvdisjdavw2 36277 trer 36304 bj-ssblem1 36642 bj-ax12 36645 mobidvALT 36845 bj-sbceqgALT 36890 bj-nuliota 37045 bj-bm1.3ii 37052 wl-ax12v2cl 37494 wl-mo2t 37563 isass 37840 releccnveq 38247 ecin0 38334 inecmo 38337 alrmomodm 38341 extssr 38500 eltrrels3 38571 eleqvrels3 38584 axc11n-16 38931 cdlemefrs29bpre0 40390 eu6w 42664 unielss 43207 orddif0suc 43257 elmapintab 43585 cnvcnvintabd 43589 iunrelexpuztr 43708 ntrneiiso 44080 ntrneik2 44081 ntrneix2 44082 ntrneikb 44083 mnuop123d 44251 pm14.122b 44412 iotavalb 44419 trsbc 44530 permaxnul 44998 permaxpow 44999 permaxpr 45000 permaxun 45001 permaxinf2lem 45002 permac8prim 45004 nregmodel 45007 eusnsn 47027 aiota0def 47097 ichbidv 47454 mof0 48826 eufsnlem 48829 termcarweu 49517 setrecseq 49674 setrec1lem1 49676 setrec2fun 49681 setrec2lem2 49683 |
| Copyright terms: Public domain | W3C validator |