| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > albidv | Structured version Visualization version GIF version | ||
| Description: Formula-building rule for universal quantifier (deduction form). See also albidh 1867 and albid 2225. (Contributed by NM, 26-May-1993.) |
| Ref | Expression |
|---|---|
| albidv.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
| Ref | Expression |
|---|---|
| albidv | ⊢ (𝜑 → (∀𝑥𝜓 ↔ ∀𝑥𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-5 1911 | . 2 ⊢ (𝜑 → ∀𝑥𝜑) | |
| 2 | albidv.1 | . 2 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
| 3 | 1, 2 | albidh 1867 | 1 ⊢ (𝜑 → (∀𝑥𝜓 ↔ ∀𝑥𝜒)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∀wal 1539 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 |
| This theorem depends on definitions: df-bi 207 |
| This theorem is referenced by: nfbidv 1923 2albidv 1924 sbjust 2066 sbequ 2086 sb6 2088 ax12wdemo 2138 sb4b 2475 mojust 2534 mof 2558 eujust 2566 eujustALT 2567 eu6lem 2568 euf 2571 axextg 2705 axextmo 2707 eqeq1dALT 2734 nfceqdf 2890 drnfc1 2914 drnfc2 2915 ralbidv2 3151 ralxpxfr2d 3596 alexeqg 3601 pm13.183 3616 elab6g 3619 elabd2 3620 eqeu 3660 mo2icl 3668 euind 3678 reuind 3707 cdeqal 3723 sbcal 3796 sbccomlem 3815 sbcabel 3824 csbiebg 3877 ssconb 4089 reldisj 4400 sbcssg 4467 elint 4901 axrep1 5216 axreplem 5217 axrep2 5218 axrep4OLD 5222 zfrepclf 5227 axsepg 5233 zfauscl 5234 bm1.3iiOLD 5238 al0ssb 5244 eusv1 5327 euotd 5451 freq1 5581 frsn 5702 iota5 6464 dffun2 6491 sbcfung 6505 funimass4 6886 dffo3 7035 dffo3f 7039 eufnfv 7163 dff13 7188 fnssintima 7296 nfriotadw 7311 imaeqalov 7585 tfisi 7789 dfom2 7798 elom 7799 xpord3inddlem 8084 seqomlem2 8370 findcard 9073 findcard2 9074 pssnn 9078 ssfi 9082 findcard3 9167 fiint 9211 inf0 9511 axinf2 9530 ttrclss 9610 ttrclselem2 9616 tz9.1 9619 karden 9788 aceq0 10009 dfac5 10020 zfac 10351 brdom3 10419 axpowndlem3 10490 zfcndrep 10505 zfcndac 10510 elgch 10513 engch 10519 axgroth3 10722 axgroth4 10723 elnp 10878 elnpi 10879 infm3 12081 fz1sbc 13500 uzrdgfni 13865 trclfvcotr 14916 relexpindlem 14970 vdwmc2 16891 ramtlecl 16912 ramval 16920 ramub 16925 rami 16927 ramcl 16941 mreexexd 17554 mplsubglem 21936 mpllsslem 21937 ismhp3 22057 istopg 22810 1stccn 23378 iskgen3 23464 fbfinnfr 23756 cnextfun 23979 metcld 25233 metcld2 25234 noseqrdgfn 28236 chlimi 31214 nmcexi 32006 disjxun0 32554 disjrdx 32571 funcnvmpt 32649 tz9.1regs 35130 mclsssvlem 35606 mclsval 35607 mclsind 35614 elintfv 35809 dfon2lem6 35830 dfon2lem7 35831 dfon2lem8 35832 dfon2 35834 sscoid 35955 sbequbidv 36258 disjeq12dv 36259 ixpeq12dv 36260 cbvsbdavw 36298 cbvsbdavw2 36299 cbvdisjdavw 36312 cbvdisjdavw2 36333 trer 36360 bj-ssblem1 36698 bj-ax12 36701 mobidvALT 36901 bj-sbceqgALT 36946 bj-nuliota 37101 bj-bm1.3ii 37108 wl-ax12v2cl 37550 wl-mo2t 37619 isass 37896 releccnveq 38305 ecin0 38394 inecmo 38397 alrmomodm 38401 extssr 38611 eltrrels3 38686 eleqvrels3 38699 axc11n-16 39047 cdlemefrs29bpre0 40505 eu6w 42779 unielss 43321 orddif0suc 43371 elmapintab 43699 cnvcnvintabd 43703 iunrelexpuztr 43822 ntrneiiso 44194 ntrneik2 44195 ntrneix2 44196 ntrneikb 44197 mnuop123d 44365 pm14.122b 44526 iotavalb 44533 trsbc 44643 permaxnul 45111 permaxpow 45112 permaxpr 45113 permaxun 45114 permaxinf2lem 45115 permac8prim 45117 nregmodel 45120 eusnsn 47136 aiota0def 47206 ichbidv 47563 mof0 48948 eufsnlem 48951 termcarweu 49639 setrecseq 49796 setrec1lem1 49798 setrec2fun 49803 setrec2lem2 49805 |
| Copyright terms: Public domain | W3C validator |