Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > albidv | Structured version Visualization version GIF version |
Description: Formula-building rule for universal quantifier (deduction form). See also albidh 1870 and albid 2218. (Contributed by NM, 26-May-1993.) |
Ref | Expression |
---|---|
albidv.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
Ref | Expression |
---|---|
albidv | ⊢ (𝜑 → (∀𝑥𝜓 ↔ ∀𝑥𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-5 1914 | . 2 ⊢ (𝜑 → ∀𝑥𝜑) | |
2 | albidv.1 | . 2 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
3 | 1, 2 | albidh 1870 | 1 ⊢ (𝜑 → (∀𝑥𝜓 ↔ ∀𝑥𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∀wal 1537 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 |
This theorem depends on definitions: df-bi 206 |
This theorem is referenced by: nfbidv 1926 2albidv 1927 sbjust 2067 sbequ 2087 sb6 2089 ax12wdemo 2133 sb4b 2475 sb4bOLD 2476 mojust 2539 mof 2563 eujust 2571 eujustALT 2572 eu6lem 2573 euf 2576 axextg 2711 axextmo 2713 eqeq1dALT 2741 nfcriOLD 2896 nfceqdf 2901 nfceqdfOLD 2902 drnfc1 2925 drnfc1OLD 2926 drnfc2 2927 drnfc2OLD 2928 ralbidv2 3118 ralxpxfr2d 3568 alexeqg 3573 pm13.183 3590 elab6g 3593 elabd2 3594 eqeu 3636 mo2icl 3644 euind 3654 reuind 3683 cdeqal 3699 sbcal 3776 sbcabel 3807 csbiebg 3861 ssconb 4068 reldisj 4382 reldisjOLD 4383 sbcssg 4451 elint 4882 axrep1 5206 axreplem 5207 axrep2 5208 axrep4 5210 zfrepclf 5213 axsepg 5219 zfauscl 5220 bm1.3ii 5221 al0ssb 5227 eusv1 5309 euotd 5421 freq1 5550 frsn 5665 iota5 6401 sbcfung 6442 funimass4 6816 dffo3 6960 eufnfv 7087 dff13 7109 nfriotadw 7220 tfisi 7680 dfom2 7689 elom 7690 seqomlem2 8252 findcard 8908 findcard2 8909 pssnn 8913 ssfi 8918 pssnnOLD 8969 findcard2OLD 8986 findcard3 8987 fiint 9021 inf0 9309 axinf2 9328 tz9.1 9418 karden 9584 aceq0 9805 dfac5 9815 zfac 10147 brdom3 10215 axpowndlem3 10286 zfcndrep 10301 zfcndac 10306 elgch 10309 engch 10315 axgroth3 10518 axgroth4 10519 elnp 10674 elnpi 10675 infm3 11864 fz1sbc 13261 uzrdgfni 13606 trclfvcotr 14648 relexpindlem 14702 vdwmc2 16608 ramtlecl 16629 ramval 16637 ramub 16642 rami 16644 ramcl 16658 mreexexd 17274 mplsubglem 21115 mpllsslem 21116 ismhp3 21243 istopg 21952 1stccn 22522 iskgen3 22608 fbfinnfr 22900 cnextfun 23123 metcld 24375 metcld2 24376 chlimi 29497 nmcexi 30289 disjxun0 30814 disjrdx 30831 funcnvmpt 30906 mclsssvlem 33424 mclsval 33425 mclsind 33432 fnssintima 33578 elintfv 33644 dfon2lem6 33670 dfon2lem7 33671 dfon2lem8 33672 dfon2 33674 ttrclss 33706 ttrclselem2 33712 xpord3ind 33727 sscoid 34142 trer 34432 bj-ssblem1 34762 bj-ax12 34765 mobidvALT 34968 bj-sbceqgALT 35014 bj-nuliota 35155 bj-bm1.3ii 35162 wl-mo2t 35657 isass 35931 releccnveq 36324 ecin0 36411 inecmo 36414 alrmomodm 36418 extssr 36554 eltrrels3 36621 eleqvrels3 36633 axc11n-16 36879 cdlemefrs29bpre0 38337 elmapintab 41093 cnvcnvintabd 41097 iunrelexpuztr 41216 ntrneiiso 41590 ntrneik2 41591 ntrneix2 41592 ntrneikb 41593 mnuop123d 41769 pm14.122b 41930 iotavalb 41937 trsbc 42049 dffo3f 42606 eusnsn 44407 aiota0def 44475 ichbidv 44793 mof0 46053 eufsnlem 46056 setrecseq 46277 setrec1lem1 46279 setrec2fun 46284 setrec2lem2 46286 |
Copyright terms: Public domain | W3C validator |