| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > albidv | Structured version Visualization version GIF version | ||
| Description: Formula-building rule for universal quantifier (deduction form). See also albidh 1866 and albid 2223. (Contributed by NM, 26-May-1993.) |
| Ref | Expression |
|---|---|
| albidv.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
| Ref | Expression |
|---|---|
| albidv | ⊢ (𝜑 → (∀𝑥𝜓 ↔ ∀𝑥𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-5 1910 | . 2 ⊢ (𝜑 → ∀𝑥𝜑) | |
| 2 | albidv.1 | . 2 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
| 3 | 1, 2 | albidh 1866 | 1 ⊢ (𝜑 → (∀𝑥𝜓 ↔ ∀𝑥𝜒)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∀wal 1538 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 |
| This theorem depends on definitions: df-bi 207 |
| This theorem is referenced by: nfbidv 1922 2albidv 1923 sbjust 2064 sbequ 2084 sb6 2086 ax12wdemo 2136 sb4b 2473 mojust 2532 mof 2556 eujust 2564 eujustALT 2565 eu6lem 2566 euf 2569 axextg 2703 axextmo 2705 eqeq1dALT 2732 nfceqdf 2887 drnfc1 2911 drnfc2 2912 ralbidv2 3148 ralxpxfr2d 3601 alexeqg 3606 pm13.183 3621 elab6g 3624 elabd2 3625 eqeu 3666 mo2icl 3674 euind 3684 reuind 3713 cdeqal 3729 sbcal 3802 sbccomlem 3821 sbcabel 3830 csbiebg 3883 ssconb 4093 reldisj 4404 sbcssg 4471 elint 4902 axrep1 5219 axreplem 5220 axrep2 5221 axrep4OLD 5225 zfrepclf 5230 axsepg 5236 zfauscl 5237 bm1.3iiOLD 5241 al0ssb 5247 eusv1 5330 euotd 5456 freq1 5586 frsn 5707 iota5 6465 dffun2 6492 sbcfung 6506 funimass4 6887 dffo3 7036 dffo3f 7040 eufnfv 7165 dff13 7191 fnssintima 7299 nfriotadw 7314 imaeqalov 7588 tfisi 7792 dfom2 7801 elom 7802 xpord3inddlem 8087 seqomlem2 8373 findcard 9077 findcard2 9078 pssnn 9082 ssfi 9087 findcard3 9172 fiint 9216 fiintOLD 9217 inf0 9517 axinf2 9536 ttrclss 9616 ttrclselem2 9622 tz9.1 9625 karden 9791 aceq0 10012 dfac5 10023 zfac 10354 brdom3 10422 axpowndlem3 10493 zfcndrep 10508 zfcndac 10513 elgch 10516 engch 10522 axgroth3 10725 axgroth4 10726 elnp 10881 elnpi 10882 infm3 12084 fz1sbc 13503 uzrdgfni 13865 trclfvcotr 14916 relexpindlem 14970 vdwmc2 16891 ramtlecl 16912 ramval 16920 ramub 16925 rami 16927 ramcl 16941 mreexexd 17554 mplsubglem 21906 mpllsslem 21907 ismhp3 22027 istopg 22780 1stccn 23348 iskgen3 23434 fbfinnfr 23726 cnextfun 23949 metcld 25204 metcld2 25205 noseqrdgfn 28205 chlimi 31178 nmcexi 31970 disjxun0 32518 disjrdx 32535 funcnvmpt 32611 tz9.1regs 35073 mclsssvlem 35545 mclsval 35546 mclsind 35553 elintfv 35748 dfon2lem6 35772 dfon2lem7 35773 dfon2lem8 35774 dfon2 35776 sscoid 35897 sbequbidv 36198 disjeq12dv 36199 ixpeq12dv 36200 cbvsbdavw 36238 cbvsbdavw2 36239 cbvdisjdavw 36252 cbvdisjdavw2 36273 trer 36300 bj-ssblem1 36638 bj-ax12 36641 mobidvALT 36841 bj-sbceqgALT 36886 bj-nuliota 37041 bj-bm1.3ii 37048 wl-ax12v2cl 37490 wl-mo2t 37559 isass 37836 releccnveq 38243 ecin0 38330 inecmo 38333 alrmomodm 38337 extssr 38496 eltrrels3 38567 eleqvrels3 38580 axc11n-16 38927 cdlemefrs29bpre0 40385 eu6w 42659 unielss 43201 orddif0suc 43251 elmapintab 43579 cnvcnvintabd 43583 iunrelexpuztr 43702 ntrneiiso 44074 ntrneik2 44075 ntrneix2 44076 ntrneikb 44077 mnuop123d 44245 pm14.122b 44406 iotavalb 44413 trsbc 44524 permaxnul 44992 permaxpow 44993 permaxpr 44994 permaxun 44995 permaxinf2lem 44996 permac8prim 44998 nregmodel 45001 eusnsn 47020 aiota0def 47090 ichbidv 47447 mof0 48832 eufsnlem 48835 termcarweu 49523 setrecseq 49680 setrec1lem1 49682 setrec2fun 49687 setrec2lem2 49689 |
| Copyright terms: Public domain | W3C validator |