![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > albidv | Structured version Visualization version GIF version |
Description: Formula-building rule for universal quantifier (deduction form). See also albidh 1869 and albid 2215. (Contributed by NM, 26-May-1993.) |
Ref | Expression |
---|---|
albidv.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
Ref | Expression |
---|---|
albidv | ⊢ (𝜑 → (∀𝑥𝜓 ↔ ∀𝑥𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-5 1913 | . 2 ⊢ (𝜑 → ∀𝑥𝜑) | |
2 | albidv.1 | . 2 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
3 | 1, 2 | albidh 1869 | 1 ⊢ (𝜑 → (∀𝑥𝜓 ↔ ∀𝑥𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∀wal 1539 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 |
This theorem depends on definitions: df-bi 206 |
This theorem is referenced by: nfbidv 1925 2albidv 1926 sbjust 2066 sbequ 2086 sb6 2088 ax12wdemo 2131 sb4b 2474 mojust 2533 mof 2557 eujust 2565 eujustALT 2566 eu6lem 2567 euf 2570 axextg 2705 axextmo 2707 eqeq1dALT 2735 nfcriOLD 2893 nfceqdf 2898 nfceqdfOLD 2899 drnfc1 2922 drnfc1OLD 2923 drnfc2 2924 drnfc2OLD 2925 ralbidv2 3173 ralxpxfr2d 3633 alexeqg 3638 pm13.183 3655 elab6g 3658 elabd2 3659 eqeu 3701 mo2icl 3709 euind 3719 reuind 3748 cdeqal 3764 sbcal 3840 sbcabel 3871 csbiebg 3925 ssconb 4136 reldisj 4450 reldisjOLD 4451 sbcssg 4522 elint 4955 axrep1 5285 axreplem 5286 axrep2 5287 axrep4 5289 zfrepclf 5293 axsepg 5299 zfauscl 5300 bm1.3ii 5301 al0ssb 5307 eusv1 5388 euotd 5512 freq1 5645 frsn 5761 iota5 6523 dffun2 6550 sbcfung 6569 funimass4 6953 dffo3 7100 eufnfv 7227 dff13 7250 fnssintima 7355 nfriotadw 7369 imaeqalov 7642 tfisi 7844 dfom2 7853 elom 7854 xpord3inddlem 8136 seqomlem2 8447 findcard 9159 findcard2 9160 pssnn 9164 ssfi 9169 pssnnOLD 9261 findcard2OLD 9280 findcard3 9281 findcard3OLD 9282 fiint 9320 inf0 9612 axinf2 9631 ttrclss 9711 ttrclselem2 9717 tz9.1 9720 karden 9886 aceq0 10109 dfac5 10119 zfac 10451 brdom3 10519 axpowndlem3 10590 zfcndrep 10605 zfcndac 10610 elgch 10613 engch 10619 axgroth3 10822 axgroth4 10823 elnp 10978 elnpi 10979 infm3 12169 fz1sbc 13573 uzrdgfni 13919 trclfvcotr 14952 relexpindlem 15006 vdwmc2 16908 ramtlecl 16929 ramval 16937 ramub 16942 rami 16944 ramcl 16958 mreexexd 17588 mplsubglem 21549 mpllsslem 21550 ismhp3 21677 istopg 22388 1stccn 22958 iskgen3 23044 fbfinnfr 23336 cnextfun 23559 metcld 24814 metcld2 24815 chlimi 30474 nmcexi 31266 disjxun0 31792 disjrdx 31809 funcnvmpt 31879 mclsssvlem 34541 mclsval 34542 mclsind 34549 elintfv 34724 dfon2lem6 34748 dfon2lem7 34749 dfon2lem8 34750 dfon2 34752 sscoid 34873 trer 35189 bj-ssblem1 35519 bj-ax12 35522 mobidvALT 35724 bj-sbceqgALT 35770 bj-nuliota 35926 bj-bm1.3ii 35933 wl-mo2t 36428 isass 36702 releccnveq 37114 ecin0 37209 inecmo 37212 alrmomodm 37216 extssr 37367 eltrrels3 37438 eleqvrels3 37451 axc11n-16 37796 cdlemefrs29bpre0 39255 unielss 41952 orddif0suc 42003 elmapintab 42332 cnvcnvintabd 42336 iunrelexpuztr 42455 ntrneiiso 42827 ntrneik2 42828 ntrneix2 42829 ntrneikb 42830 mnuop123d 43006 pm14.122b 43167 iotavalb 43174 trsbc 43286 dffo3f 43862 eusnsn 45722 aiota0def 45790 ichbidv 46107 mof0 47457 eufsnlem 47460 setrecseq 47683 setrec1lem1 47685 setrec2fun 47690 setrec2lem2 47692 |
Copyright terms: Public domain | W3C validator |