| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > albidv | Structured version Visualization version GIF version | ||
| Description: Formula-building rule for universal quantifier (deduction form). See also albidh 1866 and albid 2222. (Contributed by NM, 26-May-1993.) |
| Ref | Expression |
|---|---|
| albidv.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
| Ref | Expression |
|---|---|
| albidv | ⊢ (𝜑 → (∀𝑥𝜓 ↔ ∀𝑥𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-5 1910 | . 2 ⊢ (𝜑 → ∀𝑥𝜑) | |
| 2 | albidv.1 | . 2 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
| 3 | 1, 2 | albidh 1866 | 1 ⊢ (𝜑 → (∀𝑥𝜓 ↔ ∀𝑥𝜒)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∀wal 1538 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 |
| This theorem depends on definitions: df-bi 207 |
| This theorem is referenced by: nfbidv 1922 2albidv 1923 sbjust 2063 sbequ 2083 sb6 2085 ax12wdemo 2135 sb4b 2479 mojust 2538 mof 2562 eujust 2570 eujustALT 2571 eu6lem 2572 euf 2575 axextg 2709 axextmo 2711 eqeq1dALT 2738 nfceqdf 2894 drnfc1 2918 drnfc2 2919 ralbidv2 3159 ralxpxfr2d 3625 alexeqg 3630 pm13.183 3645 elab6g 3648 elabd2 3649 eqeu 3689 mo2icl 3697 euind 3707 reuind 3736 cdeqal 3752 sbcal 3825 sbccomlem 3844 sbcabel 3853 csbiebg 3906 ssconb 4117 reldisj 4428 sbcssg 4495 elint 4928 axrep1 5250 axreplem 5251 axrep2 5252 axrep4OLD 5256 zfrepclf 5261 axsepg 5267 zfauscl 5268 bm1.3iiOLD 5272 al0ssb 5278 eusv1 5361 euotd 5488 freq1 5621 frsn 5742 iota5 6514 dffun2 6541 sbcfung 6560 funimass4 6943 dffo3 7092 dffo3f 7096 eufnfv 7221 dff13 7247 fnssintima 7355 nfriotadw 7370 imaeqalov 7646 tfisi 7854 dfom2 7863 elom 7864 xpord3inddlem 8153 seqomlem2 8465 findcard 9177 findcard2 9178 pssnn 9182 ssfi 9187 findcard3 9290 findcard3OLD 9291 fiint 9338 fiintOLD 9339 inf0 9635 axinf2 9654 ttrclss 9734 ttrclselem2 9740 tz9.1 9743 karden 9909 aceq0 10132 dfac5 10143 zfac 10474 brdom3 10542 axpowndlem3 10613 zfcndrep 10628 zfcndac 10633 elgch 10636 engch 10642 axgroth3 10845 axgroth4 10846 elnp 11001 elnpi 11002 infm3 12201 fz1sbc 13617 uzrdgfni 13976 trclfvcotr 15028 relexpindlem 15082 vdwmc2 16999 ramtlecl 17020 ramval 17028 ramub 17033 rami 17035 ramcl 17049 mreexexd 17660 mplsubglem 21959 mpllsslem 21960 ismhp3 22080 istopg 22833 1stccn 23401 iskgen3 23487 fbfinnfr 23779 cnextfun 24002 metcld 25258 metcld2 25259 noseqrdgfn 28252 chlimi 31215 nmcexi 32007 disjxun0 32555 disjrdx 32572 funcnvmpt 32645 mclsssvlem 35584 mclsval 35585 mclsind 35592 elintfv 35782 dfon2lem6 35806 dfon2lem7 35807 dfon2lem8 35808 dfon2 35810 sscoid 35931 sbequbidv 36232 disjeq12dv 36233 ixpeq12dv 36234 cbvsbdavw 36272 cbvsbdavw2 36273 cbvdisjdavw 36286 cbvdisjdavw2 36307 trer 36334 bj-ssblem1 36672 bj-ax12 36675 mobidvALT 36875 bj-sbceqgALT 36920 bj-nuliota 37075 bj-bm1.3ii 37082 wl-ax12v2cl 37524 wl-mo2t 37593 isass 37870 releccnveq 38276 ecin0 38370 inecmo 38373 alrmomodm 38377 extssr 38527 eltrrels3 38598 eleqvrels3 38611 axc11n-16 38956 cdlemefrs29bpre0 40415 eu6w 42699 unielss 43242 orddif0suc 43292 elmapintab 43620 cnvcnvintabd 43624 iunrelexpuztr 43743 ntrneiiso 44115 ntrneik2 44116 ntrneix2 44117 ntrneikb 44118 mnuop123d 44286 pm14.122b 44447 iotavalb 44454 trsbc 44565 permaxnul 45033 permaxpow 45034 permaxpr 45035 permaxun 45036 permaxinf2lem 45037 eusnsn 47055 aiota0def 47125 ichbidv 47467 mof0 48816 eufsnlem 48819 termcarweu 49413 setrecseq 49549 setrec1lem1 49551 setrec2fun 49556 setrec2lem2 49558 |
| Copyright terms: Public domain | W3C validator |