Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > albidv | Structured version Visualization version GIF version |
Description: Formula-building rule for universal quantifier (deduction form). See also albidh 1872 and albid 2218. (Contributed by NM, 26-May-1993.) |
Ref | Expression |
---|---|
albidv.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
Ref | Expression |
---|---|
albidv | ⊢ (𝜑 → (∀𝑥𝜓 ↔ ∀𝑥𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-5 1916 | . 2 ⊢ (𝜑 → ∀𝑥𝜑) | |
2 | albidv.1 | . 2 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
3 | 1, 2 | albidh 1872 | 1 ⊢ (𝜑 → (∀𝑥𝜓 ↔ ∀𝑥𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∀wal 1539 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 |
This theorem depends on definitions: df-bi 206 |
This theorem is referenced by: nfbidv 1928 2albidv 1929 sbjust 2069 sbequ 2089 sb6 2091 ax12wdemo 2134 sb4b 2476 sb4bOLD 2477 mojust 2540 mof 2564 eujust 2572 eujustALT 2573 eu6lem 2574 euf 2577 axextg 2712 axextmo 2714 eqeq1dALT 2742 nfcriOLD 2898 nfceqdf 2903 nfceqdfOLD 2904 drnfc1 2927 drnfc1OLD 2928 drnfc2 2929 drnfc2OLD 2930 ralbidv2 3120 ralxpxfr2d 3576 alexeqg 3581 pm13.183 3598 elab6g 3601 elabd2 3602 eqeu 3644 mo2icl 3652 euind 3662 reuind 3691 cdeqal 3707 sbcal 3784 sbcabel 3815 csbiebg 3869 ssconb 4076 reldisj 4390 reldisjOLD 4391 sbcssg 4459 elint 4890 axrep1 5214 axreplem 5215 axrep2 5216 axrep4 5218 zfrepclf 5221 axsepg 5227 zfauscl 5228 bm1.3ii 5229 al0ssb 5235 eusv1 5317 euotd 5429 freq1 5558 frsn 5673 iota5 6413 sbcfung 6454 funimass4 6828 dffo3 6972 eufnfv 7099 dff13 7122 nfriotadw 7233 tfisi 7693 dfom2 7702 elom 7703 seqomlem2 8266 findcard 8911 findcard2 8912 pssnn 8916 ssfi 8921 pssnnOLD 9001 findcard2OLD 9017 findcard3 9018 fiint 9052 inf0 9340 axinf2 9359 ttrclss 9439 ttrclselem2 9445 tz9.1 9470 karden 9637 aceq0 9858 dfac5 9868 zfac 10200 brdom3 10268 axpowndlem3 10339 zfcndrep 10354 zfcndac 10359 elgch 10362 engch 10368 axgroth3 10571 axgroth4 10572 elnp 10727 elnpi 10728 infm3 11917 fz1sbc 13314 uzrdgfni 13659 trclfvcotr 14701 relexpindlem 14755 vdwmc2 16661 ramtlecl 16682 ramval 16690 ramub 16695 rami 16697 ramcl 16711 mreexexd 17338 mplsubglem 21186 mpllsslem 21187 ismhp3 21314 istopg 22025 1stccn 22595 iskgen3 22681 fbfinnfr 22973 cnextfun 23196 metcld 24451 metcld2 24452 chlimi 29575 nmcexi 30367 disjxun0 30892 disjrdx 30909 funcnvmpt 30983 mclsssvlem 33503 mclsval 33504 mclsind 33511 fnssintima 33655 elintfv 33717 dfon2lem6 33743 dfon2lem7 33744 dfon2lem8 33745 dfon2 33747 xpord3ind 33779 sscoid 34194 trer 34484 bj-ssblem1 34814 bj-ax12 34817 mobidvALT 35020 bj-sbceqgALT 35066 bj-nuliota 35207 bj-bm1.3ii 35214 wl-mo2t 35709 isass 35983 releccnveq 36376 ecin0 36463 inecmo 36466 alrmomodm 36470 extssr 36606 eltrrels3 36673 eleqvrels3 36685 axc11n-16 36931 cdlemefrs29bpre0 38389 elmapintab 41157 cnvcnvintabd 41161 iunrelexpuztr 41280 ntrneiiso 41654 ntrneik2 41655 ntrneix2 41656 ntrneikb 41657 mnuop123d 41833 pm14.122b 41994 iotavalb 42001 trsbc 42113 dffo3f 42670 eusnsn 44471 aiota0def 44539 ichbidv 44857 mof0 46117 eufsnlem 46120 setrecseq 46343 setrec1lem1 46345 setrec2fun 46350 setrec2lem2 46352 |
Copyright terms: Public domain | W3C validator |