![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > albidv | Structured version Visualization version GIF version |
Description: Formula-building rule for universal quantifier (deduction form). See also albidh 1863 and albid 2219. (Contributed by NM, 26-May-1993.) |
Ref | Expression |
---|---|
albidv.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
Ref | Expression |
---|---|
albidv | ⊢ (𝜑 → (∀𝑥𝜓 ↔ ∀𝑥𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-5 1907 | . 2 ⊢ (𝜑 → ∀𝑥𝜑) | |
2 | albidv.1 | . 2 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
3 | 1, 2 | albidh 1863 | 1 ⊢ (𝜑 → (∀𝑥𝜓 ↔ ∀𝑥𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∀wal 1534 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 |
This theorem depends on definitions: df-bi 207 |
This theorem is referenced by: nfbidv 1919 2albidv 1920 sbjust 2060 sbequ 2080 sb6 2082 ax12wdemo 2132 sb4b 2477 mojust 2536 mof 2560 eujust 2568 eujustALT 2569 eu6lem 2570 euf 2573 axextg 2707 axextmo 2709 eqeq1dALT 2737 nfceqdf 2898 drnfc1 2922 drnfc2 2923 ralbidv2 3171 ralxpxfr2d 3645 alexeqg 3650 pm13.183 3665 elab6g 3668 elabd2 3669 eqeu 3714 mo2icl 3722 euind 3732 reuind 3761 cdeqal 3777 sbcal 3854 sbccomlem 3877 sbcabel 3886 csbiebg 3940 ssconb 4151 reldisj 4458 sbcssg 4525 elint 4956 axrep1 5285 axreplem 5286 axrep2 5287 axrep4OLD 5291 zfrepclf 5296 axsepg 5302 zfauscl 5303 bm1.3iiOLD 5307 al0ssb 5313 eusv1 5396 euotd 5522 freq1 5655 frsn 5775 iota5 6545 dffun2 6572 sbcfung 6591 funimass4 6972 dffo3 7121 dffo3f 7125 eufnfv 7248 dff13 7274 fnssintima 7381 nfriotadw 7395 imaeqalov 7671 tfisi 7879 dfom2 7888 elom 7889 xpord3inddlem 8177 seqomlem2 8489 findcard 9201 findcard2 9202 pssnn 9206 ssfi 9211 findcard3 9315 findcard3OLD 9316 fiint 9363 fiintOLD 9364 inf0 9658 axinf2 9677 ttrclss 9757 ttrclselem2 9763 tz9.1 9766 karden 9932 aceq0 10155 dfac5 10166 zfac 10497 brdom3 10565 axpowndlem3 10636 zfcndrep 10651 zfcndac 10656 elgch 10659 engch 10665 axgroth3 10868 axgroth4 10869 elnp 11024 elnpi 11025 infm3 12224 fz1sbc 13636 uzrdgfni 13995 trclfvcotr 15044 relexpindlem 15098 vdwmc2 17012 ramtlecl 17033 ramval 17041 ramub 17046 rami 17048 ramcl 17062 mreexexd 17692 mplsubglem 22036 mpllsslem 22037 ismhp3 22163 istopg 22916 1stccn 23486 iskgen3 23572 fbfinnfr 23864 cnextfun 24087 metcld 25353 metcld2 25354 noseqrdgfn 28326 chlimi 31262 nmcexi 32054 disjxun0 32593 disjrdx 32610 funcnvmpt 32683 mclsssvlem 35546 mclsval 35547 mclsind 35554 elintfv 35745 dfon2lem6 35769 dfon2lem7 35770 dfon2lem8 35771 dfon2 35773 sscoid 35894 sbequbidv 36196 disjeq12dv 36197 ixpeq12dv 36198 cbvsbdavw 36236 cbvsbdavw2 36237 cbvdisjdavw 36250 cbvdisjdavw2 36271 trer 36298 bj-ssblem1 36636 bj-ax12 36639 mobidvALT 36839 bj-sbceqgALT 36884 bj-nuliota 37039 bj-bm1.3ii 37046 wl-ax12v2cl 37486 wl-mo2t 37555 isass 37832 releccnveq 38239 ecin0 38333 inecmo 38336 alrmomodm 38340 extssr 38490 eltrrels3 38561 eleqvrels3 38574 axc11n-16 38919 cdlemefrs29bpre0 40378 eu6w 42662 unielss 43206 orddif0suc 43257 elmapintab 43585 cnvcnvintabd 43589 iunrelexpuztr 43708 ntrneiiso 44080 ntrneik2 44081 ntrneix2 44082 ntrneikb 44083 mnuop123d 44257 pm14.122b 44418 iotavalb 44425 trsbc 44537 eusnsn 46975 aiota0def 47045 ichbidv 47377 mof0 48667 eufsnlem 48670 setrecseq 48915 setrec1lem1 48917 setrec2fun 48922 setrec2lem2 48924 |
Copyright terms: Public domain | W3C validator |