| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > albidv | Structured version Visualization version GIF version | ||
| Description: Formula-building rule for universal quantifier (deduction form). See also albidh 1866 and albid 2223. (Contributed by NM, 26-May-1993.) |
| Ref | Expression |
|---|---|
| albidv.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
| Ref | Expression |
|---|---|
| albidv | ⊢ (𝜑 → (∀𝑥𝜓 ↔ ∀𝑥𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-5 1910 | . 2 ⊢ (𝜑 → ∀𝑥𝜑) | |
| 2 | albidv.1 | . 2 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
| 3 | 1, 2 | albidh 1866 | 1 ⊢ (𝜑 → (∀𝑥𝜓 ↔ ∀𝑥𝜒)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∀wal 1538 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 |
| This theorem depends on definitions: df-bi 207 |
| This theorem is referenced by: nfbidv 1922 2albidv 1923 sbjust 2064 sbequ 2084 sb6 2086 ax12wdemo 2136 sb4b 2474 mojust 2533 mof 2557 eujust 2565 eujustALT 2566 eu6lem 2567 euf 2570 axextg 2704 axextmo 2706 eqeq1dALT 2733 nfceqdf 2888 drnfc1 2912 drnfc2 2913 ralbidv2 3153 ralxpxfr2d 3615 alexeqg 3620 pm13.183 3635 elab6g 3638 elabd2 3639 eqeu 3680 mo2icl 3688 euind 3698 reuind 3727 cdeqal 3743 sbcal 3816 sbccomlem 3835 sbcabel 3844 csbiebg 3897 ssconb 4108 reldisj 4419 sbcssg 4486 elint 4919 axrep1 5238 axreplem 5239 axrep2 5240 axrep4OLD 5244 zfrepclf 5249 axsepg 5255 zfauscl 5256 bm1.3iiOLD 5260 al0ssb 5266 eusv1 5349 euotd 5476 freq1 5608 frsn 5729 iota5 6497 dffun2 6524 sbcfung 6543 funimass4 6928 dffo3 7077 dffo3f 7081 eufnfv 7206 dff13 7232 fnssintima 7340 nfriotadw 7355 imaeqalov 7631 tfisi 7838 dfom2 7847 elom 7848 xpord3inddlem 8136 seqomlem2 8422 findcard 9133 findcard2 9134 pssnn 9138 ssfi 9143 findcard3 9236 findcard3OLD 9237 fiint 9284 fiintOLD 9285 inf0 9581 axinf2 9600 ttrclss 9680 ttrclselem2 9686 tz9.1 9689 karden 9855 aceq0 10078 dfac5 10089 zfac 10420 brdom3 10488 axpowndlem3 10559 zfcndrep 10574 zfcndac 10579 elgch 10582 engch 10588 axgroth3 10791 axgroth4 10792 elnp 10947 elnpi 10948 infm3 12149 fz1sbc 13568 uzrdgfni 13930 trclfvcotr 14982 relexpindlem 15036 vdwmc2 16957 ramtlecl 16978 ramval 16986 ramub 16991 rami 16993 ramcl 17007 mreexexd 17616 mplsubglem 21915 mpllsslem 21916 ismhp3 22036 istopg 22789 1stccn 23357 iskgen3 23443 fbfinnfr 23735 cnextfun 23958 metcld 25213 metcld2 25214 noseqrdgfn 28207 chlimi 31170 nmcexi 31962 disjxun0 32510 disjrdx 32527 funcnvmpt 32598 mclsssvlem 35556 mclsval 35557 mclsind 35564 elintfv 35759 dfon2lem6 35783 dfon2lem7 35784 dfon2lem8 35785 dfon2 35787 sscoid 35908 sbequbidv 36209 disjeq12dv 36210 ixpeq12dv 36211 cbvsbdavw 36249 cbvsbdavw2 36250 cbvdisjdavw 36263 cbvdisjdavw2 36284 trer 36311 bj-ssblem1 36649 bj-ax12 36652 mobidvALT 36852 bj-sbceqgALT 36897 bj-nuliota 37052 bj-bm1.3ii 37059 wl-ax12v2cl 37501 wl-mo2t 37570 isass 37847 releccnveq 38254 ecin0 38341 inecmo 38344 alrmomodm 38348 extssr 38507 eltrrels3 38578 eleqvrels3 38591 axc11n-16 38938 cdlemefrs29bpre0 40397 eu6w 42671 unielss 43214 orddif0suc 43264 elmapintab 43592 cnvcnvintabd 43596 iunrelexpuztr 43715 ntrneiiso 44087 ntrneik2 44088 ntrneix2 44089 ntrneikb 44090 mnuop123d 44258 pm14.122b 44419 iotavalb 44426 trsbc 44537 permaxnul 45005 permaxpow 45006 permaxpr 45007 permaxun 45008 permaxinf2lem 45009 permac8prim 45011 nregmodel 45014 eusnsn 47031 aiota0def 47101 ichbidv 47458 mof0 48830 eufsnlem 48833 termcarweu 49521 setrecseq 49678 setrec1lem1 49680 setrec2fun 49685 setrec2lem2 49687 |
| Copyright terms: Public domain | W3C validator |