![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > albidv | Structured version Visualization version GIF version |
Description: Formula-building rule for universal quantifier (deduction form). See also albidh 1865 and albid 2223. (Contributed by NM, 26-May-1993.) |
Ref | Expression |
---|---|
albidv.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
Ref | Expression |
---|---|
albidv | ⊢ (𝜑 → (∀𝑥𝜓 ↔ ∀𝑥𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-5 1909 | . 2 ⊢ (𝜑 → ∀𝑥𝜑) | |
2 | albidv.1 | . 2 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
3 | 1, 2 | albidh 1865 | 1 ⊢ (𝜑 → (∀𝑥𝜓 ↔ ∀𝑥𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∀wal 1535 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 |
This theorem depends on definitions: df-bi 207 |
This theorem is referenced by: nfbidv 1921 2albidv 1922 sbjust 2063 sbequ 2083 sb6 2085 ax12wdemo 2135 sb4b 2483 mojust 2542 mof 2566 eujust 2574 eujustALT 2575 eu6lem 2576 euf 2579 axextg 2713 axextmo 2715 eqeq1dALT 2743 nfceqdf 2904 drnfc1 2928 drnfc1OLD 2929 drnfc2 2930 drnfc2OLD 2931 ralbidv2 3180 ralxpxfr2d 3659 alexeqg 3664 pm13.183 3679 elab6g 3682 elabd2 3683 eqeu 3728 mo2icl 3736 euind 3746 reuind 3775 cdeqal 3791 sbcal 3868 sbccomlem 3891 sbcabel 3900 csbiebg 3954 ssconb 4165 reldisj 4476 sbcssg 4543 elint 4976 axrep1 5304 axreplem 5305 axrep2 5306 axrep4 5308 zfrepclf 5312 axsepg 5318 zfauscl 5319 bm1.3ii 5320 al0ssb 5326 eusv1 5409 euotd 5532 freq1 5667 frsn 5787 iota5 6556 dffun2 6583 sbcfung 6602 funimass4 6986 dffo3 7136 dffo3f 7140 eufnfv 7266 dff13 7292 fnssintima 7398 nfriotadw 7412 imaeqalov 7689 tfisi 7896 dfom2 7905 elom 7906 xpord3inddlem 8195 seqomlem2 8507 findcard 9229 findcard2 9230 pssnn 9234 ssfi 9240 findcard3 9346 findcard3OLD 9347 fiint 9394 fiintOLD 9395 inf0 9690 axinf2 9709 ttrclss 9789 ttrclselem2 9795 tz9.1 9798 karden 9964 aceq0 10187 dfac5 10198 zfac 10529 brdom3 10597 axpowndlem3 10668 zfcndrep 10683 zfcndac 10688 elgch 10691 engch 10697 axgroth3 10900 axgroth4 10901 elnp 11056 elnpi 11057 infm3 12254 fz1sbc 13660 uzrdgfni 14009 trclfvcotr 15058 relexpindlem 15112 vdwmc2 17026 ramtlecl 17047 ramval 17055 ramub 17060 rami 17062 ramcl 17076 mreexexd 17706 mplsubglem 22042 mpllsslem 22043 ismhp3 22169 istopg 22922 1stccn 23492 iskgen3 23578 fbfinnfr 23870 cnextfun 24093 metcld 25359 metcld2 25360 noseqrdgfn 28330 chlimi 31266 nmcexi 32058 disjxun0 32596 disjrdx 32613 funcnvmpt 32685 mclsssvlem 35530 mclsval 35531 mclsind 35538 elintfv 35728 dfon2lem6 35752 dfon2lem7 35753 dfon2lem8 35754 dfon2 35756 sscoid 35877 sbequbidv 36180 disjeq12dv 36181 ixpeq12dv 36182 cbvsbdavw 36220 cbvsbdavw2 36221 cbvdisjdavw 36234 cbvdisjdavw2 36255 trer 36282 bj-ssblem1 36620 bj-ax12 36623 mobidvALT 36823 bj-sbceqgALT 36868 bj-nuliota 37023 bj-bm1.3ii 37030 wl-mo2t 37529 isass 37806 releccnveq 38214 ecin0 38308 inecmo 38311 alrmomodm 38315 extssr 38465 eltrrels3 38536 eleqvrels3 38549 axc11n-16 38894 cdlemefrs29bpre0 40353 eu6w 42631 unielss 43179 orddif0suc 43230 elmapintab 43558 cnvcnvintabd 43562 iunrelexpuztr 43681 ntrneiiso 44053 ntrneik2 44054 ntrneix2 44055 ntrneikb 44056 mnuop123d 44231 pm14.122b 44392 iotavalb 44399 trsbc 44511 eusnsn 46941 aiota0def 47011 ichbidv 47327 mof0 48551 eufsnlem 48554 setrecseq 48777 setrec1lem1 48779 setrec2fun 48784 setrec2lem2 48786 |
Copyright terms: Public domain | W3C validator |