![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > albidv | Structured version Visualization version GIF version |
Description: Formula-building rule for universal quantifier (deduction form). See also albidh 1870 and albid 2216. (Contributed by NM, 26-May-1993.) |
Ref | Expression |
---|---|
albidv.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
Ref | Expression |
---|---|
albidv | ⊢ (𝜑 → (∀𝑥𝜓 ↔ ∀𝑥𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-5 1914 | . 2 ⊢ (𝜑 → ∀𝑥𝜑) | |
2 | albidv.1 | . 2 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
3 | 1, 2 | albidh 1870 | 1 ⊢ (𝜑 → (∀𝑥𝜓 ↔ ∀𝑥𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∀wal 1540 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 |
This theorem depends on definitions: df-bi 206 |
This theorem is referenced by: nfbidv 1926 2albidv 1927 sbjust 2067 sbequ 2087 sb6 2089 ax12wdemo 2132 sb4b 2475 mojust 2534 mof 2558 eujust 2566 eujustALT 2567 eu6lem 2568 euf 2571 axextg 2706 axextmo 2708 eqeq1dALT 2736 nfcriOLD 2894 nfceqdf 2899 nfceqdfOLD 2900 drnfc1 2923 drnfc1OLD 2924 drnfc2 2925 drnfc2OLD 2926 ralbidv2 3174 ralxpxfr2d 3635 alexeqg 3640 pm13.183 3657 elab6g 3660 elabd2 3661 eqeu 3703 mo2icl 3711 euind 3721 reuind 3750 cdeqal 3766 sbcal 3842 sbcabel 3873 csbiebg 3927 ssconb 4138 reldisj 4452 reldisjOLD 4453 sbcssg 4524 elint 4957 axrep1 5287 axreplem 5288 axrep2 5289 axrep4 5291 zfrepclf 5295 axsepg 5301 zfauscl 5302 bm1.3ii 5303 al0ssb 5309 eusv1 5390 euotd 5514 freq1 5647 frsn 5764 iota5 6527 dffun2 6554 sbcfung 6573 funimass4 6957 dffo3 7104 eufnfv 7231 dff13 7254 fnssintima 7359 nfriotadw 7373 imaeqalov 7646 tfisi 7848 dfom2 7857 elom 7858 xpord3inddlem 8140 seqomlem2 8451 findcard 9163 findcard2 9164 pssnn 9168 ssfi 9173 pssnnOLD 9265 findcard2OLD 9284 findcard3 9285 findcard3OLD 9286 fiint 9324 inf0 9616 axinf2 9635 ttrclss 9715 ttrclselem2 9721 tz9.1 9724 karden 9890 aceq0 10113 dfac5 10123 zfac 10455 brdom3 10523 axpowndlem3 10594 zfcndrep 10609 zfcndac 10614 elgch 10617 engch 10623 axgroth3 10826 axgroth4 10827 elnp 10982 elnpi 10983 infm3 12173 fz1sbc 13577 uzrdgfni 13923 trclfvcotr 14956 relexpindlem 15010 vdwmc2 16912 ramtlecl 16933 ramval 16941 ramub 16946 rami 16948 ramcl 16962 mreexexd 17592 mplsubglem 21558 mpllsslem 21559 ismhp3 21686 istopg 22397 1stccn 22967 iskgen3 23053 fbfinnfr 23345 cnextfun 23568 metcld 24823 metcld2 24824 chlimi 30487 nmcexi 31279 disjxun0 31805 disjrdx 31822 funcnvmpt 31892 mclsssvlem 34553 mclsval 34554 mclsind 34561 elintfv 34736 dfon2lem6 34760 dfon2lem7 34761 dfon2lem8 34762 dfon2 34764 sscoid 34885 trer 35201 bj-ssblem1 35531 bj-ax12 35534 mobidvALT 35736 bj-sbceqgALT 35782 bj-nuliota 35938 bj-bm1.3ii 35945 wl-mo2t 36440 isass 36714 releccnveq 37126 ecin0 37221 inecmo 37224 alrmomodm 37228 extssr 37379 eltrrels3 37450 eleqvrels3 37463 axc11n-16 37808 cdlemefrs29bpre0 39267 unielss 41967 orddif0suc 42018 elmapintab 42347 cnvcnvintabd 42351 iunrelexpuztr 42470 ntrneiiso 42842 ntrneik2 42843 ntrneix2 42844 ntrneikb 42845 mnuop123d 43021 pm14.122b 43182 iotavalb 43189 trsbc 43301 dffo3f 43877 eusnsn 45736 aiota0def 45804 ichbidv 46121 mof0 47504 eufsnlem 47507 setrecseq 47730 setrec1lem1 47732 setrec2fun 47737 setrec2lem2 47739 |
Copyright terms: Public domain | W3C validator |