| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > albidv | Structured version Visualization version GIF version | ||
| Description: Formula-building rule for universal quantifier (deduction form). See also albidh 1866 and albid 2223. (Contributed by NM, 26-May-1993.) |
| Ref | Expression |
|---|---|
| albidv.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
| Ref | Expression |
|---|---|
| albidv | ⊢ (𝜑 → (∀𝑥𝜓 ↔ ∀𝑥𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-5 1910 | . 2 ⊢ (𝜑 → ∀𝑥𝜑) | |
| 2 | albidv.1 | . 2 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
| 3 | 1, 2 | albidh 1866 | 1 ⊢ (𝜑 → (∀𝑥𝜓 ↔ ∀𝑥𝜒)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∀wal 1538 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 |
| This theorem depends on definitions: df-bi 207 |
| This theorem is referenced by: nfbidv 1922 2albidv 1923 sbjust 2064 sbequ 2084 sb6 2086 ax12wdemo 2136 sb4b 2473 mojust 2532 mof 2556 eujust 2564 eujustALT 2565 eu6lem 2566 euf 2569 axextg 2703 axextmo 2705 eqeq1dALT 2732 nfceqdf 2887 drnfc1 2911 drnfc2 2912 ralbidv2 3152 ralxpxfr2d 3609 alexeqg 3614 pm13.183 3629 elab6g 3632 elabd2 3633 eqeu 3674 mo2icl 3682 euind 3692 reuind 3721 cdeqal 3737 sbcal 3810 sbccomlem 3829 sbcabel 3838 csbiebg 3891 ssconb 4101 reldisj 4412 sbcssg 4479 elint 4912 axrep1 5230 axreplem 5231 axrep2 5232 axrep4OLD 5236 zfrepclf 5241 axsepg 5247 zfauscl 5248 bm1.3iiOLD 5252 al0ssb 5258 eusv1 5341 euotd 5468 freq1 5598 frsn 5719 iota5 6482 dffun2 6509 sbcfung 6524 funimass4 6907 dffo3 7056 dffo3f 7060 eufnfv 7185 dff13 7211 fnssintima 7319 nfriotadw 7334 imaeqalov 7608 tfisi 7815 dfom2 7824 elom 7825 xpord3inddlem 8110 seqomlem2 8396 findcard 9104 findcard2 9105 pssnn 9109 ssfi 9114 findcard3 9205 findcard3OLD 9206 fiint 9253 fiintOLD 9254 inf0 9550 axinf2 9569 ttrclss 9649 ttrclselem2 9655 tz9.1 9658 karden 9824 aceq0 10047 dfac5 10058 zfac 10389 brdom3 10457 axpowndlem3 10528 zfcndrep 10543 zfcndac 10548 elgch 10551 engch 10557 axgroth3 10760 axgroth4 10761 elnp 10916 elnpi 10917 infm3 12118 fz1sbc 13537 uzrdgfni 13899 trclfvcotr 14951 relexpindlem 15005 vdwmc2 16926 ramtlecl 16947 ramval 16955 ramub 16960 rami 16962 ramcl 16976 mreexexd 17589 mplsubglem 21941 mpllsslem 21942 ismhp3 22062 istopg 22815 1stccn 23383 iskgen3 23469 fbfinnfr 23761 cnextfun 23984 metcld 25239 metcld2 25240 noseqrdgfn 28240 chlimi 31213 nmcexi 32005 disjxun0 32553 disjrdx 32570 funcnvmpt 32641 mclsssvlem 35542 mclsval 35543 mclsind 35550 elintfv 35745 dfon2lem6 35769 dfon2lem7 35770 dfon2lem8 35771 dfon2 35773 sscoid 35894 sbequbidv 36195 disjeq12dv 36196 ixpeq12dv 36197 cbvsbdavw 36235 cbvsbdavw2 36236 cbvdisjdavw 36249 cbvdisjdavw2 36270 trer 36297 bj-ssblem1 36635 bj-ax12 36638 mobidvALT 36838 bj-sbceqgALT 36883 bj-nuliota 37038 bj-bm1.3ii 37045 wl-ax12v2cl 37487 wl-mo2t 37556 isass 37833 releccnveq 38240 ecin0 38327 inecmo 38330 alrmomodm 38334 extssr 38493 eltrrels3 38564 eleqvrels3 38577 axc11n-16 38924 cdlemefrs29bpre0 40383 eu6w 42657 unielss 43200 orddif0suc 43250 elmapintab 43578 cnvcnvintabd 43582 iunrelexpuztr 43701 ntrneiiso 44073 ntrneik2 44074 ntrneix2 44075 ntrneikb 44076 mnuop123d 44244 pm14.122b 44405 iotavalb 44412 trsbc 44523 permaxnul 44991 permaxpow 44992 permaxpr 44993 permaxun 44994 permaxinf2lem 44995 permac8prim 44997 nregmodel 45000 eusnsn 47020 aiota0def 47090 ichbidv 47447 mof0 48819 eufsnlem 48822 termcarweu 49510 setrecseq 49667 setrec1lem1 49669 setrec2fun 49674 setrec2lem2 49676 |
| Copyright terms: Public domain | W3C validator |