Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > albidv | Structured version Visualization version GIF version |
Description: Formula-building rule for universal quantifier (deduction form). See also albidh 1870 and albid 2216. (Contributed by NM, 26-May-1993.) |
Ref | Expression |
---|---|
albidv.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
Ref | Expression |
---|---|
albidv | ⊢ (𝜑 → (∀𝑥𝜓 ↔ ∀𝑥𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-5 1914 | . 2 ⊢ (𝜑 → ∀𝑥𝜑) | |
2 | albidv.1 | . 2 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
3 | 1, 2 | albidh 1870 | 1 ⊢ (𝜑 → (∀𝑥𝜓 ↔ ∀𝑥𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∀wal 1537 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 |
This theorem depends on definitions: df-bi 206 |
This theorem is referenced by: nfbidv 1926 2albidv 1927 sbjust 2067 sbequ 2087 sb6 2089 ax12wdemo 2132 sb4b 2476 sb4bOLD 2477 mojust 2540 mof 2564 eujust 2572 eujustALT 2573 eu6lem 2574 euf 2577 axextg 2712 axextmo 2714 eqeq1dALT 2742 nfcriOLD 2898 nfceqdf 2903 nfceqdfOLD 2904 drnfc1 2927 drnfc1OLD 2928 drnfc2 2929 drnfc2OLD 2930 ralbidv2 3111 ralxpxfr2d 3577 alexeqg 3582 pm13.183 3598 elab6g 3601 elabd2 3602 eqeu 3642 mo2icl 3650 euind 3660 reuind 3689 cdeqal 3705 sbcal 3781 sbcabel 3812 csbiebg 3866 ssconb 4073 reldisj 4386 reldisjOLD 4387 sbcssg 4455 elint 4886 axrep1 5211 axreplem 5212 axrep2 5213 axrep4 5215 zfrepclf 5219 axsepg 5225 zfauscl 5226 bm1.3ii 5227 al0ssb 5233 eusv1 5315 euotd 5428 freq1 5560 frsn 5675 iota5 6420 sbcfung 6465 funimass4 6843 dffo3 6987 eufnfv 7114 dff13 7137 nfriotadw 7249 tfisi 7714 dfom2 7723 elom 7724 seqomlem2 8291 findcard 8955 findcard2 8956 pssnn 8960 ssfi 8965 pssnnOLD 9049 findcard2OLD 9065 findcard3 9066 fiint 9100 inf0 9388 axinf2 9407 ttrclss 9487 ttrclselem2 9493 tz9.1 9496 karden 9662 aceq0 9883 dfac5 9893 zfac 10225 brdom3 10293 axpowndlem3 10364 zfcndrep 10379 zfcndac 10384 elgch 10387 engch 10393 axgroth3 10596 axgroth4 10597 elnp 10752 elnpi 10753 infm3 11943 fz1sbc 13341 uzrdgfni 13687 trclfvcotr 14729 relexpindlem 14783 vdwmc2 16689 ramtlecl 16710 ramval 16718 ramub 16723 rami 16725 ramcl 16739 mreexexd 17366 mplsubglem 21214 mpllsslem 21215 ismhp3 21342 istopg 22053 1stccn 22623 iskgen3 22709 fbfinnfr 23001 cnextfun 23224 metcld 24479 metcld2 24480 chlimi 29605 nmcexi 30397 disjxun0 30922 disjrdx 30939 funcnvmpt 31013 mclsssvlem 33533 mclsval 33534 mclsind 33541 fnssintima 33685 elintfv 33747 dfon2lem6 33773 dfon2lem7 33774 dfon2lem8 33775 dfon2 33777 xpord3ind 33809 sscoid 34224 trer 34514 bj-ssblem1 34844 bj-ax12 34847 mobidvALT 35050 bj-sbceqgALT 35096 bj-nuliota 35237 bj-bm1.3ii 35244 wl-mo2t 35739 isass 36013 releccnveq 36405 ecin0 36491 inecmo 36494 alrmomodm 36498 extssr 36634 eltrrels3 36701 eleqvrels3 36713 axc11n-16 36959 cdlemefrs29bpre0 38417 elmapintab 41211 cnvcnvintabd 41215 iunrelexpuztr 41334 ntrneiiso 41708 ntrneik2 41709 ntrneix2 41710 ntrneikb 41711 mnuop123d 41887 pm14.122b 42048 iotavalb 42055 trsbc 42167 dffo3f 42724 eusnsn 44531 aiota0def 44599 ichbidv 44916 mof0 46176 eufsnlem 46179 setrecseq 46402 setrec1lem1 46404 setrec2fun 46409 setrec2lem2 46411 |
Copyright terms: Public domain | W3C validator |